文档库 最新最全的文档下载
当前位置:文档库 › (完整版)数学归纳法典型例题分析

(完整版)数学归纳法典型例题分析

(完整版)数学归纳法典型例题分析
(完整版)数学归纳法典型例题分析

数学归纳法证题步骤与技巧

1.数学归纳法的范围

因此,数学归纳法的适用范围仅限于与自然数有关的命题。它能帮助我们判断种种与自然数n 有关的猜想的正确性。 2.数学归纳法两个步骤的关系

第一步是递推的基础,第二步是递推的根据,两个步骤缺一不可。 3.第一、二数学归纳法

第一数学归纳法可以概括为以下三步:(1)归纳奠基:证明n=1时命题成立;(2)归纳假设:假设n=k 时命题成立;(3)归纳递推:由归纳假设推出n=k+1时命题也成立。从而就可断定命题对于从所有正整数都成立 第二数学归纳法的证明步骤是: 1、证明当n=1时命题是正确的;

2、k 为任意自然数,假设n <k 时命题都是正确的,如果我们能推出n=时命题也正确,就可以肯定该命题对一切自然数都正确。数学归纳法和第二归纳法是两个等价的归纳法,我们把数学归纳法也叫做第一归纳法。有些命题用第一归纳法证明不大方便,可以用第二归纳法证明。

2.(2012·济南高二检测)用数学归纳法证明1+2+3+…+n 2

=42n n ,2

+则当n=k+1时左端应在n=k 的基础上加上( )(A)k 2

+1(B)(k+1)2

(C)

()()42

k 1k 12

+++(D)(k 2+1)+(k 2+2)+…+(k+1)2

4.若数列{a n }的通项公式a n =

()

2

1

n 1+(n ∈N *

),记f(n)=(1-a 1)(1-a 2)…(1-a n ),

试通过计算f(1),f(2),f(3)的值,推测出f(n)为( ) (A)

n 2n 3++ (B)n 22n 2++(C)n 2

2n 1

++ (D)

n

2n 1

+ 5.(2012·徐州高二检测)用数学归纳法证明“当n 为正奇数时,x n

+y n

能被x+y 整除”,当

第二步假设n=2k-1(k ∈N *

)命题为真时,进而需证n=__________时,命题亦真.

6.(易错题)若f(n)=12+22+32+…+(2n)2

,则f(k+1)与f(k)的递推关系式是______ _____________________________. 7.用数学归纳法证明:21111n n 1n 2n

+++?+++>1(n ∈N *,n >1).

8.求证:()()()()

222n n 112n 13352n 12n 122n 1+++?+=

??-++,(n ∈N *

)

9.用数学归纳法证明a n+1+(a+1)2n-1能被a 2+a+1整除(n ∈*N )

答案解析

2.【解析】选D.当n=k 时,左端=1+2+3+…+k 2

当n=k+1时,左端=1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k+1)2

,

故当n=k+1时,左端应在n=k 的基础上加上(k 2+1)+(k 2+2)+…+(k+1)2

,故应选D.

4.【解析】选B.∵f(n)=(1-a 1)(1-a 2)…(1-a n ), f(1)=1-a 1=1-

13,44

= f(2)=(1-a 1)(1-a 2)=f(1)×(1-19)=3824,4936

?== f(3)=(1-a 1)(1-a 2)(1-a 3)=()12155

f 2(1).163168

?-=?=

根据其结构特点可得:f(n)=

()

n 2

.2n 1++故选B.

5.【解析】因为n 为正奇数,且与2k-1相邻的下一个奇数是2k+1,故进而需证n=2k+1时,命题亦真. 答案:2k+1

6.【解题指南】写出f(k)和f(k+1),采用作差法.

【解析】∵f(k)=12+22+…+(2k)2

,

f(k+1)=12+22+…+(2k)2+(2k+1)2+(2k+2)2

∴f(k+1)-f(k)=(2k+1)2+(2k+2)2

即f(k+1)=f(k)+(2k+1)2+(2k+2)2

.

答案:f(k+1)=f(k)+(2k+1)2+(2k+2)2

7.【证明】(1)当n=2时,左边=

11113.23412

++= 右边=1,不等式成立.

(2)假设当n=k(k ≥2,k ∈N *

)时,不等式成立,即

21111k k 1k 2k

+++?+++>1. 那么当n=k+1时,

()

()()()()()()

()

2

222222222

22

2

111111

k 1k 2k k 1k 2k 111111111()k k 1k 2k k 1k 2k 2k 1k 1112k 1k 2k 1k

2k 1k k 1k k 111.

k k 1k k 1++?++++?++++++=+++?++++?+-++++++++-

+++-+--=+=+

++>

∵k ≥2,∴k 2

-k-1>0,1+

()

22

k k 1k k 1--+>1.

这就是说,当n=k+1时,不等式也成立.

由(1)和(2)可知,原不等式对任意大于1的正整数n 都成立. 【变式训练】用数学归纳法证明:2221113n 123n 2n 1

+

++?+≥+(n ∈N *

). 【证明】①当n=1时,左边=1,右边=1,左边≥右边,结论成立;

②假设n=k 时,不等式成立, 即2221113k 1.23k 2k 1

+

++?+≥+ 当n=k+1时,()()

2222211113k 1

1,23k 2k 1k 1k 1+

++?++≥++++ 下面证:

()()()23k 13k 1,2k 12k 11

k 1++≥++++ 作差得()()()()()()()

223k 1k k 23k 1

0,2k 12k 11k 1k 12k 12k 3+++-=+++++++>

得结论成立,

即当n =k+1时,不等式也成立.

由①和②知,不等式对一切n ∈N *

都成立.

8.(2012·开封高二检测)在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n+1成等差数列,b n ,a n+1,b n+1

成等比数列(n ∈N *

),求a 2,a 3,a 4与b 2,b 3,b 4的值,由此猜测{a n },{b n }的通项公式,并证明你的结论.

8.【解题指南】采用“归纳——猜想——证明”的思想方法. 【解析】由条件得2b n =a n +a n+1,2n 1

a

+ =b n b n+1.

又a 1=2,b 1=4,由此可得a 2=6,b 2=9, a 3=12,b 3=16,a 4=20,b 4=25,

猜测a n =n(n+1),b n =(n+1)2

. 用数学归纳法证明.

①当n=1时,a 1=2,b 1=4,结论成立. ②假设n=k 时结论成立,

即a k =k(k+1),b k =(k+1)2

.那么n=k+1时,

a k+1=2

b k -a k =2(k+1)2

-k(k+1) =(k+1)[(k+1)+1],

b k+1=2k 1k

a b +=(k+2)2=[(k+1)+1]2

,

∴n=k+1时,结论也成立.

由①和②知,a n =n(n+1),b n =(n+1)2

对一切正整数都成立. 【挑战能力】

【解题指南】此题是式子的整除问题,与正整数n 有关,用数学归纳法解决是较好的选择.

【解析】(1)当n=1时,左边=a 2+(a+1)1=a 2+a+1,可被a 2

+a+1整除;

(2)假设n=k(k ≥1,k ∈N *)时,a k+1+(a+1)2k-1能被a 2

+a+1整除,则当n=k+1时,a k+1+1+(a+1)2(k+1)-1=a k+2+(a+1)2k+1 =aa k+1+(a+1)2(a+1)2k-1 =aa k+1+a(a+1)2k-1+(a 2+a+1)(a+1)2k-1

=a [a k+1+(a+1)2k-1]+(a 2+a+1)(a+1)2k-1

由假设可知a [a k+1+(a+1)2k-1]能被a 2

+a+1整除.

又(a 2+a+1)(a+1)2k-1也能被a 2+a+1整除,所以a k+2+(a+1)2k+1能被a 2

+a+1整除,即 n=k+1时,命题成立.

由(1)和(2)知,对一切n ∈N *

命题都成立. 【方法技巧】用数学归纳法证明整除问题技巧

应用数学归纳法证明整除性问题时,关键是“凑项”,采用增项、减项、拆项和因式分解等方法.也可以说将式子“硬提公因式”,即将n=k 时的项从n=k+1时的项中“硬提出来”,构成n=k 时的项,后面的式子相对变形,使之与n=k+1时的项相同,从而达到利用假设的目的.

一、选择题(每题4分,共16分)

1.(2011·马鞍山高二检测)用数学归纳法证明等式1+2+3+…+(n+3)=

()()n 3n 42

++ (n ∈N *

)

时,第一步验证n=1时,左边应取的项是( )(A)1 (B)1+2 (C)1+2+3 (D)1+2+3+4

2.设S k =

1111

k 1k 2k 32k +++?+

+++,则S k+1为( ) (A)S k +12k 2+ (B)S k +12k 1++12k 2+ (C)S k +12k 1+-12k 2+ (D)S k +12k 2+-1

2k 1

+

3.某个命题与正整数n 有关,如果当n=k(k ∈N *

)时,命题成立,那么n=k+1时,命题也成立,

即已知当n=4时该命题不成立,那么可推得( )

(A)当n=5时命题不成立(B)当n=5时命题成立(C)当n=3时命题不成立(D)当n=3时命题成立 4.

*n 1(n N )+∈”的过程如下:

证明:(1)当n=1时,显然命题是正确的;(2)假设n=k

k 1+,则当n=k+1

=

()k 11=++所以当n=k+1时命题是

正确的,由(1)(2)可知对于(n ∈N *

)命题都是正确的.以上证法是错误的,错误在于( ) (A)从k 到k+1的推理过程没有使用归纳假设(B)归纳假设的写法不正确 (C)从k 到k+1的推理不严密(D)当n=1时,验证过程不具体 二、填空题(每题4分,共8分)

5.用数学归纳法证明“n 3+5n ”能被6整除的过程中,当n=k+1时,式子(k+1)3

+5(k+1)应变形为__________________________. 6.在数列{a n }中,a 1=2,a n+1n n a 3a 1

=

+(n ∈N *

),依次计算出a 2,a 3,a 4后,归纳猜想得出a n 的表

达式为_______________________. 三、解答题(每题8分,共16分)

7.求证:()()()()

222n n 112n 13352n 12n 122n 1+++?+=

??-++,(n ∈N *

) 8.平面上有n(n ≥2)条直线,其中无两条直线平行,也无三线共点,求证:这n 条直线互相分割成n 2

条线段或射线.

【挑战能力】

(10分)在1与2之间插入n 个正数a 1,a 2,a 3,…,a n ,使这n+2个数成等比数列;又在1与2之间插入n 个正数b 1,b 2,b 3,…,b n ,使这n+2个数成等差数列.记A n =

a 1a 2a 3…a n ,B n =

b 1+b 2+b 3+…+b n .试比较A n 与B n 的大小(n ∈N *

),并证明你的结论.

答案解析

1.【解析】选D.由所给等式可知,当n=1时,左边应有四项,即1+2+3+4.

2.【解析】选C.∵k 111111

S k 11k 122k 2k 12k 2

+=

++?+++

++++++ k 1k k 111S S 2k 12k 2k 111

S .

2k 12k 2

+∴=+

+-

+++=+-++ 独具【易错提醒】在由n=k 到n=k+1的转化过程中,必须搞清式子的结构,即弄清楚增加和减少的项,本题易误选B.

3.【解析】选C.判断其逆否命题,若n=3时,该命题成立,则n=3+1=4时,命题也一定成立.

4.【解析】选A.由推理过程可知,在第二步证明n=k+1的结论时,没有使用归纳假设.

5.【解析】(k+1)3+5(k+1)=k 3+1+3k 2+3k+5k+5=(k 3+5k)+3k 2+3k+6=(k 3

+5k)+3k(k+1) +6

∵k(k+1)为偶数,∴3k(k+1)+6能被6整除.

答案:(k 3

+5k)+3k(k+1)+6 6.【解析】∵a 1=2,3n 12n 1234n 123a a a a 222

a a ,a ,a 3a 13a 173a 1133a 119

+=

∴======++++ ,

于是猜想a n =

2.6n 5- 答案:a n =26n 5

-(n ∈N *

)

7.【证明】(1)当n=1时,左边=

11133=?,右边=121233

?=?, ∴左边=右边.

∴当n=1时,等式成立.

(2)假设当n=k(k ≥1,k ∈N *

)时,等式成立,即

()()()()

222

k k 112k 13352k 12k 122k 1+++?+=

??-++成立, 当n=k+1时,

()()()()()()()()()()22

222

k 1k k 1k 112k 13352k 12k 12k 12k 322k 12k 12k 3+++++?++=+??-++++++ ()()

k(2k 3)2(k 1)(k 1)22k 12k 3+++=+++g

()()()()()()k 1k 2(2k 1)k 1(k 2)22k 12k 322k 3+++++=

=+++ ()()()k 1[k 11].22k 11+++=

++[]

∴当n=k+1时,等式也成立.

由(1)(2)可知,等式对任意n ∈N *

都成立.

8.【证明】(1)当n=2时,两条相交直线互相分割成4=22

条射线,命题成立.

(2)假设当n=k(k ∈N *且k ≥2)时,命题成立,即k 条直线互相分割成k 2

条线段或射线. 则当n=k+1时,第k+1条直线与前k 条直线有k 个交点,这k 个交点把第k+1条直线分成k-1条线段和2条射线,这k 个交点又把它原来所在的线段或射线分成2段,所以线段或射线又增加了k 段.加进第k+1条直线后,共增加了k-1+2+k 条线段或射线,这时有k 2+k-1+2+k=(k+1)2

条线段或射线,所以n=k+1时命题也成立,由(1)(2)可知,结论成立. 【挑战能力】

独具【解题提示】先由等差、等比数列的性质,求出A n 与B n ,再由特殊到一般猜想A n 与B n 的大小,用数学归纳法证明.

【解析】∵1,a 1,a 2,a 3,…,a n ,2成等比数列, ∴a 1a n =a 2a n-1=a 3a n-2=…=a k a n-k+1=…=1×2=2, ∴2

n A =(a 1a n )(a 2a n-1)(a 3a n-2)…(a n-1a 2)(a n a 1)=2n

,

∴A n =2n 2

.

又1,b 1,b 2,b 3,…,b n ,2成等差数列, ∴b 1+b n =1+2=3, ∴B n =

()1n n b b 3

n 22

+=. 要比较A n 与B n 的大小,只需比较2

n A 与2

n B 的大小,即比较2n

与94

n 2

的大小. 当n=1,2,3,…6时,容易计算出2n

94

n 2

, 当n=7时,27

=128,

94×72=4414

, ∵128>4414,∴2n

>94

n 2.

当n=8时,28=256, 94×82

=144,

∵256>144,∴2n

>94

n 2.

猜想:当n ≥7时,有2n

>94

n 2.

以下用数学归纳法加以证明: ①当n=7时,已验证猜想正确.

②假设n=k(k ≥7)时猜想正确,即2k

>94

k 2

. 那么n=k+1时,2k+1

=2·2k

>2·

94k 2=94

·2k 2

, 又当k ≥7时,2k 2

-(k+1)2

=k 2

-2k-1=(k-1)2

-2>0, ∴2k+1

94

(k+1)2

. 即当n=k+1时,猜想也正确.

由①②知,对一切n ≥7(n ∈N *

),都有2n

>94

n 2

, 即2n A >2

n B ,也即A n >B n .

综上,当1≤n ≤6(n ∈N *

)时,A n <B n ; 当n ≥7(n ∈N *)时,A n >B n .

高考题型归纳:

题型1.证明代数恒等式

例1.归纳法证明下述等式问题:

)1)(1(4

1)()2(2)1(12

222222+-=

-++-?+-?n n n n n n n n Λ. 练习:用数学归纳法证明 ()()()1

14253153

n n n n n ?+?+++=++L

题型2.证明不等式

例2. 用数学归纳法证明下述不等式;

).2,(10931312111≥∈>+++++++*n N n n n n n 且Λ

练习:用数学归纳法证明()1112

1,,22322

n n n N n +++++>∈≥L

题型3.证明整除

练习:用数学归纳法证明2166n --能被7整除

题型4.解决几何问题

例4.有n 个圆,任意两个圆都相交于两点,任意三个圆都不相交于同一点,求证:这n 个圆将平面分成()2

2f n n n =-+个部分

用数学归纳法证明几何问题,关键在于分析由n =k 到n =k +1的变化情况,即分点(或顶点)增加了多少,直线的条数(或划分区域)增加了几部分等,或先用f(k +1)-f(k)得出结果,再结合图形给予严谨的说明,几何问题的证明:一要注意数形结合;二要注意要有必要的文字说明.

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

数学分析大一上学期考试试题 B

数学分析第一学期期末考试试卷(B 卷) 一、叙述题(每题5分,共10分) 1.上确界; 2.区间套的定义。 二、填空题(每题4分,共20分)1.函数|3|ln 3)(--=x x x f 的全部间断点是. 2.定义在]1,0[区间上的黎曼函数的连续点为. 3.)1ln()(2 x x f +=,已知5 6)2()(lim 000=--→h h x f x f h ,=0x .4.正弦函数x y sin =在其定于内的拐点为.5.点集}1)1({n S n +-=的所有聚点为.三、计算题(每题4分,共28分)(1)求]1 21 11[lim 222n n n n n ++++++∞→ ;(2)求30sin tan lim x x x x -→;(3)求)1ln(sin 1tan 1lim 30x x x x ++-+→;(4)求2210)21(e lim x x x x +-→;(5)求)1ln(2x x y ++=的一阶导; (6)求3)(sin )(+=x x x f 的一阶导; (7)求???==; cos ,sin 22t t y t t x 的一阶导。四、讨论题(共12分)1.极限x x 1sin lim 0 →是否存在,说明原因。2.设000)()(=≠?????-=-x x x e x g x f x ,其中)(x g 具有二阶连续导数,且

1)0(,1)0(-='=g g .求)(x f '并讨论)(x f '在),(+∞-∞上的连续性. 五、证明题(共30分)1.证明.x x f 2cos )(=在),0[+∞上一致连续. 2.设f 在],[b a 上连续,],[,,,21b a x x x n ∈ ,另一组正数n λλλ,,,21 满足121=+++n λλλ .证明:存在一点],[b a ∈ξ,使得 )()()()(2211n n x f x f x f f λλλξ+++= . 3.设函数)(x f 在[]b a ,上连续,在),(b a 内可导,且0>?b a .证明存在),(b a ∈ξ,使得)()()()(1 ξξξf f b f a f b a b a '-=-.

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

数学归纳法例题讲解

数学归纳法例题讲解 例1.用数学归纳法证明: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边3 13 11=?= ,右边3 11 21= += ,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?k k k k . 那么当n =k +1时,有: ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ?? ??????? ??+-++??? ??+--++??? ??-+??? ??-+??? ??-= 321121121121 7151513131121k k k k 3 22 221321121++? =??? ??+-= k k k ()1 1213 21+++= ++= k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ()() 321211 2+++ += k k k k

()() ()()()() 321211232121 322 ++++= ++++= k k k k k k k k ()1 1213 21+++= ++= k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ??? ??=++=+=60 3224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

高中数学高考总复习数学归纳法习题及详解(可编辑修改word版)

A. n -1 B. n +1-1 C. n +1-2 D. n +2-2 高中数学高考总复习数学归纳法习题及详解 一、选择题 1 1 . 已知a = ,数列{a }的前n 项和为S ,已计算得S = 2-1, S = 3-1,S =1, n n +1+ n n n 1 2 3 由此可猜想 S n =( ) [答案] B 1 1 1 1 2.已知 S k = + + + + + +…+ (k =1,2,3,…),则 S k +1 等于( ) k 1 k 2 k 3 2k 1 A. S k + + 2(k 1) 1 1 B. S k + + - + 2k 1 k 1 1 1 C. S k + + - + 2k 1 2k 2 1 1 D. S k + + + + 2k 1 2k 2 [答案] C 1 1 1 1 1 1 1 [解析] S k +1= + + + + + +…+ = + + + + +…+ = + + + (k 1 1 1 1) 1 1 (k 1) 2 1 2(k 1) 1 1 k 2 k 3 2k 2 k 1 +…+ + + + - + + + =S k + + - + . k 2 2k 2k 1 2k 2 k 1 2k 1 2k 2 3. 对于不等式 1°当 n =1 时, n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 12+1≤1+1,不等式成立. 2°假设 n =k (k ∈N *)时不等式成立,即 k 2+k

大学工科数学分析期末考试_(试题)A

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

一、填空题(每题4分,共20XX 分) 1. 设 ABC L 是从 (1,0) A 到 (0,1) B -再到 (1,0) C -连成的折线,则曲线积分 d d |||| ABC L x y x y +=+? . 2. 设向量场222(1)(1)(1)A x x z i y x z j z x z k =++-+-,则向量场在点012 1M -(,,)处的旋度A =rot . 3. 若x y xe -=和sin y x =为某四阶常系数齐次线性微分方程的两个解,则该方程是 . 4. 函数(),(),(,)x x f x y ?ψ皆可微,设()(),()z f x y xy ?ψ=+,则 z z x y ??-=?? . 5. 锥面 22 z x y +被圆柱面 222,(0) x y ax a +=>截下的曲面的面积 为 . 二、单项选择题(每题4分,共20XXXX 分) 本题分数 20XX 得 分 本题分数 20XXXX 得 分

(多选不得分) 6.若 ()() 0000,,, x y x y f f x y ????都存在,则(,)f x y 在()00,x y ( ) (A )极限存在但不一定连续 (B )极限存在且连续 (C )沿任意方向的方向导数存在 (D )极限不一定存在,也不一定连续 7. 12,L L 是含原点的两条同向封闭曲线,若已知122 d d L y x x y K x y -+=+?(常数), 则222d d L y x x y I x y -+= +?的值 ( ) (A )一定等于 K (B )一定等于K - (C ) 与2L 的形状有关 (D )因为 Q P x y ??=??,所以0I = 8.∑为球面2222x y z a ++=外侧,Ω为球体2222x y z a ++≤,则有 ( )

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

相关文档
相关文档 最新文档