文档库 最新最全的文档下载
当前位置:文档库 › 空气热机表格

空气热机表格

空气热机表格
空气热机表格

实验 空气热机实验

姓名 班级 教师 实验时间 实验组号

一、预习要点

1. 理解热机原理及循环过程;

2. 证卡诺定理;

3. 热机实际效率

二、实验注意事项

1、加热端在工作时及停止加热后1小时内高温,请小心操作,防止烫伤。

2、热机在没有运转状态下,严禁长时间大功率加热,若热机运转过程中因各种原因停止转动,必须用手拨动飞轮帮助其重新运转或立即关闭电源,否则会损坏仪器。 热机汽缸等部位为玻璃制造,容易损坏,请谨慎操作。

3、记录测量数据前等待热机稳定读数的时间一般在10分钟左右。

4、力矩计若摇摆,用手轻托力矩计底部,缓慢放手后可以稳定力矩计。如轻微摇摆,读取中间值。

5、热机测试仪在工作时如果出现异常现象,请重新开关电源可以恢复正常使用。

三、实验内容

1. 测量不同冷热端温度时的热功转换值

逐步加大加热功率,温度和转速平衡后,将数据记入下表。重复测量5次。

2. 测量热机输出功率随负载及转速的变化关系

保持输入功率不变,逐步增大输出力矩,重复测量5次以上。输入功率 i P VI ==

教师签字:

四、数据处理

1. 以1/T T ?为横坐标,A 为纵坐标,在坐标纸上作A 与1/T T ?的关系图,验证卡诺定理;

2. n 为纵坐标,在坐标纸上作0P 与n 的关系图;

3. 根据实验所得以上2图,对实验结论进行描述。

五、思考题

1、空气热机和内燃机、燃气轮机在工作原理上有何不同?

2、为什么P-V 图的面积即等于热机在一次循环过程中将热能转换为机械能的数值?

空气热机实验

空气热机实验 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究为热力学第二定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学知识。 【实验目的】 空气热机原理、卡诺循环、卡诺定理 【实验原理】 空气热机的结构及工作原理可用图1说明。热机主机由高温区,低温区,工作活塞及汽缸,位移活塞及汽缸,飞轮,连杆,热源等部分组成。 图1 空气热机工作原理 对于循环过程可逆的理想热机,热功转换效率: η = A/Q1 =(Q1-Q2)/Q1=(T1-T2)/T1 = ΔT/ T1 实际热机:η≦ΔT/ T1 正比于ΔT/n,n为热机转速,η正比于热机每一循环从热源吸收的热量Q 1 及ΔT均可测量,测量不同冷热端温度时的nA/ΔT,观察它n A/ΔT。n,A,T 1 的关系,可验证卡诺定理。 与ΔT/ T 1 当热机带负载时,热机向负载输出的功率可由力矩计测量计算而得,且热机实际输出功率的大小随负载的变化而变化。在这种情况下,可测量计算出不同负载大小时的热机实际效率。 【实验仪器】 ZKY-RJ型空气热机实验仪、示波器

【实验内容】 1.测量不同冷热端温度时的热功转换值(表1),作nA/ΔT 与ΔT/ T 1的关系图, 验证卡诺定理。 2.测量热机输出功率随负载及转速的变化关系(表2),作图分析。 【注意事项】 1.加热端在工作时温度很高,而且在停止加热后1小时内仍然会有很高温度, 请小心操作,否则会被烫伤。 2.热机在没有运转状态下,严禁长时间大功率加热,若热机运转过程中因各种 原因停止转动,必须用手拨动飞轮帮助其重新运转或立即关闭电源,否则会损坏仪器。 3.热机汽缸等部位为玻璃制造,容易损坏,请谨慎操作。 4.记录测量数据前须保证已基本达到热平衡,避免出现较大误差。等待热机稳 定读数的时间一般在10分钟左右。 5.在读力矩的时候,力矩计可能会摇摆。这时可以用手轻托力矩计底部,缓慢 放手后可以稳定力矩计。如还有轻微摇摆,读取中间值。 6.飞轮在运转时,应谨慎操作,避免被飞轮边沿割伤。

山西大学大学物理实验演示实验实验报告范文

实验目的: 1.在拓展知识面的同时训练学生的动手操作能力; 2.通过此类实验建立理论联系实践的能力与思维; 记忆合金水车:形状记忆合金是一种特殊的功能材料,它可以记住加工好的形状,当外力或温度改变使其形状发生改变的时候,只要适当的加热就可以恢复原来的形状。该装置让所选记忆合金周期性地与高温热源和低温热源接触,形状随之周期性地变化,从而驱动水车轮的转动,形象地展示了热变为功的过程和形状记忆合金的特性和用途。 该种形状记忆合金为镍钛合金,有双程记忆功能(即能记忆温度高低两种情况下的形状)可以有上百万次的变形和恢复。镍钛合金还有相当好的生物相容性,相变温度较低,约在40-50℃,医学上用于脊柱侧歪、骨骼畸形等的矫正。 低温差热机:可以利用比环境温度高4℃的任何热源,使一组活塞运动并推动转轮运转,是一种很好的利用低温热源的热机,可以利用不高的温度差实行热工转化。主要应用在于能利用传

统热机无法利用的能量来源。 经典置换式热气机:利用酒精灯的热量驱动一组活塞、连杆和转轮往复运动,工作物质为封闭在透明活塞筒中的空气。活塞和工作物质在往复过程中完成吸放热和能量转化,工作过程形象直观,是对热力学定律和热机原理极好的阐释。其透明活塞材料为石英玻璃,主要特点是热胀冷缩系数小,透光性好。耐腐蚀性强。 投影式伽耳顿板:可以用来验证大量随机物理事件共同遵循的统计物理规律。统计物理规律因等概率假设则其结果可靠,在应用方面很广泛,比如相对论基本假设的提出等等。 辉光盘:利用低压气体分子在在高频强电场中激发、碰撞、电离、复合的过程,外界声音影响电场分布从而影响电子运动,在盘上显示出形状变化的荧光。 昆特管(声驻波演示):利用管中泡沫小球在声驻波场中形成的“泡沫墙”将看不见的声波显示出来,实现了抽象概念的具象化。该装置的缺点是无法消除静电的影响:泡沫小球帖在管内壁上。 气柱共鸣声速测量装置:通过气柱共鸣测量

空气热机

实验报告 物理系 08级 姓名:XXX 学号:198200XXXXXXXX 实验题目:空气热机 一、实验原理 热机是将热能转换为机械能的机器,斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学中的重要内容,是很好的实验教学仪器。 1.热机发电原理 空气热机的结构及工作原理可用图1说明。热机主机由汽缸、高温区、低温区、工作活塞、位移活 塞、飞轮、连杆等部分组成。 汽缸的上部有螺旋状的加 热电阻,构成高温区,汽缸下部 为水冷的低温区。汽缸下面的活 塞是工作活塞,它使汽缸内气体 封闭,并在气体的推动下对外做功。工作活塞上面是位移活 塞,它是半封闭活塞,气体可 通过其中间圆柱内充塞的细 铜丝流动,其作用是在循环过 程中使气体在高温区与低温 区间不断交换,并在通过铜丝 时预冷(热)。 工作活塞与位移活塞通 过连杆与飞轮连接,相位相差 90度,当某一活塞处于位置极 值时,它本身的位置变化率最 小,而另一个活塞的位置变化 率最大。在作热机工作时,位 移活塞超前工作活塞90度。当工作活塞处于最顶端时,位移活塞迅速下移,使汽缸内气 体向高温区流动,如图1 a 所 示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向下运动,如图1 b 所示, 在此过程中热能转换为飞轮转动的机械能;工作活 塞在最底端时,位移活塞迅速 上移,使汽缸内气体向低温区 流动,如图1 c 所示;进入低 温区的气体温度降低,使汽缸 图 3 空气热机实验装置 空气热机 位移传感器 变 压器 图 1 热机结构及原理图 图2 作为热泵和制冷机操作热空气发动机的操作原理: 上图为热泵、下图为冷泵

燃料电池实验报告

竭诚为您提供优质文档/双击可除 燃料电池实验报告 篇一:燃料电池综合特性实验报告 燃料电池综合特性实验 【实验背景】燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。 能源为人类社会发展提供动力,长期依赖矿物能源使我们面临环境污染之害,资源枯竭之困。为了人类社会的持续健康发展,各国都致力于研究开发新型能源。未来的能源系

统中,太阳能将作为主要的一次能源替代目前的煤,石油和天然气,而燃料电池将成为取代汽油,柴油和化学电池的清洁能源。 【摘要】燃料电池尤其是质子交换膜燃料电池(pem)以其高功率密度、高能量转换效率、可低温启动、环境友好等突出优点而受到瞩目。本实验包含太阳能电池发电(光能—电能转换),电解水制取氢气(电能—氢能转换),燃料电池发电(氢能—电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。本实验通过研究燃料电池的工作原理,测量其输出特性,计算燃料电池的最大输出功率及效率并验证法拉第电解定律。测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。获取太阳能电池的开路电压,短路电流,最大输出功率等。 【关键词】燃料电池,电解池,太阳能电池 【正文】 一、实验目的: 1、了解燃料电池的工作原理。 2、观察仪器的能量转换过程: 光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能 3、测量燃料电池输出特性,做出所测燃料电池的伏安

空气热机实验报告范文

2020 空气热机实验报告范文Contract Template

空气热机实验报告范文 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 篇一:空气热机实验论文报告 摘要:热机是将热能转换为机械能的装置,空气热机结构简单、便于操作。空气热机实验通过对空气热机探测仪、计算机等操作来理解空气热机原理及循环过程。通过电加热器改变热端温度测量热功转换值,作出nA/ΔT与ΔT/T1的关系图,验证卡诺定理。逐步改变力矩大小来改变热机输出功率及转速,计算、比较热机实际转化效率。试验表明:在一定误差范围内,随热端温度升高nA/ΔT与ΔT/T1的关系呈现性变化,验证卡诺定理。热端温度一定时输出功率随负载增大而变大,转速而减小。 关键词:卡诺定理;空气热机;卡诺循环 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究为热力学第二定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,

但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学知识。空气热机的结构如图一所示,热机主机主要有高温区、低温区、工作活塞和位移活塞、气缸、飞轮、连杆,热源等组成。 由电热方式加热位移活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移气缸间的间隙流动,提高高温与低温间的温度差可以提高热机效率。位移活塞与工作活塞通过连杆与飞轮连接,他们的运动是不同步的,其中一个处于极值时,速度最小,另一个活塞速度最大。 图一空气热机工作原理示意图 当工作活塞向下移时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1a所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1b所示,在此过程中热能转换为飞轮转动的机械能;工作活塞向顶端移动时,位移活塞迅速右移,使位移汽缸内气体向低温区流动,如图1c所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环,如图1d所示。在一次循环过程中气体对外所作净功等于P-V图所围的面积。 根据卡诺对热机效率的研究而得出的卡诺定理,对于可逆循环的理想热机,热功转换效率为: A/Q1Q1Q2/Q1(T1T2)/T1T/T1 式中A为每一个循环中热机做的功,Q1为热机每一循环从热源吸收的热量,Q2为热机每一个循环向冷源放出的热量,T1为热源的绝对温度,T2为冷源的绝对温度。

热机论文

Air heat engine experiment Name: Student Id: College: Major: Abstract:To do this experiment is in order to make us understand the emission of Air heat engine and receive the component the principle, and through the experiment we should complete the rotarion of Air heat engine and realizes the process of function conversion of the air heat engine. keywords:Air heat engine function conversion 姓名:学号: 学院:专业: 摘要:这个实验能使我们了解空气热机做功原理,通过实验我们应该完成空气热机的转动和理解工作原理,并了解空气热机功能转换的过程。 关键词:空气热机功能转换 空气热机实验报告 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究,曾为热力学第2定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学中的重要内容。 一、实验原理 热机主机由高温区,低温区,工作活塞及汽缸,位移活塞及汽缸,飞轮,连杆,热源等部分组成。 热机中部为飞轮与连杆机构,工作活塞与位移活塞通过连杆与飞轮连接。飞轮的下方为工作活塞与工作汽缸,飞轮的右方为位移活塞与位移汽缸,工作汽缸与位移汽缸之间用通气管连接。位移汽缸的右边是高温区,可用电热方式或酒精灯加热,位移汽缸左边有散热片,构成低温区。 工作活塞使汽缸内气体封闭,并在气体的推动下对外做功。位移活塞是非封闭的占位活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移汽缸间的间隙流动。工作活塞与位移活塞的运动是不同步的,当某一活塞处于位置极值时,它本身的速度最小,而另一个活塞的速度最

热机试验

热机实验 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究,曾为热力学第二定律奠基了基础。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。 【实验目的】 1.理解热机原理及循环过程 2.测量不同冷热端温度时的热功转换值,验证卡诺定理 3.测量热机输出功率随负载及转速的变化关系,计算热机实际效率 【实验仪器】 空气热机实验仪,空气热机测试仪,电加热器及电源,计算机 【实验原理】 热机主机由高温区,低温区,工作活塞及汽缸,位移活塞及汽缸,飞轮,连杆,热源等部分组成。 热机中部为飞轮与连杆机构,工作活塞与位移活塞通过连杆与飞轮连接。飞轮的下方为工作活塞与工作汽缸,飞轮的右方为位移活塞与位移汽缸,工作汽缸与位移汽缸之间用通气管连接。位移汽缸的右边是高温区,可用电热方式或酒精灯加热,位移汽缸左边有散热片,构成低温区。 工作活塞使汽缸内气体封闭,并在气体的推动下对外做功。位移活塞是非封闭的占位活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移汽缸间的间隙流动。工作活塞与位移活塞的运动是不同步的,当某一活塞处于位置极值时,它本身的速度最小,而另一个活塞的速度最大。 图1 空气热机工作原理 当工作活塞处于最底端时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1 a所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1 b 所示,在此过程中热能转换为飞轮转动的机械能;工作活塞在最顶端时,位移活塞迅速右移,使汽缸内气体向低温区流动,如图1 c 所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环,如图1 d 所示。在一次循环过程中气体对外所作净功等于P-V图所围的面积。 根据卡诺对热机效率的研究而得出的卡诺定理,对于循环过程可逆的理想热机,热功转换效率: η = A/Q1 =(Q1-Q2)/Q1=(T1-T2)/T1 = ΔT/ T1 式中A为每一循环中热机做的功,Q 1为热机每一循环从热源吸收的热量,Q 2 为热机每一循环向冷源放出的热量,T 1为热源的绝对温度,T 2 为冷源的绝对温度。 实际的热机都不可能是理想热机,由热力学第2定律可以证明,循环过程不可逆的实际热机,其效率不可能高于理想热机,此时热机效率:

空气热机实验报告范文.doc

空气热机实验报告范文 篇一:空气热机实验论文报告 摘要:热机是将热能转换为机械能的装置,空气热机结构简单、便于操作。空气热机实验通过对空气热机探测仪、计算机等操作来理解空气热机原理及循环过程。通过电加热器改变热端温度测量热功转换值,作出nA/ΔT与ΔT/ T1的关系图,验证卡诺定理。逐步改变力矩大小来改变热机输出功率及转速,计算、比较热机实际转化效率。试验表明:在一定误差范围内,随热端温度升高nA/ΔT与ΔT/ T1的关系呈现性变化,验证卡诺定理。热端温度一定时输出功率随负载增大而变大,转速而减小。 关键词:卡诺定理;空气热机;卡诺循环 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究为热力学第二定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学知识。空气热机的结构如图一所示,热机主机主要有高温区、低温区、工作活塞和位移活塞、气缸、飞轮、连杆,热源等组成。 由电热方式加热位移活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移气缸间的间隙流动,提高高温与低温间的温度差可以提高热机效率。位移活塞与工作活塞通过连杆与飞轮连接,他们的运动是不同步的,其中一个处于极值时,速度最小,

另一个活塞速度最大。 图一空气热机工作原理示意图 当工作活塞向下移时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1 a所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1 b 所示,在此过程中热能转换为飞轮转动的机械能;工作活塞向顶端移动时,位移活塞迅速右移,使位移汽缸内气体向低温区流动,如图1 c所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环,如图1 d 所示。在一次循环过程中气体对外所作净功等于P-V图所围的面积。 根据卡诺对热机效率的研究而得出的卡诺定理,对于可逆循环的理想热机,热功转换效率为: A/Q1Q1Q2/Q1(T1T2)/T1T/T1 式中A为每一个循环中热机做的功,Q1为热机每一循环从热源吸收的热量,Q2为热机每一个循环向冷源放出的热量,T1为热源的绝对温度,T2为冷源的绝对温度。 由于热量损失,实际的热机都不可能是理想热机,循环过程也不是可逆的,所以热机转化效率: T/T1,只要使循环过程接近可逆循环,就是尽量提高冷源与热源的温度差。 热机循环过程从热源吸收的热量正比于nA/T,n为热机转速,所以:正比于nA/T。测量不同热 端温度时的nA/T,观察与T/T1的关系,可验证卡诺定理。同一功

大工《暖通工程实验》实验报告【内容仅供参考】433

院校一、实验目的: 1.认识空调系统中的设备部件,了解其用途及安装事项; 2.掌握空调系统基本原理 3.掌握现场识别空调系统的方法 二、实验原理: 请画简易图说明典型空调系统的基本原理。 中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 三、实验内容: 1、下图为热泵空调系统图,请看图说明该系统中有几个循环子系统,并阐述每个子系统的能量传递和转化关系。

热泵(制冷机)是通过作功使热量从温度低的介质流向温度高的介质的装置。热泵与制冷机的工作原理和过程是完全相同的,从热力学的观点看都是热机工作过程的反循环。 冷冻水循环系统:该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。 冷却水循环部分:该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。 2、画图说明空气处理机组与外部空气的联通方式。

四川大学空气热机实验报告

综合设计与创新物理实验空气热机实验报告 学院: XX学院 学生姓名: XX 学号: XX 二零XX年X月X日

空气热机实验报告 摘要:空气热机是利用空气不同温度的空气导致不同气压的原理,使空气产生流动从而将热能转换为机械能的机器。本实验测量了不同的冷热端温度时的热功转换值及热机输出功率随负载及转速的变化关系,验证了卡诺定理,探讨出热机效率的影响因素。 关键词:空气热机卡诺定理热工转换输出功率 1 实验过程 1.1 实验原理 空气热机主机由高温区,低温区,工作活塞及气缸,位移活塞及气缸,飞轮,连杆,热源等部分组成。工作活塞使气缸内气体封闭,并在气体的推动下向外做功。当工作活塞处于最低端时,位移活塞迅速左移,使气缸内气体向高温区流动;进入高温区的气体温度升高,使气缸内压强增大并推动工作活塞向上运动,在此过程中热能转换为飞轮转动的机械能;工作活塞处于最顶端时,位移活塞迅速右移,使气缸内气体向低温区流动,进入低温区的气体温度降低,使气缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下移动,完成循环。 卡诺根据对热机效率的研究而得出了卡诺定理。对于循环过程可逆的理想热机,热机转换效率: η=A/Q1=(Q1-Q2)/Q1=(T1-T2)T1=△T/T1 实际的热机都不可能是理想热机,由力学第2定律可以证明,循环过程不可逆的实际热机,其效率不可能高于理想热机,此时热机效率: η≤△T/T1 卡诺定理指出了提高热机效率的途径,就过程而言,应当使实际的不可逆机尽量接近可逆机。就温度而言,应尽量的提高冷热源的温度差。 当热机带负载时,热机向负载输出的功率可由力矩计测量而得,且热机实际输出功率的大小随负载的变化而变化。 1.2 实验设备 1)空气热机实验仪(电加热型热机实验仪) 2)电加热器电源 3)双跟踪示波器 1.3 实验方法 1)测量不同冷热温度时的热功转换值 根据说明将各部分仪器连接起来,取下力矩计。打开电源,取下力矩计,将加热电压加到第11档(36伏左右),等待约6-10分钟,待加热电阻丝已发红后,用手顺时针拨动飞轮,使热机运转起来(热机测试仪显示的温差△T在100度以上时易于启动)。 减小加热电压至第一档(24伏左右),调节示波器,观察压力和容积信号,以及压力和容积信号之间的相位关系等,并把P-V图调节到最适合观察的位置。等待约10分钟,温度

空气热机实验仪软件操作说明书

ZKY-RJ 空气热机实验仪 软件操作说明书 成都世纪中科仪器有限公司

第一章概述 1 1.1软件的功能 1 1.2本系统的运行环境。 1 1.2.1 硬件运行环境 1 1.2.1 软件运行环境 1 1.2.3本系统的安装方法。 2 第二章操作方法 2 2.1具体操作说明 2 2.1.1 系统初始条件 2 2.1.2 系统启动 2 2.1.3 各功能操作说明 3 第一章概述 1.1软件的功能 本软件能够将空气热机实验装置的气缸容积及压力随转动的信号盘的转角(即汽缸中的飞轮盘运动的角度)以实时地显示出来。同时能够自动得到气缸运动一周的容积-压力变化曲线图,并自动计算出该容积-压力变化曲线图所围成的面积。与此同时,能够得到热机实验仪上显示的所有数据,如T1和T2和ΔT、热机转速。 1.2本系统的运行环境 1.2.1 硬件运行环境 CPU:PⅣ 400MHz 以上; 内存:256MB以上; 显卡:支持800Χ600以上; RS232串行口。

1.2.1 软件运行环境 操作系统: WindowsNT4.0或WindowsXP以上; 1.2.3本系统的安装方法 本系统的安装程序为一张光盘。安装本系统时,需运行Setup.exe,然后根据安装向导的提示完成安装即可。 第二章操作方法 2.1具体操作说明 2.1.1 系统初始条件 初始条件:在空气热机实验仪已经开启,空气热机实验装置正常运转 2.1.2 系统启动 在空气热机实验仪已经开启,空气热机实验装置正常运转后,用键 盘或鼠标激活“开始 → 程序 → 中科教仪-空气热机 →空气热机实验”(具体操作方法请查阅有关WINDOWS95、WINDOWS98或WINNT的相关章

空气热机实验原理介绍

空气热机实验实验原理介原理介原理介绍绍 热机是机是将将热能转换为转换为机械能的机器。机械能的机器。机械能的机器。历历史上史上对热对热对热机循机循机循环过环过环过程及程及程及热热机效率的机效率的研研究,曾究,曾为热为热为热力力学第2定律的定律的确确立 起了奠基性的作用。斯特林1816年发明的空明的空气气热机,以空机,以空气气作为工作介工作介质质,是最古老的,是最古老的热热机之一。机之一。虽虽然现在已 发展了展了内内燃机,燃燃机,燃气气轮机等新型机等新型热热机,但空机,但空气气热机结构简单简单,便于,便于,便于帮帮助理解助理解热热机原理机原理与与卡诺循环等热力学中的重要重要内内容,是很好的容,是很好的热热学实验实验教教学仪器。 【实验实验目的】目的】 1.理解理解热热机原理及机原理及热热循环过环过程程 2.测量不同量不同输输入功率(冷入功率(冷热热端温差改差改变变)下)下热热功转换转换效率,效率,效率,验证验证验证卡卡诺定理 3.测量热机输出功率出功率随随负载负载的的变化关系,系,计计算热机实际实际效率效率 【实验仪实验仪器】器】 空气热机,机,热热源(可源(可选择电选择电选择电加加热或酒精或酒精灯灯加热),),热热机实验仪实验仪,,计算机(或示波器),力矩算机(或示波器),力矩计计 【实验实验原理】原理】 空气热机的机的结结构及工作原理可用及工作原理可用图图1说明。明。热热机主机由高机主机由高温区温区温区,低,低,低温区温区温区,工作活塞及汽缸,位移活塞及汽,工作活塞及汽缸,位移活塞及汽缸,缸,飞轮飞轮飞轮,,连杆,杆,热热源等部分源等部分组组成。 热机中部机中部为飞轮为飞轮为飞轮与与连杆机杆机构构,工作活塞,工作活塞与与位移活塞通位移活塞通过连过连过连杆杆与飞轮连飞轮连接。接。接。飞轮飞轮飞轮的下方的下方的下方为为工作活塞工作活塞与与工作汽缸,缸,飞轮飞轮飞轮的右方的右方的右方为为位移活塞位移活塞与与位移汽缸,工作汽缸位移汽缸,工作汽缸与与位移汽缸之位移汽缸之间间用通用通气气管连接。位移汽缸的右接。位移汽缸的右边边是高是高温区温区温区,,可用可用电热电热电热方式或酒精方式或酒精方式或酒精灯灯加热,位移汽缸左,位移汽缸左边边有散有散热热片,片,构构成低成低温区温区温区。。 工作活塞使汽缸工作活塞使汽缸内内气体封体封闭闭,并在气体的推体的推动动下对外做功。位移活塞是非封外做功。位移活塞是非封闭闭的占位活塞,其作用是在循环过环过程中使程中使程中使气气体在高体在高温区温区温区与与低温区温区间间不断交换,气体可通体可通过过位移活塞位移活塞与与位移汽缸位移汽缸间间的间隙流隙流动动。工作活塞。工作活塞与与位移活塞的移活塞的运动运动运动是不同是不同是不同步步的,的,当当某一活塞某一活塞处处于位置于位置极值极值极值时时,它本身的速度最小,而本身的速度最小,而另另一个活塞的速度最大。 图1空气热机工作原理 当工作活塞工作活塞处处于最底端于最底端时时,位移活塞迅速左移,使汽缸,位移活塞迅速左移,使汽缸内内气体向高体向高温区温区温区流流动,如,如图图1 a 所示;所示;进进入高入高温区温区温区的的气体温度升高,使汽缸度升高,使汽缸内内压强增大增大并并推动工作活塞向上工作活塞向上运动运动运动,如,如,如图图1 b 所示,在此在此过过程中程中热热能转换为飞轮转动的机械能;工作活塞在最的机械能;工作活塞在最顶顶端时,位移活塞迅速右移,使汽缸,位移活塞迅速右移,使汽缸内内气体向低体向低温区温区温区流流动,如,如图图1 c 所示;所示;进进入低入低温温 区的气体温度降低,使汽缸度降低,使汽缸内内压强减小,同小,同时时工作活塞在工作活塞在飞轮惯飞轮惯飞轮惯性力的作用下向下性力的作用下向下性力的作用下向下运动运动运动,完成循,完成循,完成循环环,如,如图图1 d 所示。在一次循所示。在一次循环过环过环过程中程中程中气气体对外所作外所作净 净功等于P-V 图所围的面的面积积。根据根据卡卡诺对热诺对热机效率的机效率的机效率的研研究而得出的究而得出的卡卡诺定理,热机的机的热热功转换转换效率:效率: η ∝(T 1-T 2)/T 1 = ΔT/ T 1 式中式中T T 2为冷源的冷源的绝对绝对绝对温温度,度,T T 1为热为热源的源的源的绝对绝对绝对温温度,度,热热机冷机冷热热源的源的温温度比度比值值越小,越小,热热机的机的热热功效率越高。本实验实验中,中,中,电热电热电热功率可以功率可以功率可以计计算,由算,由热热能转换转换的机械功率由的机械功率由P-V 图面积与热机每秒转速相乘而得,速相乘而得,测测量并计算不同冷算不同冷热热端温度时热时热功功转换转换效率,可效率,可效率,可验证验证验证卡卡诺定理。 当热机带负载时带负载时,,热机向机向负载输负载输负载输出的功率可由力矩出的功率可由力矩出的功率可由力矩计测计测计测量量计算而得,且算而得,且热热机实际输实际输出功率的大小出功率的大小出功率的大小随随负载负载的的变化而化而变变化。在化。在这这种情况下,可同下,可同时测时测时测量量计算出不同算出不同负载负载负载大小大小大小时时的热功转换转换效率和效率和效率和热热机实际实际效率。效率。 【仪器介器介绍绍】 1. 实验实验装装置介置介绍绍 整套实验实验装装置以置以电电加热器为例进行介绍,如,如图图2所示。

空气热机实验报告

利用空气热机验证卡诺定理 田群王静菊 (中国海洋大学海洋环境学院海洋气象系,山东青岛,266100) 摘要:本文介绍了利用空气热机验证卡诺定理的原理和方法。得到实验结果与卡诺定理的理论值基本一致,并对产生误差的原因做了讨论。 关键词:卡诺定理;空气热机;热效率 卡诺定理(Carnot Theorem)是法国物理学家尼古拉·卡诺(Nicolas Carnot)在前人工作的基础上于1924年提出的。此定理说明热机的最大热功率只与高温热源与低温热源之间的温度差有关,即: T C 为低温热源的绝对温度,T H 为高温热源的绝对温度[1]。空气热机是以空气为工作物质的热机,在1816年由伦敦牧师罗伯特·斯特林(Robert Stirling)发明,因此又称为“斯特林发动机”,是最古老的热机之一[2]。本文将利用空气热机验证卡诺定理,并对空气热机的效率低于卡诺热机效率的原因做一些分析。 1空气热机的工作原理 空气热机的工作部分结构如图1,工作活塞使汽缸内气体封闭,并在气体的推动下对外做功。位移活塞是非封闭的占位活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移汽缸间的间隙流动。工作活塞与位移活塞的运动是不同步的,当某一活塞处于位置极值时,它本身的速度最小,而另一个活塞的速度最大。当工作活塞处于最底端时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1a所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1b 所示,在此过程中热能转换为飞轮转动的机械能;工作活塞在最顶端时,位移活塞迅速右移,使汽缸内气体向低温区流动,如图1c 所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环如图1d所示。

空气热机实验论文报告

空气热机试验 摘要:热机是将热能转换为机械能的装置,空气热机结构简单、便于操作。空气热机实验通过对空气热机探测仪、计算机等操作来理解空气热机原理及循环过程。通过电加热器改变热端温度测量热功转换值,作出nA/ΔT 与ΔT/ T1的关系图,验证卡诺定理。逐步改变力矩大小来改变热机输出功率及转速,计算、比较热机实际转化效率。试验表明:在一定误差范围内,随热端温度升高nA/ΔT 与ΔT/ T1的关系呈现性变化,验证卡诺定理。热端温度一定时输出功率随负载增大而变大,转速而减小。 关键词:卡诺定理;空气热机;卡诺循环 引言: 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究为热力学第二定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学知识。 空气热机的结构如图一所示,热机主机主要有高温区、低温区、工作活塞和位移活塞、气缸、飞轮、连杆,热源等组成。 由电热方式加热位移活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移气缸间的间隙流动,提高高温与低温间的温度差可以提高热机效率。位移活塞与工作活塞通过连杆与飞轮连接,他们的运动是不同步的,其中一个处于极值时,速度最小,另一个活塞速度最大。 图一 空气热机工作原理示意图 当工作活塞向下移时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1 a 所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1 b 所示,在此过程中热能转换为飞轮转动的机械能;工作活塞向顶端移动时,位移活塞迅速右移,使位移汽缸内气体向低温区流动,如图1 c 所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环,如图1 d 所示。在一次循环过程中气体对外所作净功等于P-V 图所围的面积。 根据卡诺对热机效率的研究而得出的卡诺定理,对于可逆循环的理想热机,热功转换效率为: ()11211211//)(//A T T T T T Q Q Q Q ?=-=-==η 式中A 为每一个循环中热机做的功,1Q 为热机每一循环从热源吸收的热量,2Q 为热机每一个循环向冷源放出的热量,1T 为热源的绝对温度,2T 为冷源的绝对温度。 由于热量损失,实际的热机都不可能是理想热机,循环过程也不是可逆的,所以热机转化效率:

大学物理完整版

实验一:物体密度 量角器的最小刻度是0.5.为了提高此量角器的精度,在量角器上附加一个角游标,使游标30个分度正好与量角器的29个分度的等弧长。求:(1、)该角游标的精度;(2、)如图读数 答案:因为量角器的最小刻度为30’.游标30分度与量角器29 分度等弧长,所以游标精度为30/30=1,图示角度为149。45’ 测定不规则的固体密度时,若被测物体浸入水中时表面吸附着水泡,则实验结果所得密度值是偏大还是偏小?为什么? 答案:如果是通过观察水的体积的变化来测量不规则物体的体积,那么计算的密度会减小,因为质量可以测出,而吸附气泡又使测量的体积增大(加上了被压缩的气泡的体积)所以密度计算得出的密度减小 实验二:示波器的使用 1、示波器有哪些组成部分?每部分的组成作用? 答案:电子示波器由Y偏转系统、X偏转系统、Z通道、示波管、幅度校正器、扫描时间校正器、电源几部分组成。 Y偏转系统的作用是:检测被观察的信号,并将它无失真或失真很小地传输到示波管的垂直偏转极板上。 X偏转系统的作用是:产生一个与时间呈线性关系的电压,并加到示波管的x偏转板上去,使电子射线沿水平方向线性地偏移,形成时间基线。 Z通道的作用是:在时基发生器输出的正程时间内产生加亮信号加到示波管控制栅极上,使得示波管在扫描正程加亮光迹,在扫描回程使光迹消隐。 示波管的作用是:将电信号转换成光信号,显示被测信号的波形。 幅度校正器的作用是:用于校正Y通道灵敏度。 扫描时间校正器的作用是:用于校正x轴时间标度,或用来检验扫描因数是否正确。 电源的作用是:为示波器的各单元电路提供合适的工作电压和电流。 为什么在实验中很难得到稳住的李萨如图形,而往往只能得到重复变化的某一组李萨如图形? 答案:因为在实验中很难保证X、Y轴的两个频率严格地整数倍关系,故李莎茹图形总是在不停旋转,当频率接近整数倍关系时,旋转速度较慢; 实验三:电位差计测量电动势 测量前为什么要定标?V0的物理意义是什么?定标后在测量Ex时,电阻箱为什么不能在调节? 答案:定标是因为是单位电阻的电压为恒定值,V0的物理意义是使实验有一个标准的低值,电阻箱不能动是因为如果动了电阻箱就会改变电压,从而影响整个实验;为了保持工作电流不变.设标准电压为En,标准电阻为Rn,则工作电流为I=En/Rn,保持工作电流不变,当测量外接电源时,调节精密电阻Ra,使得电流计示数为零,有E=I*Ra,若测试过程中调节了电位器Rc,则导致I产生变化,使测得的E不准(错误) 保护电阻是为了保护什么仪器?如何使用? 答案:保护电阻主要是保护与它串联的那些元件. 先将保护电阻调节的到最大,在保证电流不超过仪器的最大工作范围这个前提下,逐步降低到最小. 电位差计实验中标准电源器什么作用?使用时应注意什么问题? 答案:标准电源起到参考基准的作用,一般用标准电池,保护电阻不使得标准电池过放电.使用时保护电阻是串联的,观察指零仪时间要尽量短暂,避免长时间放电以免电压变化.

PASCO实验报告

pasco物理实验报告(基础实验六) 学号:姓名:实验名称: 一、实验目的: 二、实验仪器: 三、实验原理及过程简述: 四、实验数据(含原始数据截图)及误差计算: 五:实验结果表达及误差讨论:篇二:pasco物理实验报告(基础实验一) pasco物理实验报告(基础实验一) 学号:姓名:实验名称: 一、实验目的: 二、实验仪器: 三、实验原理及过程简述: 四、实验数据(含原始数据截图)及误差计算: 五:实验结果表达及误差讨论:篇三:pasco物理实验报告(基础实验一rc电路) pasco物理实验报告(基础实验一) 实验名称: 一、实验目的 研究充电过程中电容器上电压的变化和测量rc电路时间常数 二、实验仪器: 计算机 100欧母电阻 接口, 330uf电容 功率放大器 香蕉插头连线 电子学实验线路板 三、实验原理 在充电过程中,电容器电量随时间变化为:q=q0(1-e-t/a) 其中划时间常数(a=rc,r是电阻,c电容)。电量到q0/2的时间称半衰周期,它和时间 常数关系为:t1/2=aln 2 四、实验内容 1、计算机设置 (1)连接计算机和接口,接通电源 (2)分别连接电压传感器和模拟通道a,功率放大器和模拟通道b,接通电源 (3)设置采样频率为1000hz,停止条件为4秒 (4)设置信号发生器,使它能输出0.4hz,4.00v放波信号,输出为自动。 (5)设定图形显示窗口垂直轴显示范围为0-5v水平轴显示范围为0-4秒 2、仪器设置 在电子学实验线路板上选择合适部件按图2连接,接通电源 3、记录数据 t=1.1820-1.15826 4、数据分析 (1)点击自动改变比例按扭,使图形显示匹配数据。 (2)点击放大镜按扭,利用鼠标拖出电压上升区域。

四川大学 创新型物理实验 空气热机实验

空气热机实验 1143092146 付美梅 (轻纺与食品学院轻化工程) 摘要:本实验利用空气热机测量不同冷热端温度时的热功转换值,验证卡诺定理;后又测量热机输出功率随负载及转速的变化关系,计算热机实际效率。最后,由此实验得到的一些创新想法。 关键词:空气热机;卡诺定理;热机效率;余热再用;火法冶金;鼓风;转鼓;风扇 热机[2]是将热能转换为机械能的机器。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。其结构简单,便于帮助理解热机原理与卡诺循环等热力学中的重要内容,是很好的热学实验教学仪器。 卡诺定理[3]是卡诺1824年提出来的,其表述如下: (1)在相同的高温热源和相同的低温热源之间工作的一切可逆热机,其效率都相等,与工作物质无关,与可逆循环的种类也无关。 (2)在相同的高温热源和相同的低温热源之间工作的一切不可逆热机,其效率都小于可逆热机的效率。 1 实验原理[1] 空气热机的结构及工作原理可用图1说明。热机主机由高温区,低温区,工作活塞及汽缸,位移活塞及汽缸,飞轮,连杆,热源等部分组成。 空气在高温区和低温区间不断交换,使汽缸内压强不断变化,从而推动位移活塞和工作活塞的循环移动。 图1 空气热机工作原理 (1)对于循环过程可逆的理想热机,热功转换效率:η = A/Q1 =(Q1-Q2)/Q1=(T1-T2)/T1= ΔT/ T1而实际热机:η ≦ΔT/ T1 热机每一循环从热源吸收的热量Q1正比于ΔT/n,n为热机转速,η正比于nA/ΔT。而n,A,T1及ΔT 均可测量,测量不同冷热端温度时的nA/ΔT,观察它与ΔT/ T1的关系,即可验证卡诺定理。 (2)当热机带负载时,热机向负载输出的功率可由力矩计测量计算而得,且热机实际输出功率的大小随负载的变化而变化。在这种情况下,可测量计算出不同负载大小时的热机实际效率。 2 实验装置及实验方法 本实验中使用的设备和装置有:空气热机实验仪,空气热机测试仪,电加热器及电源,计算机(或双踪示波器)。 实验方法如下: (1)测量不同冷热端温度时的热功转换值: 正确连接仪器,将力矩计尽可能的调松,打开电源,将加热电压加到第11档。等待加热电阻丝发红,当ΔT接近100K时,顺时针拨动飞轮令热机运转。 减小加热电压至第1档,调节示波器,观察压力和容积信号,以及压力和容积信号之间的相位关系等,并把P-V图调节到最适合观察的位置。等待约10分钟,温度和转速平衡后,记录当前加热电压,并从热机测试仪上读取温度和转速,从双踪示波器显示的P-V图估算P-V图面积,记入表1中。 逐步加大加热功率,等待约10分钟,温度和转速平衡后,重复以上测量4次以上,将数据记入表1。 以ΔT/ T1为横坐标,nA/ΔT为纵坐标,在坐标纸上作nA/ΔT与ΔT/ T1的关系图,验证卡诺定理。 (2)测量热机输出功率随负载及转速的变化关系: 在最大加热功率下,用手轻触飞轮让热机停止运转。然后将力矩计调紧,拨动飞轮,让热机继续运转。调节力矩计的摩擦力(不要停机),待输出力矩,转速,温度稳定后,读取并记录各项参数于表2中。

大工20秋《暖通工程实验》实验报告 (2)

内容仅供参考 专业:建筑环境与能源应用工程 实验一:中央空调系统现场识图 一、实验目的: 1.认识空调系统中的设备部件,了解其用途及安装事项; 2.掌握空调系统基本原理 3.掌握现场识别空调系统的方法 二、实验原理: 请画简易图说明典型空调系统的基本原理。 中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到

降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 三、实验内容: 1、下图为热泵空调系统图,请看图说明该系统中有几个循环子系统,并阐述每个子系统的能量传递和转化关系。 热泵(制冷机)是通过作功使热量从温度低的介质流向温度高的介质的装置。热泵与制冷机的工作原理和过程是完全相同的,从热力学的观点看都是热机工作过程的反循环。 冷冻水循环系统:该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。 冷却水循环部分:该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。

相关文档