文档库 最新最全的文档下载
当前位置:文档库 › 表面活性剂的润湿性能

表面活性剂的润湿性能

表面活性剂的润湿性能
表面活性剂的润湿性能

表面活性剂的润湿性能

一、润湿功能

例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。

表面活性剂具有渗透作用或润湿作用

所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。

润湿过程往往涉及三相,其中至少两相为流体。

1.润湿过程润湿作用是一个过程。润湿过程主要分为三类:沾湿、浸湿和铺展。产生的

条件不同。其能否进行和进行的程度可根据此过程热力学函数变化判断。在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。

(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。如喷洒农药,农药附着于植物的枝叶上。

沾湿附着发生条件:△G A=γSL-γSG-γLG<0

W A=γSG-γSL+γLG≥0 (沾湿)

式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力

(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。如洗衣时衣物泡在水中;织物染色前先用水浸泡过程

浸湿发生条件:△G i=γSL-γSG≤0

W i=γSG-γSL≥0 (W i:浸湿功)

(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。

铺展发生条件为:△G S=γSL+γLG-γSG≤0

S=γSG-γSL-γLG≥0 (S:铺展功)

一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。

从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。

2.接触角和润湿方程(杨氏方程)

接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。

接触角与固-液,固-气和液-气表面张力的关系可表示为:

γSG-γSL=γLG COSθ杨氏方程

COSθ=(γSG-γSL)/γLG

加入表面活性剂,γLG↓γSL↓COSθ↑θ↓

θ>90°不润湿θ<90°润湿θ越小润湿越好

θ=0°或不存在→铺展

将杨氏方程代入W A W i S

W A =γLG (1+ COS θ)≥0 θ≤180°

W i =γLG COS θ ≥0 θ≤90°

S =γLG ( COS θ-1) ≥0 θ≤0°

纤维特性

γSL +γLG COS θ θ前进接触角

由于液体表面曲率,液体在毛细管中提升力大小

为2πr γLG COS θ。其值等于液柱重力πr 2△P (压强)

液体进入毛细管产生压强为: △ P=2πr γLG COS θ/πr 2=2γLG COS θ/r=2(γSG -γSL ) /r

90°,△P 才能为正值,液体润湿毛细管。加入表面活性剂γSG ↓→COS θ↑;θ>0°,△P 取决于γSG -γSL ,γSG 不变,γSL ↓ △P ↑有利于毛细管润湿。

3. 表面活性剂润湿作用

表面活性剂具有双亲分子结构,纯移在界面发生定向吸附,降低液体的表面张力→导致润湿作用

(1) 在固体表面发生定向吸附

硅酸盐矿物 表面活性剂在固体表面吸附状态是影响表面 特性的重要因素。

(2)提高液体的润湿能力

水不能在低能固体铺展,加入表面活性剂,降低水表面张力 γLG ,使其润湿固体的

表面。

4. 影响润湿作用的因素

(1) 温度 一般来说温度↑,润湿性能↑。高温下短链表面活性剂润湿性能不如长链表面

活性剂。(原因:温度↑长链表面活性剂溶解度↑);低温下短链表面活性剂润湿性能好于长链表面活性剂。

非离子表面活性剂,温度接近浊点,润湿性能最佳

0.1% OP-15: 25℃ 润湿性能50s

70℃ 润湿性能17s

(2) 表面活性剂浓度

c <cmc 润湿时间对数与㏑c 呈线性关系。㏑c ↑润湿性能↑

原因:c <cmc 表面活性剂未达到饱和吸附,增加润湿性能浓度需要大些

c >cmc 不再呈线形 。浓度对固/液界面吸附影响不大,故一般浓度略高于cmc 即可

(3) 分子结构

a. 疏水基:直链烷烃亲水基在链末端,直链碳原子数为C 12-C 18润湿性能最佳;相同亲

水基团,随C ↑ HLB ↓ HLB :7-15润湿性能最佳,例如烷基硫酸酯R-OSO 3Na R 为C 12-C 14润湿性能最佳;直链烷基苯磺酸钠以C 10润湿性能最佳;支链烷基苯磺酸钠润湿性能较直链好,其中以2-丁基辛基最有效;磷酸酯盐以烷基为双亲基的润湿性能最好。

b. 亲水基:亲水基在分子中间者的润湿性能比末端的好,如琥珀酸二异辛酯磺酸钠结构、

渗透剂OT ;

非离子表面活性剂:R :C 7-C 10润湿能力最佳,

EO 不同润湿性能也有变化

C 8-C 9 EO=10-12润湿能力最佳

EO >12润湿能力急剧变差

EO 较低润湿性能也差

聚丙二醇环氧乙烷加成物,EO 使用分数为40-50%为好

当聚丙二醇相对质量约为1600最好

5. 润湿剂

分子结构要求:①碳氢链应具有分支结构

②亲水基应位于长链碳的中部

目前,润湿剂主要有阴离子和非离子型表面活性剂

(1) 阴离子型润湿剂

烷基苯磺酸盐3Na

a-烯烃磺酸盐 a-烯烃经磺化制得

① 磺酸盐型 琥珀酸酯磺酸盐 琥珀酸单酯磺酸盐

高级脂肪酰胺磺酸盐 C 17332CH 2SO 3Na

烷基萘磺酸盐

② 硫酸盐型 R-OSO 3Na

③ 羧酸盐型 R-COOH 如:硬脂酸钠 ④ 磷酸酯 以磷酸单酯为主C 9H 19-O (CH 2 (2) 非离子型润湿剂

① 烷基酚聚氧乙烯醚 (CH 2H

② 脂肪醇聚氧乙烯醚R-O (CH 2)H ③ 失水山梨醇聚氧乙烯醚单硬脂酸酯

④ 聚氧乙烯-聚氧丙烯嵌段共聚物H (OCH 22)OH

6. 纤维加工渗透剂要求

强碱性 丝光用的渗透剂

弱碱性 一般煮练用的渗透剂

pH 接近于中性 树脂加工、退浆及抗菌整理加工用渗透剂 弱酸性 次氯酸漂白用渗透剂

强酸性 碳化(carbonization )用渗透剂

强碱性渗透剂不能带酯基(COOR )。如渗透剂OT (原因是化学反应)

强酸性渗透剂不能用硫酸酯基型表面活性剂。如C 12H 25OSO 3Na 在强酸性条件下会分解为十二醇与硫酸

中性——酸性用非离子渗透剂较好

(1阴离子型: 渗透剂OT C 492OOCCH 2

C 2OOCCHSO 3Na

十二烷基苯磺酸钠-SO 3Na

十二烷基硫酸钠C 12H 25OSO 3Na

拉开粉

油酸丁酯硫酸钠CH 3(CH 2)72)7COOC 4H 9

非离子型:OP-7,OP-10 壬基酚聚氧乙烯醚

TX-7辛基酚聚氧乙烯醚

酶退浆:一般用非离子,OP 类较多,因阴、阳离子对酶有影响

树脂整理、次氯酸钠漂白:一般用非离子型,TX-10类较多

(2)适用于强酸性液的渗透剂:以非离子型为主

(3)适用于强碱性液的渗透剂:5-10个碳原子低烷基磺酸盐或硫酸酯盐;阴离子渗透剂;

另外,目前开发的磷酸酯类。

渗透力测定:沙袋沉降法和帆布沉降法

① 润湿时间

② 沉降时间(润湿后,开始沉降至沉降到底部的时间)

(3) 如有侵权请联系告知删除,感谢你们的配合!

(4)

(5)

表面活性剂的作用

表面活性剂的作用 润湿作用 润湿是固体与液体接触时,扩大接触面而相互附着的现象。若接触面趋于缩小不能附着则称不润湿。可以用接触角θ的大小来描述润湿的情况。液体,比如把水滴在玻璃表面上,它很容易铺展开,在固液交界处有较小的接触角θ;而滴在固体石蜡上则呈球形,θ达到180°。接触角越小,液体对固体润湿得越好,θ为180°表示液体完全不润湿固体。显然,这是不同表面与界面的张力的作用的综合的结果。倘若加入表面活性剂,改变液体的表面张力,则接触角θ随之改变,液体对固体的润湿性也就改变了。能被液体所湿润的固体称为亲液性固体,反之称为憎液性固体。一般极性液体容易润湿极性固体物质。极性固体皆亲水,如硫酸盐、石英等。而非极性固体多数是憎水的,如石蜡、石墨等。 乳化和增溶作用 把一种液体以极其细小的液滴(直径约在0.1~数十μm数量)均匀分散到另一种与之不相混溶的液体中的过程称为乳化。所形成的体系称为乳状液。将两种纯的互不相溶的液体,比如水和油放在一起用力振荡(或搅拌)能看到许多液珠分散在体系中,这时界面面积增加了,构成了热力学不稳定体系。静置后水珠迅速合并变大,又分为两层,得不到稳定的乳状液。若想得到较稳定的乳状液,通常加入稳定剂,称为乳化剂。它实际上是表面活性剂。它的作用在于能显著降低表(界)面张力。由于表面活性剂分子在“液滴”,即胶束表层作定向

排列,使“液滴”表层形成了具有一定机械强度的薄膜,可阻止“液滴”之间因碰撞而合并。若用离子型表面活性剂时,因为带同性电荷,胶束间相斥阻止了液滴的聚集。乳状液中所形成的胶束有两种。 前者分散介质是水,分散质为油,这种乳状液称为水包油型(O/W);后者则正相反,这种乳状液是油包水型(W/O)。把某种表面活性剂加入到乳状液中,乳状液会变成透明溶液。表面活性剂的这种作用叫做增溶作用,起增溶作用的表面活性剂叫增溶剂。表面活性剂可以用于增溶的原因:是由于表面活性剂形成了各种形式的胶束,分散质进入胶束囊中或层间使胶束膨胀但又不破裂(体系外观也没有变化),因而“增加”了溶解度。 与乳化类似,将磨细的固体微粒(粒径0.1μm至几十μm)分散到液体中时,加入少量的表面活性剂可增加液体对固体的润湿程度,抑制固体微粒的凝聚成团的倾向,从而能很好地均匀地分散在液体中。 起泡和消泡作用 大家知道纯水不易起泡,肥皂水却很容易形成较稳定的泡沫。泡沫是未溶气体分散于液体或熔融固体中形成的分散系。能使泡沫稳定的物质为起泡剂。它们大多数是表面活性剂,肥皂便是一种。气体进入液体(水)中被液膜包围形成气泡。表面活性剂富集于气液界面,以它的疏水基伸向气泡内,它的亲水基指向溶液,形成单分子层膜。这种膜的形成降低了界面的张力而使气泡处于较稳定的热力学状态。当气泡在溶液中上浮到液面并逸出时,泡膜已形成双分子膜了。倘若再加入另一类表面活性剂,部分替代原气泡膜中起泡剂分子,从而改变膜

2020年智慧树知道网课《精细化学品检验技术》课后章节测试满分答案

绪论单元测试 1 【单选题】(2分) 精细化学品的种类()。 A. 不知道 B. 众多 C. 杂乱 D. 不多 2 【多选题】(2分) 下面那些属于精细化学品()。 A. 农药 B. 涂料 C. 食品添加剂 D. 染料

3 【多选题】(2分) 以配方技术为主要生产手段的是()。 A. 涂料 B. 洗洁剂 C. 功能高分子 D. 农药 4 【多选题】(2分) 我国技术分为那些级别()。 A. 行标 B. 企标 C. 国标 D. 地标

5 【单选题】(2分) 精细化学品分析方法按测定原理不同,可分为化学分析法和()。 A. 仪器分析法 B. 中和法 C. 物理法 D. 化学法 6 【判断题】(2分) 精细化学品分析可以对精细化学品进行质量仲裁()。 A. 对 B. 错 7 【判断题】(2分) 精细化学品分析内容只包括产品理化指标分析()。

A. 错 B. 对 8 【判断题】(2分) 精细化工产品生产过程以“企业调研定岗位,以岗位定能力,以能力定课程”为思路。 A. 对 B. 错 9 【判断题】(2分) 检验的任务:利用各种分析手段,来确定精细化学品生产过程中物料的化学成分与含量,以及使用性能、安全性、理化指标是否符合规定的质量标准。()。 A. 错 B. 对

10 【判断题】(2分) GB/T代号的为国家推荐性执行标准,GB代号的为国家强制性执行标准。()。 A. 错 B. 对 第一章测试 1 【单选题】(2分) 表面活性剂分子是一种()。 A. 小分子 B. 大分子 C. 两亲分子 D. 惰性分子 2 【单选题】(2分) 开始形成胶团时的表面活性剂的浓度称之为()。 A.

表面活性剂洗涤剂的成分及性能

表面活性剂洗涤剂的成分及性能 表面活性剂洗涤剂又称水剂清洗剂,一般是由表面活性剂、洗涤助剂和添加剂组成的; 一、表面活性剂 1.主要表面活性剂品种 表面活性剂是水剂清洗剂中的主要成分,通常使用的主要有以下品种。 (阴离子表面活性剂目前洗涤剂中仍大量使用阴离子表面活性剂,而非离子表面活性剂的用量正在日益增加,阳离子和两性离子表面活性剂则使用量较少。这主要是由表面活性剂的性能和经济成本决定的 最早使用的阴离子表面活性剂是肥皂,曲于它对硬水比较敏感,生成的钙、镁皂会沉积在织物和洗涤用具的器壁上影响清洗效果,因此已被其他表面活性剂所取代。目前肥皂主要在粉状洗涤剂做泡抹调节剂使用,由于它易于与碱土金属离子结合,所以在与其他表面活性剂结合使用时,可起到“牺牲剂”作用,以保证其他表面活性剂作用充分发挥。 直链烷基苯磺酸钠盐(LAS) 由于有良好的水溶性,较好的去污和泡沫性,比四聚丙烯烷基苯磺酸盐(ABS)的生物降解性好,而且价格较低,所以是目前洗涤剂配方中使用最多的阴离子表面活性剂。 其他一些常用的阴离子表面活性剂有仲烷基磺酸盐(SAS)、α—烯烃磺酸盐(AOS)、醇硫酸盐(FAS)、—磺基脂肪酸酯盐(MES)、脂肪酸聚氧乙烯醚硫酸盐(AES),虽然可以渭单独作为洗涤剂主成分,但通常是与直链烷基苯磺酸盐配合使用。 其中仲烷基磺酸盐(SAS)水溶性比LAS好,不会水解广陛能稳定,常用于配制液体浙溜α—烯烃磺酸盐(AOS)抗硬水性、泡沫性、去污性好,对皮肤刺激性低牛因此多用于皮肤清洁剂。其中尤以含碳原子数在14~18的α—烯烃磺酸盐性能最好。 脂肪醇硫酸盐(FAS)是重垢洗涤剂中常用的阴离子表面活性剂,有去污力强的优点厂它的缺点是对硬水比较敏感,因此使用的配方中必须加螯合剂。 d—磺基脂肪酸酯盐(MES)是以油脂等天然原料制成的,生物降解性好,对人体安全,是近年来开发的新品种,随着人们对保护环境的重视,它日益受到人们的重视二MES是一种对硬水敏感性低、钙皂分散力好,洗涤性能优良的新品种,缺点是会水解,使用时要加入适当稳定剂。 脂肪醇聚氧乙烯醚硫酸盐(AES),兼有阴离子非离子表面活性剂的特点,在硬水中仍有较好的去污力,形成的泡沫稳定,在液体状态下有较高稳定性,因此广泛用于配制各种液体洗涤剂。 (2)非离子表面活性剂洗涤剂中使用最多的非离子表面活性剂是脂肪醇聚氧乙烯醚(AEO)。它在较低浓度下就有良好的去污能力和对污垢的分散力,而且抗硬水性能好,具有独特的抗污垢再沉积作用。 过去常使用的烷基酚聚氧乙烯醚(APEO)虽然与脂肪醇,聚氧乙烯醚有类似的性能,但由于其生物降解性能差,目前在洗涤剂中用量正在减少。 烷醇酰胺配制的洗涤剂有丰富而稳定的泡沫,而且与其他表面活性剂有良好协同作、用,有利改进洗涤剂在低浓度和低温下的去污力,因此常做洗涤剂的配伍成分。 氧化胺水溶性好,与LAS配伍好,对皮肤刺激性低,有良好的泡沫稳定作用。缺点是热稳定性差,价格高,目前多用于配制液体洗涤剂。 两性离子表面活性剂虽然有良好的去污能力,但由于价格较高,目前只在个人卫生用品和特殊用途洗涤剂中有少量使用。阳离子表面活性剂去污性较差但柔软、杀菌、抗静电性能优良,因此把阳离子表面活性剂和非离子表面活性剂配合可制成兼有洗涤功能与柔软、消毒

17种常用表面活性剂

17种常用表面活性剂 月桂基磺化琥珀酸单酯二钠(DLS) 一、英文名:Disodium Monolauryl Sulfosuccinate 二、化学名:月桂基磺化琥珀酸单酯二钠 三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa 四、产品特性 1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体; 2. 泡沫细密丰富;无滑腻感,非常容易冲洗; 3. 去污力强,脱脂力低,属常见的温和性表面活性剂; 4. 能与其它表面活性剂配伍,并降低其刺激性; 5. 耐硬水,生物降解性好,性能价格比高。 五、技术指标: 1.外观(25℃)纯白色细腻膏状体 2.含量(%):48.0—50.0 3.Na2SO3(%):≤0.50 4.PH值(1%水溶液): 5.5—7.0 六、用途与用量: 1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。 2.推荐用量:10—60%。 脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES 一、英文名:Disodium Laureth(3) Sulfosuccinate 二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠 三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa 四、产品特性: 1.具有优良的洗涤、乳化、分散、润湿、增溶性能; 2.刺激性低,且能显著降低其他表面活性剂的刺激性; 3.泡沫丰富细密稳定;性能价格比高; 4.有优良的钙皂分散和抗硬水性能; 5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品; 6.脱脂力低,去污力适中,极易冲洗且无滑腻感。 五、技术指标:

烷基表面活性剂的性能-main

A family of alkyl sulfate gemini surfactants.1.Characterization of surface properties Bo Gao ?,Mukul M.Sharma Department of Petroleum and Geosystems Engineering,The University of Texas at Austin,Austin,TX 78712,United States a r t i c l e i n f o Article history: Received 24February 2013Accepted 25April 2013 Available online 3May 2013Keywords: Sulfate gemini surfactants Critical micelle concentration Electrical conductivity Surface tension Micellization Surface adsorption a b s t r a c t The fundamental aqueous and surface properties of a family of sulfate gemini surfactants have been char-acterized.The critical micelle concentrations (cmc)were determined by both electrical conductivity and surface tension methods.The cmc values were found to be two orders of magnitude lower than those measured for single tail surfactants.The cmc values depend primarily on the surfactant tail length,and relatively little on the spacer length and solution temperature.The surface tension measurements suggest that current family of gemini surfactants have higher tendency to spontaneously adsorb at the air–water interface and thus are much more ef?cient in reducing surface tension than conventional sin-gle-chain surfactants.Thermodynamic calculations of Gibbs free energies for micellization and adsorp-tion indicate surface adsorption is promoted more than micellization for these sulfate gemini surfactants.This type of molecules may therefore be very ef?cient and cost-effective in applications that require ultra-low interfacial tensions and high interfacial activities. ó2013Elsevier Inc.All rights reserved. 1.Introduction Gemini surfactants represent a class of surfactants made up of two amphiphilic moieties connected at or very close to,the head groups by a spacer group [1].The current interest in such surfac-tants arises from their distinct properties [1–6].First and foremost,gemini surfactants have critical micelle concentration (cmc)values that are several orders of magnitude lower than those of the corre-sponding conventional (monomeric)surfactants.These molecules are also more ef?cient and effective in reducing the surface/inter-facial tension.Moreover,aqueous solutions of some gemini surfac-tants exhibit strong viscosifying capability even at relatively low concentration [4–6]. While there have been many papers studying the aforemen-tioned properties for cationic gemini surfactants,very few reports deal with the surface and aqueous properties of anionic gemini surfactants [7–11],which are of particular interest in the energy sector [12].Unfortunately,at present there is not enough pub-lished information/data to establish structure performance rela-tionships for anionic geminis.It is thus important to look into anionic gemini surfactants of potential interest and study their rel-evant properties for practical applications.In the current study,a family of sulfate gemini surfactants was prepared.The solution and surface properties were systematically investigated using elec-trical conductivity and surface tension measurements. 2.Experimental 2.1.Materials A family of seven alkyl sulfate gemini surfactants was synthe-sized in our group,following a two-step reaction scheme proposed by Rist and Carlsen [13].To the best of our knowledge,the funda-mental surface properties of these molecules have not been fully characterized,not to mention any application speci?c properties.The general structure of the synthesized gemini surfactants is illus-trated in Fig.1.As a general feature,the synthesized molecules contain double chains each consisting of hydrophobic alkyl chains that are terminated by ethylene sulfate (CH 2CH 2O–SO 3Na)head groups.The chains are interconnected by alkyloxy spacer groups.The surfactants are named ‘m –s –m ’,where m and s represent the number of carbon atoms in the tail and spacer groups of the mol-ecule (m =14,16,18and 20+;s =2and 4).Note here m of 20+rep-resents a mixture of surfactants with chain lengths ranging from 20to 30(by starting with a C 20–C 30epoxide mixture). All products exhibited spectroscopic properties that were in agreement with those expected for the desired structures.Synthe-sis scheme of current family of sulfate gemini surfactants,and 1H NMR spectra are giving in the Supplementary material .2.2.Methods All of the gemini surfactant solutions were prepared by diluting a stock (concentrated)solution with ultrapure Milli-Q water (resis-tivity =18.2M O cm),and stirred on a magnetic stirrer at desired temperature for an hour. 0021-9797/$-see front matter ó2013Elsevier Inc.All rights reserved.https://www.wendangku.net/doc/c54277742.html,/10.1016/j.jcis.2013.04.043 ?Corresponding author.Present address:3319Mercer Street,URC-URC-SW204, Houston,TX 77027,United States.Fax:+17134316360. E-mail address:b.robert.gao@https://www.wendangku.net/doc/c54277742.html, (B.Gao).

表面活性剂的性能测定与评价

中国石油大学(油田化学基础实验)实验报告 实验日期:成绩: 班级:石工学号:1302姓名:教师: 同组者: 表面活性剂的性能测定及评价 一.实验目的 1、了解用指示剂和染料通过显色反应鉴别表面活性剂类型的原理和方法; 2、了解离子型表面活性剂克拉夫特点和非离子表面活性剂浊点的测定方法及不同类型表面活性剂的性质; 3、学会一种表面活性剂的界面张力的测定原理和方法,并掌握由表面张力计算临界胶束浓度(CMC)的原理和方法,学习Gibbs公式及其应用; 4、学会表面活性剂溶液与原油的油水界面张力的测定原理和方法,并掌握超低界面张力在三次采油中的作用机理; 5、学会观察表面活性剂溶液与原油混合后的乳化现象,并掌握不稳定体系数法评价表面活性剂的乳化能力。 二.实验原理 表面活性剂分子是由亲水性的极性基团和憎水性的的非极性基团所组成的有机化合物,当它们一低浓度存在于某一体系中时,可被吸附在该体系的表面上,采取极性基团向着水,非极性基团脱离水的表面定向,从而使表面自由能明显降低。 1、表面活性剂类型的鉴别 不同类型的表面活性剂具有不同的性质,因此可采用不同的方法将它们鉴别出来。离子表面活性剂可利用他们的离子反应来鉴别,非离子表面活性剂则利用其与金属离子形成络合物的颜色来鉴别。 亚甲基蓝属阳离子型有色物,在容量分析中可作指示剂使用,当它遇阴离子表面活性剂时,生成不溶于水而溶于氯仿的产物,使氯仿层色泽变深;如果实验液中含有阳离子表面活性剂,由于阴阳离子表面活性剂的结合,使亚甲基蓝脱离

阴离子表面活性剂而从氯仿中重新回到水中,使氯仿色泽变浅。 2、表面活性剂克拉夫特点和浊点 离子型表面活性剂在温度较低时溶解度很小,但随温度升高而逐渐增加,当到达某特定温度时,溶解度急剧陡升,把该温度称为临界溶解温度又称克拉夫特点。 浊点是非离子表面活性剂的一个特性参数,其受表面活性剂的分子结构和共存物质的影响。表面活性剂在水溶液中,当温度升到一定值时,溶液中出现浑浊,而不完全溶解的现象,此时的温度称为浊点温度。 3、表面活性剂的表面张力及CMC的测定 由于净吸引力的作用,处于液体表面的分子倾向于到液体内部来,因此液体表面倾向于收缩。要扩大面积,就要把内部分子移到表面来,这就要克服净吸引力作功,所作的功转变为表面分子的位能。单位表面具有的表面能叫表面张力。 在一定温度、压力下纯液体的表面张力是定值。但在纯液体中加入溶质,表面张力就会变化。若溶质使液体的表面张力升高,泽荣指在溶液相表面层的浓度小于在溶液相内部的浓度;若溶质使液体的表面张力降低,则溶质在溶液相表面层的浓度大于在溶液相内部的浓度。这种溶质在溶液相内部和溶液相表面浓度不同的现象叫吸附。 在一定温度、压力下,溶质的表面吸附量与溶液的浓度、溶液的表面张力之间的关系,可用吉布斯吸附等温式表示: Γ= 式中Γ-吸附量(mol/L) c-吸附质在溶液内部的浓度(mol/L) -表面张力(N/m) R-通用气体常数() T-绝对温度(K) d/dc<0,溶质为正吸附;反之,溶质为负吸附。通过实验若能测出表面张力与溶质浓度的关系,则可作出-c曲线,并在此曲线上任取若干个点作曲线的切线,这些曲线的斜率即为浓度对应的d/dc,将此值代入公式可求出此浓度

表面活性剂之润湿剂

表 面 活 性 剂 之 润 湿 剂 院系:化学化工学院 专业:化学工程与工艺 班级:化工092班 姓名:邵凤梅 学号:20090915223

摘要:能使固体物料更易被水浸湿的物质。通过降低其表面张力或界面 张力,使水能展开在固体物料表面上,或透入其表面,而把固体物料润湿。 通常是一些表面活性剂,如磺化油、肥皂、拉开粉BX等。也可用大豆卵磷脂、硫醇类、酰肼类和硫醇缩醛类等。润湿剂正日益被陶瓷工业所使用,一 般通用的是一种具有很高耐水硬度的聚氧化乙烯烷化醚类。而磺化油、肥皂 等都具有中等的润湿性能、优良的去垢能力和增溶的倾向。 关键词:表面活性剂,医药,润湿。 一、润湿剂的分类 1.根据作用强弱可分为两类: (1)表面张力小并能与水混溶的溶剂,包括乙醇、丙二醇、甘油、二甲基亚砜等。 (2)表面活性剂,如阴离子表面活性剂、某些多元醇型表面活性剂(斯盘类)、聚氧乙烯型表面活性剂(吐温类) 2.根据给药途径可分为三类: (1)在外用制剂使用的润湿剂,包括表面活性剂和表面张力小并能与水混溶得到的醇类。 (2)口服制剂使用的润湿剂,包括表面张力小并能与水混溶的乙醇、甘油、吐温类等。 (3)注射给药的润湿剂,包括表面张力小并能与水混溶的乙醇、丙二醇、甘油、聚乙二醇200~400等以及吐温-80。 3.根据性质分为两类 润湿剂有阴离子型和非离子型表面活性剂。 阴离子型表面活性剂包括烷基硫酸盐、磺酸盐、脂肪酸或脂肪酸酯硫酸盐、羧酸皂类、磷酸酯等。

非离子型表面活性剂包括聚氧乙烯烷基酚醚,聚氧乙烯脂肪醇醚,聚氧 乙烯聚氧丙烯嵌段共聚物等。 目前市面上还有一类最新型的硅醇类非离子表面活性剂,也称润湿剂, 特点:分子量低,多疏水基呈伞形对称结构,与传统活性剂相比较,润湿、 渗透性表现极为优异、高效,是革命性的新一代表面活性剂。动、静态表面 张力极低,含双羟基,反应型活性剂,化学性质为惰性,一般不参与体系的 化学反应,耐酸碱性好,化学性质稳定。典型的型号是:GSK-588/582/585 等系列。 二、常用的润湿剂 1.拉开粉BX 这个也是老牌的润湿剂了,属于丁基萘磺酸钠盐,水溶性好,气泡少,在 可湿粉中用的较多,但是问题是很难拿到原品拉开粉,基本上出售的都不是原品,实际BX的含量也是各异,因而价格差别很大,国产的从七八千到1万多的都有,BASF产的Nekal BX Dry也是拉开粉系,效果很好,但是价格是国产的 好几倍 2. K12,K14 这个也是很常见的润湿剂了,效果非常好,颜色也很白,但是硫酸盐有个 问题是遇酸容易分解,还有就是起泡厉害,而且一般消泡剂还很难消,价位在 润湿剂里也算低端了,一般1.2-1.3万/T 3. 渗透JFC 成分:脂肪醇与环氧乙烷的缩合物 外观为白色透明粘稠液体。pH值呈中性,属非离子型表面活性剂。具有良 好的稳定性,耐强酸,耐碱、耐次氯酸钠、耐硬水及重金属盐等。水溶性良好,5%的水溶液加热至45℃以上时呈混浊状,但温度下降时仍可恢复原状。对各种 纤维无亲和力,可与各类表面活性剂混用,也适宜与各种树脂初缩体及生物酶 混合使用,浊点40~50℃。 4.快T 水剂里用的较多的润湿渗透剂

表面活性剂的基本作用与应用

5 表面活性剂的基本作用与应用 表面活性剂的分子由疏水基和亲水基组成。依据“相似相亲”的原则,当表面活性剂分子进入水溶液后,表面活性剂的疏水基为了尽可能地减少与水的接触,有逃离水体相的趋势,但由于表面活性剂分子中亲水基的存在,又无法完全逃离水相,其平衡的结果是表面活性剂分子在溶液的表画上富集,即疏水基朝向空气,而亲水基插入水相。当表面上表面活性剂分子的浓度达到一定值后,表面活性剂基本上是竖立紧密排列,形成一层界面膜,从而使水的表面张力降低,赋予表面活性剂润湿、渗透,乳化、分散、起泡、消泡、去污等作用。 由于表面活性剂疏水基的疏水作用,表面活性剂分子在水溶液中发生白聚,即疏水基链相互靠拢在一起形成内核,远离环境,而将亲水基朝外与水接触。表面活性剂分子在水溶液中的自聚(或称白组装、自组)形成多种不同结构、形态和大小的聚集体(参见第4章)。使表面活性剂具有增溶以及衍生出胶束催化、模板功能、模拟生物膜等多种特殊功能。 表面活性剂已广泛应用于日常生活、工农业生产及高新技术领域,是最重要的工业助剂之一,被誉为“工业味精”。在许多行业中,表面活性剂起到画龙点睛的作用,只要很少量即可显著地改善物质表面(界面)的物理化学性质,改进生产工艺、降低消耗和提高产品质量。根据应用领域的不同,表面活性剂分民用表面活性剂和工业用表面活性剂两大类。 民用表面活性剂主要是用作洗涤剂,如衣用、厨房用、餐具用、居室用、卫生间用、消毒用和硬表以以及个人卫生用品如香波,浴液和洗脸、洗手用的香皂、液体皂、块状洗涤剂等。其次是用作各种化妆品的乳化剂。 工业用表面活性剂可以分成两大类。一类是工业清洗,例如火车、船舶、交通工具的清洗,机器及零件的清洗,电子仪器的清洗,印刷设备的清洗,油贮罐、核污染物的清洗,锅炉、羽绒制品、食品的清洗等等。根据被洗物品的性质及特点而有各种配方,借助表面活性剂的乳化、增溶、润湿,渗透、分散等作用和其他有机或无机助剂的助洗作用,并施以机

表面活性剂

(一).Kraft点,浊点(昙点) 温度对增溶作用的影响: ?★Kraft点:对于离子型表面活性剂,温度增加到某个温度,表面活性剂的溶解度急剧升高,这一温度即Kraft点。 ?★浊点(昙点):对于非离子型表面活性剂,温度增加到某个温度,表面活性剂的溶解度急剧下降,溶液出现浑浊,这一温度即浊点。 ?表面活性剂的复配:表面活性剂相互间,或与其它化合物配合使用能提高增溶能力,降低用量。 (二).CMC ★Def:表面活性剂在水中随着浓度增大,表 面上聚集的活性剂分子形成定向排列的紧密 单分子层,多余的分子在体相内部也三三两两 的以憎水基互相靠拢,聚集在一起形成胶束, 这开始形成胶束的最低浓度称为临界胶束浓 度。 表面活性剂在溶液中开始形成胶束的最低浓 度称为临界胶束浓度。 胶束形状: 球状、棒状、层状 ★胶束的作用:乳化作用;泡沫作用;分散 作用;增溶作用;催化作用 润湿:液体和固体表面接触时,原来的固 -气界面消失,形成新的固-液界面的现象。是溶液表面张力下降,溶液表面具有吸附现象的结果。 增溶:脂溶性强的物质在与本身性质相似的胶束中,溶解度可明显增大,形成透明溶液,这一作用称为增溶。增溶体系为热力学上稳定的各向同性溶液。 一定浓度的表面活性剂溶液中溶解的被增溶物质的饱和浓度称为:增容量 乳化:互不相溶的两液相,一相液体以液滴状态分散于另一相中,形成非均匀相液体分散体系(称为乳剂),这一作用称为乳化作用。表面活性剂在此又称为乳化剂,它使一相液体以非常微小液滴状态均匀分散于另一相中。 泡沫:使空气进入溶液中,液体薄膜包围着气体形成泡,由于溶液浮力而升到溶液表面,最终逸出液面形成双分子薄膜。是气体分散在液体中的分散体系。 ★影响CMC的因素: 1)表面活性剂的结构: 主要包括表面活性剂的碳氢链链长(C↑,CMC↓),碳氢链分支数目(分支多,烃链间作

表面活性剂的润湿性能

表面活性剂的润湿性能 一、润湿功能 例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。 表面活性剂具有渗透作用或润湿作用 所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。 润湿过程往往涉及三相,其中至少两相为流体。 1.润湿过程润湿作用是一个过程。润湿过程主要分为三类:沾湿、浸湿和铺展。产生的 条件不同。其能否进行和进行的程度可根据此过程热力学函数变化判断。在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。 (1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。如喷洒农药,农药附着于植物的枝叶上。 沾湿附着发生条件:△G A=γSL-γSG-γLG<0 W A=γSG-γSL+γLG≥0 (沾湿) $ 式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力 (2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。如洗衣时衣物泡在水中;织物染色前先用水浸泡过程 浸湿发生条件:△G i=γSL-γSG≤0 W i=γSG-γSL≥0 (W i:浸湿功) (3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。 铺展发生条件为:△G S=γSL+γLG-γSG≤0 S=γSG-γSL-γLG≥0 (S:铺展功) 一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。 从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。 2.接触角和润湿方程(杨氏方程) ] 接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。 接触角与固-液,固-气和液-气表面张力的关系可表示为: γSG-γSL=γLG COSθ杨氏方程 COSθ=(γSG-γSL)/γLG 加入表面活性剂,γLG↓γSL↓COSθ↑θ↓

实验3.润湿力的测定

实验3 润湿力的测定 一、实验目的 掌握表面活性剂润湿力测定的方法和原理。 二、基本原理 液体润湿固体表面的能力称为润湿力。对于光滑的固体表面,液体的润湿程度通常可用接触角的大小来衡量。对于固体粉末则用润湿热来表示润湿的程度。对于织物(纺织品)则用液体润湿织物所需要的时间来润湿程度。最常用的是纱带沉降法和帆布沉降法以及爬布法。 由于润湿在洗涤去污中非常重要,本实验介绍纺织品润湿性的测定——帆布沉降法。该法的原理是:一定规格和大小帆布浸入液体中,在液体未浸透帆布前,由于浮力的作用,帆布交悬浮在液体中:一定时间后帆布被浸透,其比重大于液体的比重而下沉。显然不同液体对帆布润湿力的大小将表现在沉降时间和长短上,沉降时间越短,则润湿力越强,所以沉降时间可作为润湿力比较标准。 三、仪器和试剂 表面活性剂:直链烷基苯磺酸钠(LSA)或十二烷基硫酸钠(SDS) 帆布:21支3股*21支4股的标准细帆布 四、实验步骤 1.将标准细帆剪成直径约为35mm的圆片,每块经感量为1/1000克的天平称量,重量应在0.38-0.39克之间。 2.取鱼钩一只:每个重量在20-40毫克之间,也可用同重量的细钢针制成鱼钩状使用。 3.用直径为2毫米的镀锌铁丝弯制如图中所示的我丝架。将鱼钩的一端缚以丝线,丝线的末端打一个小圈,套入铁丝架中心处。 4.配制0.25、0.5、0.75克/升LAS或十二烷基硫酸钠水溶液。 5.取全高140-150mm,外径110-120mm1000ml烧杯一只,装入1000ml水。调节温度至20±1。C。将鱼钩尖端钩入帆布圈距边约2-3mm处,然后将铁丝架搁在烧杯边上,使帆布圈浸浮于试液中,其顶点应在液面下10-20mm处(图3-1)。立即开启秒表,至帆布圈沉至烧杯底部时,停表,记下沉降所需要的时间。如果帆布圈在0.5小时后仍不沉降,也结束实验,记沉降时间为>0.5小时。

表面活性剂在涂料中的应用-颜料润湿分散剂

表面活性剂在涂料中的应用-颜料润湿分散剂

表面活性剂在涂料中的应用-颜料润湿分散剂 时间:2009-04-01 13:20 文字选择:大中小 1颜料润湿分散剂的作用 ①提高生产效率、降低制造成本。颜料的研磨与分散过程是制造涂料的主要工序,大约80%的电能和工时消耗在该工序上。选择合适的颜料润湿分散剂,一方面达到同样细度的时间最短,可以缩短工时;另一方面,可以降低体系的粘度,使制造高颜料的色浆——颜料浓缩浆成为可能。颜料浓缩浆可以提供涂料合理生产的机会,使实现计算机配色成为可能。通用色浆可与差不多全部的涂料体系相混容,涂料厂家可以较少的原料贮备制作各种类型的色漆,减少了贮运、管理各方面的麻烦。 ②提高涂料的贮存稳定性、减少浪费。颜料(填料)润湿分散得不好,得到的产品稳定性差,贮存一定时间后,会出现分层现象。轻者返粗,需要返工,增加损耗。颜、填料沉底,严重时会发硬、结块,导致涂料无法使用而报废。只要使用恰当的润湿分散剂,都会提高涂料贮存稳定性,防止颜料返粗、沉底等问题。

③改善涂膜状态。使用润湿分散剂,使颜料分散得更好,可以提高颜料的着色力和遮盖力,改善涂料的流平性,增加光泽,使用控制絮凝的润湿分散剂还可以防止复色漆的浮色、发花现象。譬如现在国际上一些大公司生产的钛白粉,其表面处理已做得非常好,研磨时甚至不加润湿分散剂也可能很快达到所要求的细度。但在配制灰色漆时,不加助剂的就可能会有发花现象,而加了助剂的就会防止该现象的发生。 ④其它作用。最佳的颜料分散可以提高紫外线的吸收和反射能力,增加颜料的耐候性和耐化学药品性。 控制絮凝的润湿分散剂可使涂料成为假塑性流体,一般场合下,假塑性的流变行为是配方设计者所追求的,它可以防止施工时的流挂现象。 2润湿分散剂的作用原理 前面已经讲过,涂料生产过程的第一步就是研磨——以达到最佳颜料分散。 颜料有三种存在状态:①原始颗粒,即单个颜料晶体或一组晶体,粒径相当小;②凝聚体,以面相接的原始颗粒团,其表面积比其单个粒子

表面活性剂

表面活性剂 1·表面活性剂在浓度很低时,能显著降低溶剂(一般是水)的表(界)面张力,从而明显改变体系的表(界)面性质和状态的物质称为表面活性剂。 2·临界胶束浓度 形成表面活性剂完整胶束的最低浓度叫做表面活性剂的临界胶束浓度。 3·双亲结构 在同一个表面活性剂分子中同时具有亲油基和亲水基。 4·乳化 互不相溶的两种液体中一种液体以微小微粒分散于另一种液体中的现象叫乳化。5·分散 一种固体以微小粒子的形式均匀的散布于另一种液体中的现象叫分散。 6·浊点 浊点又叫雾点。非离子表面活性剂的特性。(含醚键或酯基的)非离子表面活性剂在水中的溶解度随温度升高而降低,当达到一定温度时溶液开始变浑浊,这一温度叫浊点。 7·等电点 等电点是两性表面活性剂的特性。两性表面活性剂也有一个等电区域,即正、负离子离解度相等时溶液的pH值范围,这就是两性表面活性剂的等电点。8·HLB值 表面活性剂为具有亲水基团和亲油基团的两亲分子,表面活性剂分子中亲水基和亲油基之间的大小和力量平衡程度的量,定义为表面活性剂的亲水亲油平衡值。 9、HLB基团数 如果HLB值是由表面活性剂分子中各种结构基团贡献的总和,则每个基团对HLB值的贡献可用数值表示,此数值称为HLB基团数 10·乙氧基化 在酸性或者碱性催化剂下,向有机分子内引入乙氧基的反应,称为乙氧基化反应11·润湿性 润湿性是固体界面由固气界面转变为固液界面的现象。 定义:润湿作用固体表面的一种流体被另一种流体所取代的过程。 12·克拉夫(特)krafft点 克拉夫特点(Krafft Point)。离子型表面活性剂在温度较低时溶解度很小,但随温度升高而逐渐增加,当到达某一特定温度时,溶解度急剧陡升,把该温度称为克拉夫特点(又称临界溶解温度)。

表面活性剂作业答案

表面活性剂作业题答案 第一章绪论 1.表面活性剂的结构特点及分类方法。 答:表面活性剂的分子结构包括长链疏水基团和亲水性离子基团或极性基团两个部分。由于它的 分子中既有亲油基又有亲水基,所以,也称双亲化合物 表面活性剂一般按离子的类型分类,即表面活性剂溶于水时,凡能离解成离子的叫做离子型表面 活性剂,凡不能离解成离子的叫做非离子型表面活性剂。而离子型表面活性剂按其在水中生成的 表面活性离子种类,又可分为阴离子、阳离子和两性离子表面活性剂三大类。此外还有一些特殊 类型的表面活性剂,如元素表面活性剂、高分子表面活性剂和生物表面活性剂等。 2.请解释表面张力、表面活性剂、临界胶束浓度、浊点、Krafft点等概念。 表面张力是指垂直通过液体表面上任一单位长度、与液体面相切的,收缩表面的力。 表面活性剂是指在加入很少量时就能显著降低溶液的表面张力,改变体系界面状态,从而产生润湿、乳化、起泡、增溶等一系列作用,以达到实际应用要求的物质。 表面活性剂在水溶液中形成胶团的最低浓度,称为临界胶团浓度或临界胶束浓度。浊点(C. P值):非离子表面活性剂的溶解度随温度升高而降低,溶液由澄清变混浊时的温度即 浊点。 临界溶解温度(krafft点):离子型表面活性剂的溶解度随温度的升高而增加,当温度增加到一定 值时,溶液突然由浑浊变澄清,此时所对应的温度成为离子型表面活性剂的临界溶解温度。 3.表面活性剂有哪些基本作用?请分别作出解释。 1)润湿作用:表面活性剂能够降低气-液和固-液界面张力,使接触角变小,增大液体对固体表 面的润湿的这种作用。 2)乳化作用:表面活性剂能使互不相溶的两种液体形成具有一定稳定性的乳状液的这种作用。3)分散作用:表面活性剂能使固体粒子分割成极细的微粒而分散悬浮在溶液中的这种作用,叫 作分散作用。 4)起泡作用:含表面活性剂的水溶液在搅拌时会产生许多气泡,由于气体比液体的密度小,液 体中的气泡会很快上升到液面,形成气泡聚集物(即泡沫),而纯水不会产生此种现象,表面活 性剂的这种作用叫发泡作用。 5)增溶作用:表面活性剂在溶液中形成胶束后,能使不溶或微溶于水的有机化合物溶解度显著 增加的这种作用称作表面活性剂的增溶作用。 6)洗涤去污作用:洗涤去污作用实际上是由于表面活性剂能够吸附在固液界面上,降低表面张 力并在水溶液中形成胶团,从而产生的润湿、渗透、乳化、分散等各种作用的综合效果。 1 第二章阴离子表面活性剂 1.阴离子表面活性剂的定义及分类。

常用表面活性剂

6501 用椰子油为原料,经精炼后直接或间接与二乙醇胺反应合成,就是高品质得 非离子表面活性剂。 一、 英文名:Coconut diethanolamide 二、 化学名:椰油酸二乙醇酰胺6501 三、 化学结构式:RC0N(CH2CH20H)2 四、 产品特性: 具有显著得增稠、增泡、稳泡性能; 具有显著得乳化、去污能力; 同其它表面活性剂有良好得复配性与协同效应; 具有抗静电、防锈、防腐蚀等性能; 特别适于配制透明产品; 就是性能价格比很高得品种之一。 型 外 游离脂肪酸(幻 W0、5 W0、5 W0、5 游 离 胺(mgkoH/g) W30、0 W80、0 W30、0 色 泽(APHA) W250 W250 W300 PH 值(lOg/LIO%乙醇)9、0-11, 0 9、0-11. 0 9、0-11. 0 六、用途与用量: 1、 用途:添加于香波、沐浴球、洗洁精、洗衣液、洗手液等产品中作 增泡剂、稳泡剂、增稠剂,乳化去油去污剂。 2、 推荐用量:2—6% 本品属于非离子表面活性剂,没有浊点。性状为淡黄色至琥珀色粘稠液 体,易溶于水、具有良好得发泡、稳泡、渗透去污、抗硬水等功能。属非 离子表面活性剂,在阴离子表面活性剂呈酸性时与之配伍增稠效果特别明 显,能与多种表面活性剂配伍。能加强清洁效果、可用作添加剂、泡沫安 定剂、助泡剂、主要用于香波及液体洗涤剂得制造。在水中形成一种不透 明得雾状溶液,在一定得搅拌下能完全透明,在一定浓度下可完全溶解于不 同种类得表面活性剂中,在低碳与高碳中也可完全溶解。 TX-10/NP-10 别名:NP-10, TX-10,NPE-10 英文名称:Po 丨 yoxyethy I ene (10) nony I pheny I ether 2 、 3 、 4、 五、 技术指标 号1 : 1 1 :仁5特级不含甘油型 观 常温下(25°C)为淡黄色透明液体 味无异味

相关文档
相关文档 最新文档