文档库 最新最全的文档下载
当前位置:文档库 › 2019-2020学年高三数学 直线与圆锥曲线复习学案 .doc

2019-2020学年高三数学 直线与圆锥曲线复习学案 .doc

2019-2020学年高三数学 直线与圆锥曲线复习学案 .doc
2019-2020学年高三数学 直线与圆锥曲线复习学案 .doc

2019-2020学年高三数学 直线与圆锥曲线复习学案

【考点说明】2012年考试说明没有对“直线与圆锥曲线”提出具体明确要求,但是新课标的要求“理解直线与圆锥曲线的位置关系,进一步体会数形结合思想;掌握求直线与圆锥曲线的交点的方法”

【主要题型】会判定直线与圆锥曲线的位置关系;灵活掌握求直线与圆锥曲线的交点的方法 基础练习

1.直线1+=kx y 与椭圆14

92

2=+y x 的位置关系 ____ 2.给出下列曲线方程:①4x+2y-1=0,②x 2+y 2

=3,③1422

2=+y x , ④12

22

=-y x ,⑤y 2=2x 其中与直线y=-2x-3有交点的所有曲线方程是___

3.抛物线y x =2上的点到直线62-=x y 的最短距离为

4.已知椭圆22

14520

x y +=的焦点为12,F F ,过中心O 作直线与椭圆交于AB ,若三角形AB 2F 的面积为20,则AB 所在的直线方程

5.已知A,B,P 是双曲线)00(,122

22>>=a b b

y a x ,-上不同的三点,且A,B 连线经过坐标原点,若直线PA,PB 的斜率乘积为

32,则双曲线的离心率 __

例1:已知椭圆C 经过)2

3,1(A ,两个焦点为)0,1(±

(1)求椭圆C 方程

(2)E,F 为椭圆上的两个动点,且直线AE,AF 的倾斜角互补,求直线EF 的斜率

例2:已知椭圆1242

2=+y x , (1)过P(1,1)作直线与椭圆交于A,B 两点,若线

段AB 的中点恰好为P,求A B 所在直线的方程(2) 已知P(1,1),连接OP 交椭圆与C,D 两点,,垂足为E,连接DE 交椭圆于F,求点C 到直线DF (3)若过坐标原点的直线交椭圆于C 、D 两点,如图,过C 作X 轴的垂线,垂足为E ,连接DE ,并延长交椭圆于点F ,设直线CD 的斜率为k,对任意k>0,求证:CD ⊥CF

巩固练习:

已知椭圆14

22

=+y x 的左顶点为A ,过A 作两条相互垂直的弦AN AM ,交椭圆于M,N 两点,(1)当直线AM 的斜率为1时,求点M 的坐标(2)当直线AM 的斜率变化时,直线MN 是否经过x 轴上的一定点,若经过求出该定点;否则说明理由

圆锥曲线教案

直 线 与 圆 锥 曲 线 的 位 置 关 系 题型归纳: 题型1向量与圆锥曲线相结合的问题 1.设12F F ,分别是双曲线2 2 19y x +=的左、右焦点.若点P 在双曲线上,且120PF PF ?=,则12PF PF += 2.设P 为双曲线2 2 112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为 题型2变量取值范围问题 3、设 1F ,2F 分别是椭圆14 22 =+y x 的左右焦点。1)若P 是该椭圆上的一个动点,求21PF PF ?的最值; (2)设过定点()2,0M 的直线l 与椭圆交于不同的两点A,B,且AOB ∠为锐角(O 为坐标原点),求直线l 的斜率k 的范围 题型3圆锥曲线中的最值问题 4、设P 是椭圆()2 2211x y a a +=>短轴的一个端点,Q 为椭圆上一个动点,求PQ 的最大值. 5、已知椭圆C:22 221(0)x y a b a b +=>>,F 为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2(1)求椭圆C 的方程;(2)直线l :y=kx+m (0km ≠)与椭圆C 交于A 、B 两点,若线段AB 中点在直线x+2y=0上,求?FAB 的面积的最大值。 … 题型4定值问题 6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 题型5 存在性问题 7.椭圆)0(12222>>=+b a b y a x 的离心率23e =,A 、B 是椭圆上关于,x y 轴均不对称的两点,线段AB 的垂直平分线与x 轴交于(1,0)P ,点 F 是椭圆的右焦点.Ⅰ)设AB 的中点为00(,)C x y ,求0x 的值; (Ⅲ)过P 的直线交椭圆于,C D 两点,在x 轴上是否存在定点E ,使得CED ∠总被x 轴平分,若存在,求出点E 的坐标;若不存在,请说明理由. 题型6对称性问题 8.已知双曲线2 213y x -=上存在关于直线:4l y kx =+的对称点,求实数k 的取值范围.

圆锥曲线解题技巧教案

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 ---) ; (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 1

圆锥曲线教学设计

圆锥曲线 一、教学内容分析 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。 3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义解题 六、教学过程设计 【设计思路】 (一)开门见山,提出问题 一上课,我就直截了当地给出—— 例题1:(1) 已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。 (A)椭圆(B)双曲线(C)线段(D)不存在 (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。 (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线 【设计意图】

直线与圆锥曲线教学案河北省鸡泽县第一中学高三数学一轮复习

直线与圆锥曲线 [基本知识] 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程A x +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程. 即由????? Ax +By +C =0,F x ,y =0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的根的判别式为Δ, 则????? Δ>0?直线与圆锥曲线C 相交;Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 相离. (2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线的对称轴平行或重合. [基本能力] 一、判断题(对的打“√”,错的打“×”) (1)直线l 与椭圆C 相切的充要条件是:直线l 与椭圆C 只有一个公共点.( ) (2)直线l 与双曲线C 相切的充要条件是:直线l 与双曲线C 只有一个公共点.( ) (3)直线l 与抛物线C 相切的充要条件是:直线l 与抛物线C 只有一个公共点.( ) 答案:(1)√ (2)× (3)× 二、填空题 1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________. 答案:[-1,1] 2.已知斜率为1的直线l 过椭圆x 24 +y 2=1的右焦点,交椭圆于A ,B 两点,弦AB 的长为________. 答案:85 3.双曲线x 29-y 2 16 =1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________. 答案:3215 [典例] (1)(2019·河南九校联考)已知直线y =kx +t 与圆x 2+(y +1)2=1相切且与抛物线C :x 2

人教新课标版数学-高中数学直线与圆锥曲线的位置关系(二)学案

高中数学直线与圆锥曲线的位置关系(二)学案 【学习目标】 1.掌握直线与椭圆、抛物线的位置关系. 2.了解圆锥曲线的简单应用. 3.理解数形结合的思想. 【重点难点】掌握直线与椭圆、抛物线的位置关系、圆锥曲线的简单应用. 【合作探究】 【例1】已知抛物线C 的顶点为原点,其焦点F(0,c)(c>0)到直线l :x -y -2=0的距离为322 .设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程; (2)当点P(x0,y0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF|·|BF|的最小值. 变式训练1 已知椭圆x2a2+y2b2 =1(a >b >0)的右焦点为F2(3,0),离心率为e. (1)若e =32 ,求椭圆的方程; (2)设直线y =kx 与椭圆相交于A ,B 两点,若AF2→·BF2→=0,且22<e≤32 ,求k 的取值范围. 考向2 定点、定值的证明与探索 【例2】已知动圆过定点A(4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程; (2)已知点B(-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,

若x 轴是∠PBQ 的角平分线,证明:直线l 过定点. 【达标检测】 1.已知抛物线y2=2px(p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-2 2.椭圆C :x24+y23 =1的左、右顶点分别为A1、A2,点P 在C 上且直线PA2斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是( ) A.??????12,34 B.???? ??38,34 C.??????12,1 D.???? ??34,1

2019届二轮复习 圆锥曲线 学案 (全国通用)

第九讲 圆锥曲线 一、知识方法拓展: 1、直线系方程 若直线1111:0l a x b y c ++=与直线2222:0l a x b y c ++=相交于P ,则它们的线性组合()()1112220a x b y c a x b y c λμ+++++=(,R λμ∈,且不全为0)(*)表示过P 点的直线系。当参数,λμ为一组确定的值时,(*)表示一条过P 点的直线。 特别地,当0λ=时,(*)式即2220a x b y c ++=; 当0μ=时,(*)式即1110a x b y c ++=。 对于12,l l 以外的直线,我们往往只在(*)式中保留一个参数,而使另一个为1. 又若1l 与2l 平行,这时(*)式表示所有与1l 平行的直线。 2、圆锥曲线的第二定义(离心率、准线方程等) 圆锥曲线的统一定义为:平面内到一定点F 与到一条定直线l (点F 不在直线l 上) 的距离之比为常数e 的点的轨迹: 当01e <<时, 点的轨迹是椭圆, 当 1e >时, 点的轨迹是双曲线, 当 1e =时, 点的轨迹是抛物线, 其中e 是圆锥曲线的离心率c e a = ,定点F 是圆锥曲线的焦点, 定直线l 是圆锥曲线的准线,焦点在X 轴上的曲线的准线方程为2 a x c =±。 3、圆锥曲线和直线的参数方程 圆2 2 2 x y r +=的参数方程是cos sin x r y r θ θ=?? =? ,其中θ是参数。 椭圆22 221x y a b +=的参数方程是cos sin x a y b θθ =??=?,其中θ是参数,称为离心角。

双曲线22 221x y a b -=的参数方程是sec tan x a y b θθ =??=?,其中θ是参数。 抛物线2 2y px =的参数方程是2 22x pt y pt ?=?=?,其中t 是参数。 过定点()00,x y ,倾斜角为α的直线参数方程为00cos sin x x t y y t α α=+??=+? ,t 为参数。(关注几 何意义)。 4、圆锥曲线的统一极坐标方程 以圆锥曲线的焦点(椭圆的左焦点、双曲线的右焦点、抛物线的焦点)为极点,过极点引相应准线的垂线的反向延长线为极轴,则圆锥曲线的统一极坐标方程为 1cos ep e ρθ = -,其中e 为离心率,p 是焦点到相应准线的距离。 二、热身练习: 1、(07武大)如果椭圆()222210x y a b a b +=>> 那么双曲线22221x y a b -=的 离心率为( ) (A (B )2 (C (D ) 54 【答案】C 【解析】圆锥曲线的离心率c e a = , 椭圆中:2 2 2 c a b =-∴222 2 34 a b e a -==,得22 4a b = 双曲线中:2222 2254c a b e a a +=== ,得e = C 。

圆锥曲线优秀教案

与圆锥曲线有关的几种典型题 一、教案目标 (一)知识教案点 使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线相交问题等. (二)能力训练点 通过对圆锥曲线有关的几种典型题的教案,培养学生综合运用圆锥曲线知识的能力. (三)学科渗透点 通过与圆锥曲线有关的几种典型题的教案,使学生掌握一些相关学科中的类似问题的处理方法. 二、教材分析 1.重点:圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题. (解决办法:先介绍基础知识,再讲解应用.) 2.难点:双圆锥曲线的相交问题. (解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.) 3.疑点:与圆锥曲线有关的证明问题. (解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.) 三、活动设计 演板、讲解、练习、分析、提问. 四、教案过程 (一)引入

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“与圆锥曲线有关的几种典型题”. (二)与圆锥曲线有关的几种典型题 1.圆锥曲线的弦长求法 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为: (2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. A、B两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解. 由学生演板完成.解答为: ∵抛物线方程为x2=-4y,∴焦点为(0,-1). 设直线l的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入x2=-4y中得:x2+4kx-4=0. ∴x1+x2=-4,x1+x2=-4k. ∴ k=±1.

直线与圆锥曲线的综合问题

教学过程 一、复习预习 圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整. 二、知识讲解 考点1范围问题 求范围和最值的方法: 几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题 代数方法:建立目标函数,再求目标函数的最值. 考点2对称问题 要抓住对称包含的三个条件: (1)中点在对称轴上 (2)两个对称点的连线与轴垂直

(3)两点连线与曲线有两个交点(0>?),通过该不等式求范围 考点/易错点3定点、定值、最值等问题 定点与定值问题的处理一般有两种方法: (1)从特殊入手,求出定点和定值,再证明这个点(值)与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定点(定值). 三、例题精析 【例题1】 【题干】已知椭圆1:22221=+b y a x C (0>>b a )与直线01=-+y x 相交于两点A 、B .当 椭圆的离心率e 满足2 223≤≤e ,且0=?OB OA (O 为坐标原点)时,求椭圆长轴长的取值范围. 【答案】 []6,5 【解析】由???=-+=+0 12 22222y x b a y a x b ,得()()012222222=-+-+b a x a x b a 由( ) 0122222>-+=?b a b a ,得12 2 >+b a 此时222212b a a x x +=+,() 2 22 2211b a b a x x +-= 由0=?OB OA ,得02121=+y y x x ,∴()0122121=++-x x x x 即022 2 2 2 =-+b a b a ,故1 222 2 -=a a b 由2 22222 a b a a c e -==,得2 222e a a b -= ∴2 2 11 12e a -+ = 由 2 223≤≤e 得23452 ≤≤a ,∴625≤≤a 所以椭圆长轴长的取值范围为 []6,5 【例题2】

高考数学二轮复习 解析几何 5.7 直线与圆锥曲线学案 理

高考数学二轮复习解析几何 5.7 直线与圆锥曲 线学案理 5、7 直线与圆锥曲线 【学习目标】 1、理解直线与曲线的位置关系, 2、会求相交弦长,能解决与相交弦有关的问题; 【学法指导】 1、先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识; 2、限时30分钟独立、规范完成探究部分,并总结规律方法; 3、找出自己的疑惑和需要讨论的问题准备课上讨论质疑; 4、重点理解的内容:相交弦的应用。 【高考方向】 1、直线与曲线的位置关系的判断; 2、与相交弦有关的综合问题。 【课前预习】 XXXXX: 一、知识网络构建 1、直线与曲线的位置关系的如何判断?

2、三种曲线的相交弦公式有何异同? 二、高考真题再现(13安徽13)已知直线交抛物线于两点。若该抛物线上存在点,使得为直角,则的取值范围为_______。 三、基本概念检测 1、设F为抛物线C:y2=4x的焦点,过点F(?1,0)的直线l 交抛物线C于A,B两点,点Q为线段AB的中点、若|FQ|=2,则直线l的斜率等于、 2、在直角坐标系xOy中,直线l过抛物线=4x的焦点F、且与该抛物线相交于 A、B两点、其中点A在x轴上方。若直线l的倾斜角为 60、则△OAF的面积为、3、已知P,Q为抛物线上两点,点P,Q的横坐标分别为4,2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为__________。 4、设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线的方程为_____________、 【课中研讨】 XXXXX:例 1、已知椭圆G:+=1(a>b>0)的离心率为,右焦点(2,0),斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2)、(1)求椭圆G的方程; (2)求△PAB的面积、例

圆锥曲线第二定义学案

圆锥曲线第二定义练习学案 1.过抛物线x 4y 2=的焦点F 作直线交抛物线于A (11y x ,)、B (22y x ,),若6x x 21=+,求|AB|的长。 2. 设椭圆22 22b y a x +=1(a>b>0)的右焦点为1F ,右准线为l 1,若过F 1且垂直于x 轴的弦的长度等于F 1到准线l 1的距离,求椭圆的离心率。 3. 双曲线13 y x 2 2 =-的右支上一点P ,到左焦点F 1与到右焦点F 2的距离之比为2:1,求点P 的坐标。 4.点P 在椭圆 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标为_______ 5. 抛物线上的两点A 、B 到焦点的距离和是5,则线段AB 的中点到轴的距离为 6. 椭圆内有一点,F 为右焦点,在椭圆上有一点M ,使 之值最小,则点M 的坐标为_______ 7. 已知椭圆)0b a (1b y a x 22 22>>=+,21F F 、分别是左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率e 的取值范围。 8. 已知点A (32,-),设点F 为椭圆112 y 16x 2 2=+的右焦点,点M 为椭圆上一动点,求|MF |2|MA |+的最小值,并求此时点M 的坐标。 9.椭圆x 2/25+y 2 /9=1上有一点P ,如果它到左准线的距离为5/2,那么P 到右焦点的距离是 。 10. F 2是椭圆x 2/a 2+y 2/b 2=1(a >b>0)的右焦点,P(x 0,y 0)是椭圆上任一点,则|PF 2|的值为: A. ex 0-a B. a-ex 0 C. ex 0-a D.e-ax 0 11.过抛物线y 2=4x 的焦点的一条直线交抛物线于A 、B 两点,若线段的中点的横坐标为3,则|AB|= 。 12. 已知椭圆方程为x 2/b 2+y 2/a 2=1(a>b>0),求与这个椭圆有公共焦点的双曲线,使得以它 们的交点为顶点的四边形面积最大,并求相应的四边形的顶点坐标。 13. 已知椭圆x 2/4+y 2/3=1内有一点P(1,-1),F 为右焦点,椭圆上有一点M ,使|MP|+2|MF|值最小,求点M 的坐标

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

高考数学复习教案:直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系 【考试大纲要求】 1.掌握直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题. 2.会运用“设而不求”解决相交弦长问题及中点弦问题. 3.会利用圆锥曲线的焦半径公式解决焦点弦的问题掌握求焦半径以及利用焦半径解题的方法. 4.会用弦长公式|AB |=21k +|x 2-x 1|求弦的长; 5.会利用“设点代点、设而不求”的方法求弦所在直线的方程(如中点弦、相交弦等)、弦的中点的轨迹等. 【高考命题走向】 近几年来直线与圆锥曲线的位置关系在高考中占据高考解答题压轴题的位置,且选择、填空也有涉及,有关直线与圆锥曲线的位置关系的题目可能会涉及线段中点、弦长等。分析这类问题,往往利用数形结合的思想和“设而不求”的方法,对称的方法及韦达定理等. 预测2010年高考: 1.会出现1道关于直线与圆锥曲线的位置关系的解答题; 2.与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现. 【基础知识归纳】 1.点00(,)M x y 与圆锥曲线C :f(x ,y)=0的位置关系(如表1). 2.直线与圆锥曲线的位置关系 直线与圆锥曲线的位置关系,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点. 直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为方程组解的个数与交点的个数是一样的. 直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可归纳为: (1)0?>?相交; (2)0?=?相切; (3)0?

高三数学复习:第53课时—直线与圆锥曲线的位置关系(1)(学案)

高三数学第一轮复习讲义(53) 直线与圆锥的位置关系(1) 一.复习目标: 1.掌握直线与圆锥曲线的位置关系的判定方法,能够把研究直线与圆锥曲线的位置关系的问题转化为研究方程组的解的问题; 2.会利用直线与圆锥曲线的方程所组成的方程组消去一个变量,将交点问题问题转化为一元二次方程根的问题,结合根与系数关系及判别式解决问题. 二.知识要点: 1.直线与圆锥曲线的位置关系的判定方法: 直线l :(,)0f x y =和曲线:(,)0C g x y =的公共点坐标是方程组(,)0(,)0 f x y g x y =??=?的解,l 和C 的公共点的个数等于方程组不同解的个数.这样就将l 和C 的交点问题转化为方程组的解问题研究,对于消元后的一元二次方程,必须讨论二次项系数和判别式?,若能数形结合,借助图形的几何性质则较为简便. 2.弦的中点或中点弦的问题,除利用韦达定理外,也可以运用“差分法”(也叫“点差法”). 三.课前预习: 1.直线y x b =+与抛物线2 2y x =,当b ∈ 时,有且只有一个公共点;当b ∈ 时,有两个不同的公共点;当b ∈ 时,无公共点. 2.若直线1y kx =+和椭圆22 125x y m +=恒有公共点,则实数m 的取值范围为 . 3.抛物线2 y ax =与直线y kx b =+(0)k ≠交于,A B 两点,且此两点的横坐标分别为1x ,2x ,直线与x 轴的交点的横坐标是3x ,则恒有 ( ) ()A 312x x x =+ ()B 121323x x x x x x =+ ()C 3120x x x ++= ()D 1213230x x x x x x ++= 4.椭圆122=+ny mx 与直线1=+y x 交于,M N 两点,MN 的中点为P ,且OP 的斜率为 22,则n m 的值为 ( ) ()A 22 ()B 322 ()C 229 ()D 2732 5.已知双曲线2 2:14 y C x -= ,过点(1,1)P 作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有 ( )

高考数学一轮 圆锥曲线的综合问题(学案)

§9.8圆锥曲线的综合问题 ★知识梳理★ 1.直线与圆锥曲线C 的位置关系: 将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0. (1)交点个数: ①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。 (2) 弦长公式: 2.对称问题: 曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。 3.求动点轨迹方程: ①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。 ★重难点突破★ 重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题 重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能 ①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求. 2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用 问题1:已知点1F 为椭圆15 92 2=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 . 点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形, ||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6 ★热点考点题型探析★ 考点1直线与圆锥曲线的位置关系 题型1:交点个数问题 [例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A .[- 21,2 1 ] B .[-2,2] C .[-1,1] D .[-4,4] 【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线2 8y x =的准线2x =-与x 轴的交点为Q (-2 , 0), 于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+, 4)(1 ||1||212212122x x x x k x x k AB ?-+?+=-?+=

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

圆锥曲线与方程单元教学设计

圆锥曲线与方程单元教 学设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

课题名称《圆锥曲线与方程》单元教学设计 设计者姓名郭晓泉 设计者单位华亭县第二中学 联系电话 电子邮箱 《圆锥曲线与方程》单元教学设计 一、教学内容分析 1、实际背景分析 该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。 2、数学视角分析 《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。 3、课程标准视角分析 (1)学生学习方式的转变问题。在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。 (2)学生思维能力培养的问题。“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。”这是课标对学生思维培养的要求,在圆锥曲线这部分

18届竞赛学案--神奇的圆锥曲线

18届竞赛学案--神奇的圆锥曲线 神奇的圆锥曲线 命题人:闫霄审题人:冯昀山 一、神奇曲线,定义统一 01.距离和差,轨迹椭双问题探究1 已知动点Q 在圆A :(x +λ) 2+y 2=4上运动,定点B (λ,0) ,则(1)线段QB 的垂直平分线与直线QA 的交点P 的轨迹是什么? 02.距离定比,三线统一问题探究2 已知定点A (-1,0) ,定直线l 1:x =-3,动点N 在直线l 1上,过点N 且与l 1垂直的直线l 2上有一动点P ,满足 PA PN =λ,请讨论点P 的轨迹类型。 (2)若BM =tMQ ,直线l 过点M 与直线QA 的交于点P ,且BM ?MP =0,则点Q 的 轨迹又是什么? 总结: 定圆上一动点与圆内一定点的垂直平分线与其半径的交点的轨迹是。定圆上一动点与圆外一定点的垂直平分线与其半径所在直线的交点的轨迹是。 定直线(无穷大定圆)上一动点与圆外一定点的垂直平分线与其半径所在直线的交点的轨迹是。 总结: 动点到一定点与到一定直线的距离之比为小于1的常数,则动点的轨迹是。动点到一定点与到一定直线的距离之比为大于1的常数,则动点的轨迹是。动点到一定点与到一定直线的距离之比为等于1的常数,则动点的轨迹是。 1 二、过焦半径,相关问题 03.切线焦径,准线作法问题探究3 已知两定点A (-1,0), B (1,0),动点P 满足条件PA +PB =8,另一动点Q 满足 04.焦点切线,射影是圆问题探究4 ) , 已知两定点A (-2, 0B

P A P B Q 的轨迹方程。 Q B P B =0, Q 0+) =,求动点 P P (2, 动点P 满足条件P -P B ,=2,动点Q 满足 P A P B PA PB ,QP +λ(QB ?(+) =0+) =0,求动点Q 的轨迹方程。 PA PB PA PB 总结: 椭圆上的一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为椭圆相应之。 双曲线上的一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为。 抛物线上的一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为。 2 总结: 焦点在椭圆切线上的射影轨迹是。焦点在双曲线切线上的射影轨迹是。 焦点在抛物线切线上的射影轨迹是(无穷大圆)。 05.焦半径圆,切于大圆问题探究5 06.焦三角形,内心轨迹问题探究6 x 2y 2 +=1上,1.已知动点P 在椭圆F 为椭圆之焦点,PM +FM =0,探究2OM +PF 43 是否为定值 x 2y 2 2.已知点P 在双曲线F 为双曲线之焦点,探究2OM -PF -=1上,PM +FM =0, 43 是否为定值 总结:

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题 【考纲要求】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即?? ?==++0 ),(0y x F c By Ax ,消去y 后得02 =++c bx ax (1)当0≠a 时,设方程02 =++c bx ax 的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交;Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 无公共点. (2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB | =1+k 2 |x 1-x 2|=]4))[(1(212212x x x x k -++=a k ? ? +2 1=1+1 k 2·|y 1-y 2|. (抛物线的焦点弦长|AB |=x 1+x 2+p =2p sin 2 θ ,θ为弦AB 所在直线的倾斜角). 3、一种方法 点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,

(江苏专用)2020年高考数学二轮复习 专题14圆锥曲线学案

专题14圆_锥_曲_线 回顾2020~2020年的高考题,在填空题中主要考查了椭圆的离心率和定义的运用,在解答题中2020、2020、2020年连续三年考查了直线与椭圆的综合问题,难度较高.在近四年的圆锥曲线的考查中抛物线和双曲线的考查较少且难度很小,这与考试说明中A级要求相符合. 预测在2020年的高考题中: (1)填空题依然是以考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. (2)在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还有可能涉及简单的轨迹方程的求解. 1.若椭圆x2 5 + y2 m =1的离心率e= 10 5 ,则m的值是________. 解析:当m>5时,10 5 = m-5 m ,解得m= 25 3 ; 当m<5时,10 5 = 5-m 5 ,解得m=3.

答案:3或25 3 2.若抛物线y2=2x上的一点M到坐标原点O的距离为3,则M到该抛物线焦点的距离为________. 解析:设M的坐标为(x,±2x)(x>0),则x2+2x=3,解得x=1,所求距离 为1+1 2 = 3 2 . 答案:3 2 3.双曲线2x2-y2+6=0上一个点P到一个焦点的距离为4,则它到另一个焦点的距离为________. 解析:双曲线方程化为y2 6 - x2 3 =1.设P到另一焦点的距离为d,则由|4-d|=26 得d=4+26,或d=4-26(舍去).答案:26+4 4.(2020·江苏高考)在平面直角坐标系xOy中,若双曲线x2 m - y2 m2+4 =1的离心 率为5,则m的值为________. 解析:由题意得m>0,∴a=m,b=m2+4, ∴c=m2+m+4,由e=c a =5得 m2+m+4 m =5, 解得m=2. 答案:2 5.已知椭圆x2 a2 + y2 b2 =1(a>b>0)的左、右焦点分别为F 1 、F 2 ,离心率为e,若椭圆 上存在点P,使得PF 1 PF 2 =e,则该椭圆离心率e的取值范围是________. 解析:∵PF 1 PF 2 =e,∴PF 1 =ePF 2 =e(2a-PF 1 ),

相关文档
相关文档 最新文档