文档库 最新最全的文档下载
当前位置:文档库 › 第二章圆锥曲线与方程复习学案(人教A版选修2-1)

第二章圆锥曲线与方程复习学案(人教A版选修2-1)

第二章圆锥曲线与方程复习学案(人教A版选修2-1)
第二章圆锥曲线与方程复习学案(人教A版选修2-1)

精品“正版”资料系列,由本公司独创。旨

在将“人教版”、”苏教版“、”北师

大版“、”华师大版“等涵盖几乎所有版本

的教材教案、课件、导学案及同步练习和

检测题分享给需要的朋友。 本资源创作于2020年8月,是当前最新版本的教材资源。包含本课对应 内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

第二章 圆锥曲线与方程(复习)

1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质;

3.能解决直线与圆锥曲线的一些问题.

7881,文P 66~ P 69找出疑惑之处)

复习2:

① 若椭圆22

1x my +=,则它的长

半轴长为__________; ②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ;

③以椭圆22

12516x y +=的右焦点为焦点的抛物线方

程为 .

二、新课导学

※ 典型例题 例1 当α从0到180变化时,方程 22cos 1x y α+=表示的曲线的形状怎样变化?

变式:若曲线2211x y k k

+=+表示椭圆,则k 的取值

范围是 .

小结:掌握好每类标准方程的形式. 例2设1F ,2F 分别为椭圆C :2222x y a b

+ =1

(0)a b >>的左、右两个焦点.

⑴若椭圆C 上的点A (1,3

2

)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;

⑵设点K 是(1)中所得椭圆上的动点,求线段1F K

的中点的轨迹方程.

变式:双曲线与椭圆

22

1

2736

x y

+=有相同焦点,且经

过点4),求双曲线的方程.

※动手试试

练1.已知ABC

?的两个顶点A,B坐标分别是(5,0)

-,(5,0),且AC,BC所在直线的斜率之积等于m(0)

m≠,试探求顶点C的轨迹.

练2.斜率为2的直线l与双曲线

22

1

32

x y

-=交于

A,B两点,且4

AB=,求直线l的方程.

三、总结提升

※学习小结1.椭圆、双曲线、抛物线的定义及标准方程;2.椭圆、双曲线、抛物线的几何性质;

3.直线与圆锥曲线.

※知识拓展

圆锥曲线具有统一性:

⑴它们都是平面截圆锥得到的截口曲线;

⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线;

⑶它们的方程都是关于x,y的二次方程.

※自我评价你完成本节导学案的情况为().

A. 很好

B. 较好

C. 一般

D. 较差

※当堂检测(时量:5分钟满分:10分)计分:1.曲线

22

1

259

x y

+=与曲线

22

1

259

x y

k k

+=

--

(9)

k<的().

A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等

2.与圆221

x y

+=及圆228120

x y x

+-+=都外切的圆的圆心在().

A.一个椭圆上B.双曲线的一支上C.一条抛物线上D.一个圆上

3.过抛物线28

y x

=的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则AB 等于().

A.10B.8C.6D.4 4.直线1

y kx

=-与双曲线224

x y

-=没有公共点,则k的取值范围.

5.到直线3

y x

=+的距离最短的抛物线24

y x

=上的点的坐标是.

1.就m的不同取值,指出方程

22

(1)(3)(1)(3)

m x m y m m

-+-=--所表示的曲线的形状.

2.抛物线

2

2

x

y=-与过点(0,1)

M-的直线l相交于

A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程.

第二章 圆锥曲线与方程(复习)

第二章 圆锥曲线与方程(复习) 校对人:聂格娇 审核人:徐立朝 1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质; 3.能解决直线与圆锥曲线的一些问题. 7881,找出疑惑之处) 复习2: ① 若椭圆221x my +=,则它的长半轴长为__________; ②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ; ③以椭圆22 12516 x y +=的右焦点为焦点的抛物线方程为 .

二、新课导学 ※ 典型例题 例1 当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 变式:若曲线22 11x y k k +=+表示椭圆,则k 的取值范围是 . 小结:掌握好每类标准方程的形式. 例2设1F ,2F 分别为椭圆C :22 22x y a b + =1(0)a b >>的左、右两个焦点. ⑴若椭圆C 上的点A (1,32 )到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; ⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 变式:双曲线与椭圆22 12736 x y +=有相同焦点,且经过点,求双曲线的方程.

※动手试试 练1.已知ABC ?的两个顶点A,B坐标分别是(5,0) -,(5,0),且AC,BC 所在直线的斜率之积等于m(0) m≠,试探求顶点C的轨迹. 练2.斜率为2的直线l与双曲线 22 1 32 x y -=交于A,B两点,且4 AB=, 求直线l的方程. 三、总结提升 ※学习小结 1.椭圆、双曲线、抛物线的定义及标准方程; 2.椭圆、双曲线、抛物线的几何性质; 3.直线与圆锥曲线. ※知识拓展 圆锥曲线具有统一性: ⑴它们都是平面截圆锥得到的截口曲线; ⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线; ⑶它们的方程都是关于x,y的二次方程.

人教版数学高二选修2-1测试题组 第二章 圆锥曲线B组

(数学选修2-1)第二章 圆锥曲线 [综合训练B 组] 一、选择题 1.如果22 2 =+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 2.以椭圆 116 252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A . 1481622=-y x B .12792 2=-y x C . 1481622=-y x 或127 92 2=-y x D .以上都不对 3.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2 1π = Q PF , 则双曲线的离心率e 等于( ) A .12- B .2 C .12+ D .22+ 4.21,F F 是椭圆17 92 2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( ) A .7 B . 47 C .2 7 D .257 5.以坐标轴为对称轴,以原点为顶点且过圆09622 2 =++-+y x y x 的圆心的抛物线的方程是( ) A .2 3x y =或2 3x y -= B .2 3x y = C .x y 92 -=或2 3x y = D .2 3x y -=或x y 92 = 6.设AB 为过抛物线)0(22 >=p px y 的焦点的弦,则AB 的最小值为( ) A . 2 p B .p C .p 2 D .无法确定 二、填空题

1.椭圆 22189x y k +=+的离心率为1 2 ,则k 的值为______________。 2.双曲线2 2 88kx ky -=的一个焦点为(0,3),则k 的值为______________。 3.若直线2=-y x 与抛物线x y 42 =交于A 、B 两点,则线段AB 的中点坐标是______。 4.对于抛物线2 4y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。 5.若双曲线142 2=-m y x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 6.设AB 是椭圆22 221x y a b +=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点, 则AB OM k k ?=____________。 三、解答题 1.已知定点(A -,F 是椭圆 22 11612 x y +=的右焦点,在椭圆上求一点M , 使2AM MF +取得最小值。 2.k 代表实数,讨论方程2 2 280kx y +-=所表示的曲线 3.双曲线与椭圆 136 272 2=+y x 有相同焦点,且经过点4),求其方程。 4. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。 (数学选修2-1) 第二章 圆锥曲线 [综合训练B 组]

人教版高中数学选修2-1第二章圆锥曲线与方程---椭圆教案

椭圆 【学习目标】 1.能 正熟练使用直接法、待定系数法、定义法求椭圆的方程; 2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题; 3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】 【要点梳理】 要点一、椭圆的定义及其标准方程 椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数(21212F F a PF PF >=+),这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 椭圆的标准方程: 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 要点诠释:求椭圆的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设椭圆方程的具体形式;“定量”是指用定义法或待定系数法确定a,b 的值. 要点二、椭圆的几何性质 焦点在x 轴上 焦点在y 轴上 标准方程 22 221(0)x y a b a b +=>> 22 221(0)x y a b b a +=>> 椭圆 椭圆的定义与标准 方程方程 椭圆的几何性质 直线与椭圆的位置关系 椭圆的综合问题 最大(小)值问题 椭圆的弦问题 椭圆离心率及离心率的范围问题

(,0)F c -,(,0)F c (0,)F c -,(0,)F c 直线与椭圆的位置关系 将直线的方程y kx b =+与椭圆的方程22 221x y a b +=(0)a b >>联立成方程组,消元转化为关于x 或y 的一 元二次方程,其判别式为Δ. ①Δ>0?直线和椭圆相交?直线和椭圆有两个交点(或两个公共点); ②Δ=0?直线和椭圆相切?直线和椭圆有一个切点(或一个公共点); ③Δ<0?直线和椭圆相离?直线和椭圆无公共点. 直线与椭圆的相交弦 设直线y kx b =+交椭圆22 221x y a b +=(0)a b >>于点111222(,),(,),P x y P x y 两点,则 12||PP 12|x x - 同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:

人教版数学选修2-1圆锥曲线知识总结

数学选修2-1圆锥曲线知识归纳 一、复习总结: 名称椭圆双曲线图象x O y x O y 定义平面内到两定点 2 1 ,F F的距离的和为 常数(大于 2 1 F F)的动点的轨迹叫椭 圆即a MF MF2 2 1 = + 当2a﹥2c时,轨迹是椭圆 当2a=2c时,轨迹是一条线段 2 1 F F 当2a﹤2c时,轨迹不存在 平面内到两定点2 1 ,F F的距离的 差的绝对值为常数(小于2 1 F F ) 的动点的轨迹叫双曲线即 a MF MF2 2 1 = - 当2a﹤2c时,轨迹是双曲线 当2a=2c时,轨迹是两条射线 当2a﹥2c时,轨迹不存在 标准方程 焦点在x轴上时:1 2 2 2 2 = + b y a x 焦点在y轴上时:1 2 2 2 2 = + b x a y 注:是根据分母的大小来判断焦点 在哪一坐标轴上 焦点在x轴上时: 1 2 2 2 2 = - b y a x 焦点在y轴上时: 1 2 2 2 2 = - b x a y 常数 c b a, ,的关系 2 2 2b c a+ =2 2 2b a c+ =, 渐近线焦点在x轴上时: = - b y a x 焦点在y轴上时: = - b x a y

抛物线: 图 形 x y O F l x y O F l 方 程 )0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准线 2 p x -= 2p x = 2p y -= 2 p y = 二、知识点: 椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质 1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹 2.椭圆的标准方程:12222=+b y a x ,122 22=+b x a y (0>>b a ) 3.椭圆的性质:由椭圆方程122 22=+b y a x (0>>b a ) (1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中. (2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称 中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距. (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点. 椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦)0,(),0,(21c F c F -共 有六个特殊点 21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2.b a ,分别为椭圆 的长半轴长和短半轴长,椭圆的顶点即为椭圆与对称轴的交点. x y O F l x y O F l

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

2018年人教版数学选修1-1考点归纳:圆锥曲线

圆锥曲线高考热点题型归纳 圆锥曲线的考题一般以两个选择、一个填空、一个解答题,客观题的难度为中等,解答题目相对较难,同时平面向量的介入,增加了本专题高考命题的广度与深度,成为近几年高考命题的一大亮点,备受命题者的青睐,本专题还经常结合函数、方程、不等式、数列、三角等知识进行综合考查。 下面对圆锥曲线在高考中出现的热点题型作简单的探究: 一、圆锥曲线的定义与标准方程: 例1、设分别是双曲线的左、右焦点.若点在双曲线上,且,则( ) A B . C D . 解析.设分别是双曲线的左、右焦点.若点在双曲线上,且,则=,选B 。 点评:圆锥曲线的定义反映了它们的图形特点,是画图、解题的依据和基础,在实际问题中正确的使用定义可以使问题的解决更加灵活。同时平面向量与圆锥曲线的有机结合也是考查的重点和难点,是高考常常考查的重要内容之一。 变式练习:已知是椭圆的两个焦点,P 是椭圆上一个动点, 则的最大值为( ) (A ) 1 (B ) 2 (C ) 3 (D ) 4 解析:本题主要考查了椭圆的定义,根据条件, 12F F ,2 2 19 y x +=P 120PF PF =12PF PF +=12F F ,2 2 19 y x +=P 120PF PF =12PF PF +=2||PO 12||F F =12,F F 2 214 x y +=12PF PF ?124PF PF +=

所以,所以的最大值为4 故答案选 D 二、圆锥曲线的几何性质: 例2、设F 1,F 2分别是双曲线的左、右焦点。若双曲线上存在点 A ,使∠F 1AF 2=90o,且|AF 1|=3|AF 2|,则双曲线离心率为 (B) (C) (D) 解析.设F 1,F 2分别是双曲线的左、右焦点。若双曲线上存在点 A ,使∠F 1AF 2=90o,且|AF 1|=3|AF 2|,设|AF 2|=1,|AF 1|=3,双曲线中 , 离心率,选B 。 点评:本题主要考查圆锥曲线的离心率的求解问题,这类问题的一般解法是将题目提供的曲线的几何关系转化为关于曲线基本量的方程或不等式,通过解方程或不等式求得离心率的值或取值范围,这是求离心率的的值或范围问题的常用解法。 变式练习: 1、若双曲线的右支上到原点和右焦点距离相等有两 个,则双曲线的离心率的取值范围是( ) A 、 B 、 C 、 D 、 解析:由于到原点O 和右焦点F 的距离相等的点在线段OF 的垂直平分线上, 其方程为,依题意,在双曲线的右支上到原点和右 2 121242PF PF PF PF ?+? ?≤= ??? 12PF PF ?22 221x y a b -=22 221x y a b -=122||||2a AF AF =-=2c ==e = ,,a b c ()22 2210,0x y a b a b -=>>e >1e <<2e >12e <<2c x =()22 2210,0x y a b a b -=>>

高考数学圆锥曲线与方程总结题型详解

高考数学圆锥曲线与方程章总结题型详解 圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2 y =上的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点, F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB ,

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

陕西省高中数学人教版选修2-1(理科)第二章圆锥曲线与方程2.2.2椭圆的简单几何性质

陕西省高中数学人教版选修2-1(理科)第二章圆锥曲线与方程 2.2.2 椭圆的简 单几何性质 姓名:________ 班级:________ 成绩:________ 一、选择题 (共8题;共16分) 1. (2分) (2017高二上·南阳月考) 已知为坐标原点,是椭圆的左焦点, 分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为() A . B . C . D . 2. (2分) (2015高二上·天水期末) 已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线C:y2=﹣4x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=() A . 3 B . 6 C . 9 D . 12 3. (2分)椭圆的焦距是() A . B .

C . 2 D . 4. (2分)椭圆与圆(为椭圆半焦距)有四个不同交点,则离心率的取值范围是() A . B . C . D . 5. (2分) (2016高二上·黄陵开学考) 曲线 =1与曲线 =1(k<9)的() A . 长轴长相等 B . 短轴长相等 C . 离心率相等 D . 焦距相等 6. (2分) (2019高二下·雅安期末) 直线被椭圆截得的弦长是() A . B . C . D . 7. (2分)椭圆的两个焦点为,,过作垂直于X轴的直线与椭圆相交,一个交点为P,则=

A . B . C . D . 4 8. (2分)(2019·邢台模拟) 已知椭圆,设过点的直线与椭圆交于不同的, 两点,且为钝角(其中为坐标原点),则直线斜率的取值范围是() A . B . C . D . 二、填空题 (共3题;共4分) 9. (1分) (2017高二上·阜宁月考) 已知焦点在y轴上的椭圆的长轴长为8,则m=________. 10. (1分) (2020高二上·吉林期末) 已知P为椭圆上一点,F1、F2是椭圆的两个焦点, ,则△F1PF2的面积是________. 11. (2分) (2019高二上·诸暨月考) 已知椭圆中心在原点,一个焦点为,且长轴长是短轴长的2倍.则该椭圆的长轴长为________;其标准方程是________. 三、解答题 (共3题;共25分)

高中数学人教A版选修1-1 第二章圆锥曲线与方程 11

学业分层测评 (建议用时:45分钟) [学业达标] 一、选择题 1.抛物线的焦点是? ?? ??-14,0,则其标准方程为( ) A .x 2=-y B .x 2=y C .y 2=x D .y 2=-x 【解析】 易知-p 2=-14,∴p =12,焦点在x 轴上,开口向左, 其方程应为y 2=-x . 【答案】 D 2.(2014·安徽高考)抛物线y =14x 2的准线方程是( ) A .y =-1 B .y =-2 C .x =-1 D .x =-2 【解析】 ∵y =14x 2,∴x 2=4y .∴准线方程为y =-1. 【答案】 A 3.经过点(2,4)的抛物线的标准方程为( ) A .y 2=8x B .x 2=y C .y 2=8x 或x 2=y D .无法确定 【解析】 由题设知抛物线开口向右或开口向上,设其方程为y 2 =2px (p >0)或x 2=2py (p >0),将点(2,4)代入可得p =4或p =12,所以 所求抛物线的标准方程为y 2=8x 或x 2=y ,故选C. 【答案】 C

4.若抛物线y 2=ax 的焦点到准线的距离为4,则此抛物线的焦点坐标为( ) A .(-2,0) B .(2,0) C .(2,0)或(-2,0) D .(4,0) 【解析】 由抛物线的定义得,焦点到准线的距离为???? ??a 2=4,解得a =±8.当a =8时,焦点坐标为(2,0);当a =-8时,焦点坐标为(-2,0).故选C. 【答案】 C 5.若抛物线y 2 =2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( ) A .-2 B .2 C .-4 D .4 【解析】 易知椭圆的右焦点为(2,0),∴p 2=2,即p =4. 【答案】 D 二、填空题 6.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =________. 【解析】 由题意知圆的标准方程为(x -3)2+y 2=16,圆心为(3,0), 半径为4,抛物线的准线为x =-p 2,由题意知3+p 2=4,∴p =2. 【答案】 2 7.动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等,则P 的轨迹方程是________. 【解析】 由题意知,P 的轨迹是以点F (2,0)为焦点,直线x +2

圆锥曲线与方程单元教学设计

圆锥曲线与方程单元教 学设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

课题名称《圆锥曲线与方程》单元教学设计 设计者姓名郭晓泉 设计者单位华亭县第二中学 联系电话 电子邮箱 《圆锥曲线与方程》单元教学设计 一、教学内容分析 1、实际背景分析 该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。 2、数学视角分析 《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。 3、课程标准视角分析 (1)学生学习方式的转变问题。在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。 (2)学生思维能力培养的问题。“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。”这是课标对学生思维培养的要求,在圆锥曲线这部分

高中二年级数学 第二章 圆锥曲线与方程(A)

第二章 圆锥曲线与方程(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12 ,则此椭圆的方程为( ) A.x 212+y 216=1 B.x 216+y 212 =1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2108=1 B.x 29-y 227 =1 C.x 2108-y 236=1 D.x 227-y 29 =1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b 2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( ) A .1 B .a 2 C .b 2 D .c 2 5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 24 =1 C.y 24-x 28=1 D.x 28-y 24 =1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2 =1的离心率e 的取值范围是( ) A .(2,2) B .(2,5) C .(2,5) D .(2,5) 7. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( ) A .直线 B .圆 C .双曲线 D .抛物线 8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FA +FB +FC =0,则|FA |+|FB |+|FC |等于( )

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

平远高中数学第二章圆锥曲线与方程222双曲线的几何性质一2教案新人教A版选修11

2.2.2双曲线的几何性质(一) ☆要点强化☆ 1.双曲线的范围、对称性、顶点和渐近线; 2.双曲线的渐近线的概念。 ☆当堂检测☆ 1. 07宁夏理 已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 . 2. 求双曲线的标准方程: ⑴实轴的长是10,虚轴长是8,焦点在x 轴上; ⑵焦距是10,虚轴长是8,焦点在y 轴上; ⑶离心率e =()5,3M -; ⑷两条渐近线的方程是23y x =±,经过点9,12M ??- ??? 。 (选作题) 已知双曲线的中心在坐标原点,焦点12,F F 在坐标轴上,离心率为 ,且过点 (4,, (1)求双曲线方程; (2)若点(3,)M m 在双曲线上,求证:12MF MF ⊥; (3)求12F MF ?的面积。 ●教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. ●教学重点 双曲线的几何性质 ●教学难点 双曲线的渐近线 ●教学方法

学导式 ●教具准备 幻灯片、三角板 ●教学过程 I.复习回顾: 师:上一节,我们学习了双曲线的标准方程,这一节,我们要根据它来研究双曲线的几何性质.同学们可以按照研究椭圆几何性质的方法和步骤,自己推出双曲线的几何性质,然后与课文对照,所以,我们来回顾一下研究椭圆的几何性质的方法与步骤.(略) II.讲授新课: 1.范围: 双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称,这时,坐标轴是双曲 线的对称轴,原点是双曲线的对称中心,双曲线的对称中心叫双 曲线中心. 3.顶点: 双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;线段B 1B 2叫双曲线的虚轴,它的长等于2b , b 叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=±x a b 叫做双曲线的渐近线; ②从图8—16可以看出,双曲线122 22=-b y a x 的各支向外延伸时,与直线y =±x a b 逐渐接近. ③“渐近”的证明: 先取双曲线在第一象限内的部分进行证明.这一部分的方程可写为 y =x a x a b (22->a ). 设M (x ,y )是它上面的点,N (x ,y )是直线y=x a b 上与M 有相同横坐标的点,则Y =x a b .

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

相关文档
相关文档 最新文档