文档库 最新最全的文档下载
当前位置:文档库 › 压力容器强度校核公式

压力容器强度校核公式

压力容器强度校核公式
压力容器强度校核公式

压力容器强度校核

筒体壁厚校核公式

软件模板

c P

i D []t

σ

φ '

2

C δ筒校核计算公式:'

22[]c i t c

P D C P δσφ=+-筒校核 备注:

c P :校核压力 i D :容器最大内径 []t

σ:设计温度下的许用应力

φ :焊缝系数

若双面焊全焊头对接接头 100%无损检测,φ=1.00 局部无损检测, φ=0.85

若为单面焊对接接头 100%无损检测,φ=0.9 局部无损检测, φ=0.8

'

2

C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚

最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用。

封头壁厚校核公式

1.椭圆形封头软件模板

c P i D []t

σ

φ '2C δ封校核计算公式:'

2

2[]0.5c i t c

P D C P δσφ=

+-封校核

备注:

c P :校核压力 i D :容器最大内径 []t

σ:设计温度下的许用应力

φ :焊缝系数:

若双面焊全焊头对接接头 100%无损检测,φ=1.00 局部无损检测, φ=0.85

若为单面焊对接接头 100%无损检测,φ=0.9 局部无损检测, φ=0.8

'2C :下一周期均匀腐蚀量

δ筒校核:筒体校核壁厚

最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用

2.球形封头软件模板

c P

i D []t

σ

φ '

2

C δ封校核计算公式:'2

4[]c i t c

P D C P δσφ=+-封校核 备注:

c P :校核压力 i D :容器最大内径 []t

σ:设计温度下的许用应力

φ :焊缝系数:

若双面焊全焊头对接接头 100%无损检测,φ=1.00 局部无损检测, φ=0.85

若为单面焊对接接头 100%无损检测,φ=0.9

局部无损检测, φ=0.8

'2C :下一周期均匀腐蚀量

δ筒校核:筒体校核壁厚

最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用

压力容器定期检验规则

一、单选题【本题型共37道题】 1.对于分散的点腐蚀,如果腐蚀深度不超过()不影响定级。 ?A.2mm? ?B.腐蚀裕量? ?C.壁厚(扣除腐蚀裕量)的1/3? ?D.壁厚(扣除腐蚀裕量)的1/2 正确答案:[C] 用户答案:[C] ??得分:2.10 2.安全状况等级为4级的压力容器,应当监控使用,累计监控使用时间不得超过()。 ?A.2年? ?B.4年? ?C.3年? ?D.6年 正确答案:[C] 用户答案:[C] ??得分:2.10 3.以下()检测方法可以判断缺陷的活动性。 ?A.射线检测? ?B.超声波检测? ?C.脉冲涡流检测? ?D.声发射检测 正确答案:[D] 用户答案:[C] ??得分:0.00 4.()以上的设备主螺柱在逐个清洗后,检验其损伤和裂纹情况,必要时进行无损检测。重点检验螺纹及过渡部位有无环向裂纹。 ?A.M30? ?B.M36?

?C.M42? ?D.M48 正确答案:[B] 用户答案:[B] ??得分:2.10 5.下列哪种情况下(),压力容器定期检验周期不需要缩短。 ?A.介质或者环境对压力容器材料的腐蚀情况不明或者腐蚀情况异常的? ?B.具有环境开裂倾向或者产生机械损伤现象,并且已经发现开裂的? ?C.服役10年的超高压水晶釜? ?D.使用单位没有按照规定进行年度检查的 正确答案:[C] 用户答案:[C] ??得分:2.10 6.为检验而搭设的脚手架,对离地面()以上的脚手架设置安全护栏。 ?A.1.5m? ?B.3m? ?C.1.2m? ?D.2m 正确答案:[D] 用户答案:[D] ??得分:2.10 7.小型制冷装置中压力容器的定期检验项目中必须包含()。 ?A.液氨成分检验? ?B.材料分析? ?C.强度校核? ?D.安全附件检查 正确答案:[A] 用户答案:[A] ??得分:2.10 8.不等厚度板对接接头,未按照规定进行削薄(或者堆焊)处理,经过检验未查出新生缺陷(不包括正常的均匀腐蚀)的,定为()。

对拉螺栓力学性能表 强度计算公式.

对拉螺栓力学性能表强度计算公式(穿墙螺丝) 作者:建材租赁来源:穿墙螺丝日期:2011-5-14 14:10:04 人气:1693 导读:对拉螺栓(穿墙螺丝)力学性能表,强度计算公式,力学性能验算。 1.对拉螺栓(穿墙螺丝)力学性能表 螺栓直径(mm螺纹内径(mm净面积(mm2重量(kg/m容许拉力(N M12 M14 M16 9.85 11.55 13.55 76 105 144 0.89 1.21 1.58 12900 17800 24500 M18 M20 M22 14.93 16.93 18.93 174 225 282 2.00 2.46 2.98 29600 38200 47900 2.强度验算 已知2[100×50×3.0 冷弯槽钢 强度满足要求。

(二挠度验算 验算挠度时,所采用的荷载,查表得知仅采用新浇混凝土侧压力的标准荷载(F。 所以: 已知 钢楞容许挠度按表。 挠度满足要求。 二、主钢楞验算 (一强度验算 1.计算简图 2.荷载计算 P为次钢楞支座最大反力(当次钢楞为连续梁端已含反力为、中跨反力为0.5ql,所以,0.6+0.5。 3.强度验算 强度不够,为此应采取下列措施之一: (1 加大钢楞断面,再进行验算; (2 增加穿墙螺栓,在每个主次钢楞交点处均设穿墙螺栓,则主钢楞可不必再验算。 例3:已知混凝土对模板的侧压力为F=30kN/m2,对拉螺栓间距,纵向、横向均为0.9m,选用M16穿墙螺栓,试验算穿墙螺栓强度是否满足要求。

[解] 满足要求。 对拉螺栓(穿墙螺丝)力学性能表 螺栓直径(mm螺纹内径(mm净面积(mm2重量(kg/m容许拉力(N M12 M14 M16 9.85 11.55 13.55 76 105 144 0.89 1.21 1.58 12900 17800 24500 M18 M20 M2214.93 16.93 18.93 174 225 282 2.00 2.46 2.98 29600 38200 47900

压力容器设计校核人员考试试题及答案

压力容器设计校核人员考试试题及答案(C) 单位姓名得分 一、填空题:(每题2,共44分) 1、《固定式压力容器安全技术监察规程》规定板厚δ≥12mm的碳素钢和低合金钢钢板(不包括多层压力容器的层板)用于制造压力容器壳体时,凡符合下列条件之一的,应当逐张进行超声检测:(1)盛装介质毒性程度为极度、高度危害; (2)在湿H2S腐蚀环境中使用;(3)设计压力大于或者等于10MPa;(4)引用标准中要求逐张进行超声检测。钢板超声检测应当按JB/T 4730 《承压设备无损检测》的规定进行,第(1)、第(2)、第(3)款的钢板,合格等级不低于Ⅱ级,第(4)款的钢板,合格等级应当符合相应引用标准的规定。 2、压力容器用灰铸铁,设计压力不大于0.8MPa,设计温度范围为10-200℃。 3、压力容器设计单位基于设计条件,应当综合考虑所有相关因素、失效模式和足够的安全裕量,以保证压力容器具有足够的强度、刚度、稳定性和抗腐蚀性,同时还应当考虑裙座、支腿、吊耳等与压力容器主体的焊接接头的强度要求,确保压力容器在设计寿命内的安全。 4、对第三类压力容器,设计时应当出具包括主要失效模式和风险控制等内容的风险评估报告。 5、简单压力容器主要受压元件的壁厚采用试验方法或者计算方法确定。 6、壳体成形后的实际厚度,奥氏体不锈钢制简单压力容器不小于1 mm,碳素钢制简单压力容器不小于2 mm。

7、D级压力容器设计单位专职设计人员总数一般不得少于5 名,其中审批人员不得少于2 名。 8、设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 9、在采用钢板制造带颈法兰时,圆环的对接接头应采用全焊透结构型式,焊后进行热处理及100% 射线或超声波检测。 10、压力容器锥体设计时,其大端折边锥壳的过渡段转角半径r应不小于封头大端内直径D i的10% 、且不小于该过渡段厚度的 3 倍。 11、确定真空容器的壳体厚度时,设计压力按外压设计,当装有安全控制装置(真空泄放阀)时,设计压力取 1.25倍最大内外压力差或0.1 MPa两者中的较低值;当没有安全控制装置时,取0.1 MPa 。 12、焊接接头系数φ应根据容器受压元件的焊接接头型式和无损检测的长度比例确定,对双面焊局部无损探伤的全焊透对接焊接接头φ= 0.85 。 13、压力容器开孔补强计算中圆孔开孔直径取接管内直径加上两倍厚度附加量。 14、碳素钢和碳锰钢在高于425℃温度下长期使用时,应考虑钢中碳化物相的石墨化倾向;奥氏体钢的使用温度高于525℃时钢中含碳量应不小于0.04% 。 15、低温容器受压元件用钢必须是镇静钢,钢的许用应力应取20 ℃时的许用应力。 16、GB150-1998《钢制压力容器》标准中,内压圆筒厚度计算公式为δ=P c D i/(2[σ]tφ-P c),适用范围为P c≤0.4[σ]tφ;内压球壳厚度计算公式为δ=P c D i/

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 纸箱抗压强度一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 纸箱抗压强度公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数, 凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式

P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 纸箱抗压强度Dx——瓦楞纸板纵向挺度(MN·m)Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 纸箱抗压强度⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。

压力容器强度校核公式

压力容器强度校核 筒体壁厚校核公式 软件模板 计算公式:' 22[]c i t c P D C P δσφ=+-筒校核 备注: c P :校核压力 i D :容器最大内径 []t σ:设计温度下的许用应力 φ :焊缝系数 若双面焊全焊头对接接头 100%无损检测,φ= 局部无损检测, φ= 若为单面焊对接接头 100%无损检测,φ= 局部无损检测, φ= ' 2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用。 封头壁厚校核公式 1.椭圆形封头软件模板 计算公式:' 22[]0.5c i t c P D C P δσφ=+-封校核 备注: c P :校核压力 i D :容器最大内径 [ ]t σ:设计温度下的许

用应力 φ :焊缝系数: 若双面焊全焊头对接接头 100%无损检测,φ= 局部无损检测, φ= 若为单面焊对接接头 100%无损检测,φ= 局部无损检测, φ= ' 2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用 2.球形封头软件模板 计算公式:' 24[]c i t c P D C P δσφ=+-封校核 备注: c P :校核压力 i D :容器最大内径 [ ]t σ:设计温度下的许用应力 φ :焊缝系数: 若双面焊全焊头对接接头 100%无损检测,φ= 局部无损检测, φ= 若为单面焊对接接头 100%无损检测,φ= 局部无损检测, φ=

'2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用

最新压力容器的强度计算

压力容器的强度计算

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。(5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel)

考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立 进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许 多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。

第6章螺纹联接讨论重点内容受力分析、强度计算。难点受翻转力矩

第6章 螺纹联接 讨论 重点内容:受力分析、强度计算 。 难点:受翻转力矩的螺栓组联接。 附加内容:螺纹的分类和参数 1.螺纹的分类 2. 螺纹参数 (1) 螺纹大径d (2)螺纹小径d 1 (3)螺纹中径d 2 (4)螺距p (5)线数n (6)导程S (7)螺纹升角ψ (8)牙型角α 6.1 螺纹联接的主要类型、材料和精度 6.1.1螺纹联接的主要类型 松联接 根据装配时是否拧紧分 图6.1 紧联接 螺栓联接 螺钉联接 按紧固件不同分 双头螺柱联接 紧定螺钉联接 受拉螺栓联接 按螺栓受力状况分 受剪螺栓联接 6.1.2螺纹紧固件的性能等级和材料 性能等级:十个等级 B σ=点前数字 ×100 ; S σ=10×点前数字×点后数字。 材料:按性能等级来选。 例如:螺栓的精度等级6.8级 6.2 螺纹联接的拧紧与防松 ???外螺纹内螺纹? ??左旋螺纹 右旋螺纹 ?? ?多线螺纹单线螺纹?? ? ??锯齿形螺纹梯形螺纹三角螺纹?? ?传动螺纹 联接螺纹?? ?圆锥螺纹圆柱螺纹

6.2.1螺纹联接的拧紧 拧紧的目的: 拧紧力矩: 21T T T += 431T T T += T 1螺纹力矩: ()V t d F d F T ρψ+?=? =tan 2 22'21 T 2螺母支承面摩擦力矩:r F T ?=' 2μ 2 213 3 131d D d D r --?= 将6410~M M 的相关参数(2d ,ψ ,1D ,0d ) 代入且取 15.0arctan =V ρ得:d F d F k T T T t ' '212.0≈=+= 标准扳手的长度 L=15d d F Fd FL T '2.015===∴ (图 6.2……) F F 75' = 要求拧紧的螺栓联接应严格控制其拧紧力矩,且不宜用小于1612~M M 的螺栓。 测力矩扳手或定力矩扳手 控制拧紧力矩的方法: 用液压拉力或加热使螺栓伸长到所需的变形量 6.2.2 螺纹联接的防松 为何要防松? 自锁条件:ψ

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3 =[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

螺纹强度校核公式

计算公式计算值注释1.5设计给出517.5设计给出235260设计给出38设计给出4.23设计给出50设计给出11.8203309693h = 0.541p 2.28843 3227.60672.8899376194 345计算结果合格剪切强度计算公式计算值备注235260设计给出35.5设计给出41.78设计给出11.8203309693设计给出1.5设计给出4.23设计给出B = 0.75p 3.1725 517.5设计给出34556.280613618 207安全系数n材料屈服强度(MPA)轴向力F(n)螺距D2(mm)螺纹工作长度L(mm)连接螺纹齿Z螺纹工作高度h(mm)挤压面积a(mm2)挤压应力(MPA)的计算允许将挤压小直径D1(mm)用于外螺纹时使用的挤压直径(MPA)轴向力F(n),使用大直径D(mm)连接的螺纹数Z安全系数s间距P(mm)螺纹底宽b(mm)屈服强度(MPA)螺钉的允许拉伸应力(MPA),计算剪切应力(MPA)表示螺母,如果合格,则计算螺母(MPA)允许剪应力(MPA)的剪应力(MPA);否则,不合格。弯曲强度计算项目计算公式计算值的计算结果备注28.58 28.52 24.22 26.82 0.85 71.8724621016 B = 0.75p 2.38125 138112 3.175 H = 0.541p 1.717675 9.26 1.5517.5345 178.2251152336 151.0361193477计算结果自锁性能检查计算螺母大直径D(mm )当使

用大直径D(mm)螺丝外螺纹时,小直径D1(mm)外螺纹螺距直径D2(mm)弯曲臂L(mm)单圈外螺纹截面弯曲模数w(mm)螺纹底宽b (mm)轴向力F(n)螺距P(mm)螺纹工作高度h(mm)连接螺纹数Z安全系数s屈服强度(MPA)允许的拉应力(MPA)对于螺钉,请计算以下值的弯曲应力(MPA)螺母,计算弯曲应力(MPA),允许弯曲应力(MPA),如果螺钉和螺母合格,则为不合格。备注:设计给出s = NP 30齿廓角150.15,螺丝对的当量摩擦系数为-0.19744950019,螺旋上升角为1.5617735831,当量摩擦角为-0.1949419593计算结果不合格的自锁性能检查计算项目计算公式计算值备注2.59807621141.5669872981 1.3333333333节距P(mm)导程s(mm)节距直径D2(mm)螺钉对滑动摩擦系数f 0.13-0.17轴向力F(n)外螺纹小直径D1(mm)节距P (mm)原始三角形高度h(mm)用于外螺纹DC(mm)普通螺纹螺栓断裂部分的安全系数s 屈服强度(MPA)允许拉应力(MPA)= 33 = 60梯形螺纹:矩形螺纹:锯齿螺纹:普通螺纹:NP = atan,如果<,则为合格,否则为不合格。计算得出的拉应力为0.5187993114,计算结果合格。如果<,则为合格,否则为不合格

压力容器设计校核人员考试试题及答案教程文件

压力容器设计校核人员考试试题及答案

压力容器设计校核人员考试试题及答案(C) 单位姓名得分 一、填空题:(每题2,共44分) 1、《固定式压力容器安全技术监察规程》规定板厚δ≥12mm的碳素钢和低合金钢钢板(不包括多层压力容器的层板)用于制造压力容器壳体时,凡符合下列条件之一的,应当逐张进行超声检测:(1)盛装介质毒性程度为极度、高度危害;(2)在湿H2S腐蚀环境中使用;(3)设计压力大于或者等于10MPa; (4)引用标准中要求逐张进行超声检测。钢板超声检测应当按JB/T 4730 《承压设备无损检测》的规定进行,第(1)、第(2)、第(3)款的钢板,合格等级不低于Ⅱ级,第(4)款的钢板,合格等级应当符合相应引用标准的规定。 2、压力容器用灰铸铁,设计压力不大于0.8MPa,设计温度范围为10-200℃。 3、压力容器设计单位基于设计条件,应当综合考虑所有相关因素、失效模式和足够的安全裕量,以保证压力容器具有足够的强度、刚度、稳定性和抗腐蚀性,同时还应当考虑裙座、支腿、吊耳等与压力容器主体的焊接接头的强度要求,确保压力容器在设计寿命内的安全。 4、对第三类压力容器,设计时应当出具包括主要失效模式和风险控制等内容的风险评估报告。 5、简单压力容器主要受压元件的壁厚采用试验方法或者计算方法确定。

6、壳体成形后的实际厚度,奥氏体不锈钢制简单压力容器不小于 1 mm,碳素钢制简单压力容器不小于 2 mm。 7、D级压力容器设计单位专职设计人员总数一般不得少于 5 名,其中审批人员不得少于 2 名。 8、设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 9、在采用钢板制造带颈法兰时,圆环的对接接头应采用全焊透结构型式,焊后进行热处理及 100% 射线或超声波检测。 10、压力容器锥体设计时,其大端折边锥壳的过渡段转角半径r应不小于封头大端内直径D i的 10% 、且不小于该过渡段厚度的 3 倍。 11、确定真空容器的壳体厚度时,设计压力按外压设计,当装有安全控制装置(真空泄放阀)时,设计压力取 1.25倍最大内外压力差或 0.1 MPa两者中的较低值;当没有安全控制装置时,取 0.1 MPa 。 12、焊接接头系数φ应根据容器受压元件的焊接接头型式和无损检测的长度比例确定,对双面焊局部无损探伤的全焊透对接焊接接头φ= 0.85 。13、压力容器开孔补强计算中圆孔开孔直径取接管内直径加上两倍厚度附加量。 14、碳素钢和碳锰钢在高于425℃温度下长期使用时,应考虑钢中碳化物相的石墨化倾向;奥氏体钢的使用温度高于525℃时钢中含碳量应不小于 0.04% 。 15、低温容器受压元件用钢必须是镇静钢,钢的许用应力应取 20 ℃时的许用应力。

压力容器的强度计算

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150 - 98钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器一分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准 则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。

3、设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W :在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置 时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure )。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa的内压容器,设计压力取为0.1Mpa ; ②当容器上装有超压泄放装置时,应按超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B (标准的附 录),超压泄放装置。) 计算压力P C是GB150-1998新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温 度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应 力计算时设计到的材料物理性能参数。 ?设计温度不得低于元件金属在工作状态可能达到的最高温度; ?当设计温度在0C以下时,不得高于元件金属可能达到的最低温度; ?当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998对钢板、锻件、紧固件均规定了材料的许用应力。 表3钢制压力容器中使用的钢材安全系数 帝训戒讲计盘雇下 的划帶点设计■盧FS4沖万小时祈闿的 iitftiUfS 下坨W H小时U4 + * 1的蒔空權展tr: 169 表2无缝钢管制作筒体时容器的公称直径(mm)

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

关于螺纹联接的螺纹牙强度校核之根据-ver1.1

关于螺纹联接的螺纹牙强度校核之根据 一、引用教材 (1) 二、适用范围 (1) 三、校核 (2) 1. 螺纹副抗挤压计算 (3) 2. 抗剪切强度校核 (4) 3. 抗弯曲强度校核 (4) 4. 自锁性能校核 (7) 5. 螺杆强度校核 (7)

一、引用教材 1.《机械设计》第四版,高等教育出版社,邱宣怀主编,1997年7月第4版,1997年7 月第1次印刷,印数0001—17094,定价23.60元,该书是戊子庚上学时的教材。摘自P120。 2.《机械设计手册》第四版,第3卷,成大先主编,化学工业出版社,2005年1月北京 第25次印刷。摘自12-3~12-9。 二、适用范围 螺纹联接可以使用普通螺纹、梯形、矩形、锯齿形等四种,且多用普通螺纹。 下图1给出了螺旋副的可能螺纹种类、特点和应用。

图1 螺旋副的螺纹种类、特点和应用 三、校核 该文件仅讨论五个方面的校核:抗挤压、抗剪切、抗弯曲、自锁性、螺杆强度。 根据实践,由于螺母的材质软,螺纹副的破坏多发生在螺母;但当螺母和螺杆材料 相同时,螺杆首先破坏,此时应校核螺杆。该文件中的各物理量及其含义和公式均可查

阅文件(双击打开) 螺纹联接的参数解 释 ; 该五项校核已编成excel 计算表格以提高效率,使用时仅仅需要填写绿色表格,其 余表格计算机自行计算得出结果,见文件(双击打开)螺纹联接计算表格 。 1. 螺纹副抗挤压计算 把螺纹牙展直后相当于一根悬臂梁,见下图2、图3,抗挤压是指公、母螺纹牙之间的挤压应力不应超过许用挤压应力,否则便会产生挤压破坏。设轴向力为F ,相旋合螺纹圈数为z ,则验算计算式为: p p []F = A σσ≤ 且 2F F A d hz π= 若取p [][]σσ=,则有2[]F d hz σπ≤ 式中 ● p σ:挤压应力,单位MPa ; ● p []σ:许用挤压应力,单位MPa ; ● F :轴向力,单位N ; ● 2d :外螺纹中径,单位mm ; ● h :螺纹工作高度,单位mm ,p 为螺距,单位mm ,h 与p 的关系为:

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

压力容器强度计算(20210201112022)

压力容器强度计算 第一节设计参数的确定 1我国压力容器标准与适用范围 我国现执行GB150 - 98钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则, 应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器一分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的 ASME标准思路相似。 2、容器直径(diameter of vessel 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际 最高工作压力(the maximum allowable working pressure )。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温 度确定。(详细内容,参考GB150-1998,附录B (标准的附录),超压泄放装置。)

螺栓强度计算

第三章 螺纹联接(含螺旋传动) 3-1 基础知识 一、螺纹的主要参数 现以圆柱普通螺纹的外螺纹为例说明螺纹的主要几何参数,见图3-1,主要有: 1)大径d ——螺纹的最大直径,即与螺纹牙顶重合的假想圆柱面的直径,在标准中定为公称直径。 2)小径1d ——螺纹的最小直径,即与螺纹牙底相重合的假想圆柱面的直径,在强度计算中常作为螺杆危险截面的计算直径。 3)中径2d ——通过螺纹轴向界面牙型上的沟槽和突起宽度相等处的假想圆柱面的直径,近似等于螺纹的平均直径,2d ≈ 11 ()2 d d +。中径是确定螺纹几何参数和配合性质的直径。 4)线数n ——螺纹的螺旋线数目。常用的联接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹。为了便于制造,一般用线数n ≤4。 5)螺距P ——螺纹相邻两个牙型上对应点间的轴向距离。 6)导程S ——螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。单线螺纹S =P ,多线螺纹S =nP 。 7)螺纹升角λ——螺旋线的切线与垂直于螺纹轴线的平面间的夹角。在螺纹的不同直径处,螺纹升角各不相同。通常按螺纹中径2d 处计算,即 22 arctan arctan S nP d d λππ== (3-1) 8)牙型角α——螺纹轴向截面,螺纹牙型两侧边的夹角。螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角β=α/2。 9)螺纹接触高度h ——外螺纹旋合后的接触面的径向高度。 二、螺纹联接的类型 螺纹联接的主要类型有: 图3-1

1、螺栓联接 常见的普通螺栓联接如图3-2a所示。这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。图3-2b是铰制孔用螺栓联接。这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。 图3-2 2、双头螺柱联接 如图3-3a所示,这种联接适用于结构上不能采用螺栓联接的场合,例如被联接件之一太厚不宜制成通孔,且需要经常拆装时,往往采用双头螺柱联接。 图3-3 3、螺钉联接 这种联接的特点是螺栓(或螺钉)直接拧入被联接件的螺纹孔中,不用螺母,在结构上

螺纹副抗挤压计算

1. 螺纹副抗挤压计算 把螺纹牙展直后相当于一根悬臂梁,见下图2、图3,抗挤压是指公、母螺纹牙之间的挤压应力不应超过许用挤压应力,否则便会产生挤压破坏。设轴向力为F ,相旋合螺纹圈数为z ,则验算计算式为: p p []F = A σσ≤ 且2F F A d hz π= 若取p [][]σσ=,则有 2[]F d hz σπ≤ 式中 ● p σ:挤压应力,单位MPa ; ● p []σ:许用挤压应力,单位MPa ; ● F :轴向力,单位N ; ● 2d :外螺纹中径,单位mm ; ● h ,h 与p 的关系为: ● z z 不宜大于10);

2. 抗剪切强度校核 对螺杆,应满足 1[]F d bz ττπ=≤ ; 对螺母,应满足[]F Dbz ττπ=≤ 式中 ● F :轴向力,单位N ; ● 1d :计算公扣时使用螺纹小径,单位mm ; ● D :计算母扣时使用螺纹大径,单位mm ; ● b ● z z 不宜大于10); ● ][τ:许用剪应力,单位MPa ,对于材质为钢,一般可以取][6.0][στ=,][σ为 材料的许用拉应力,S []S σσ=,单位MPa ,其中S σ为屈服应力,单位MPa , S 为安全系数,一般取3~5。 3. 抗弯曲强度校核 对螺杆,应满足213[]b Fh σπd b z ≤; 对螺母,应满足23[]b Fh σπDb z ≤。 其推导过程如下: 一般来讲,螺母材料强度低于螺杆,所以螺纹牙抗弯和抗剪强度校核以螺母为对象,即校核母扣;但当螺母和螺杆材料相同时,则螺杆的强度要低于螺母,所以此时

应校核螺杆强度,即校核公扣。 若将螺母、螺杆的一圈螺纹沿螺纹大径处展开,即可视为一悬壁梁,危险截面为A-A,如下图2、图3所示。 图2 螺母的一圈螺纹展开 若将螺杆的一圈螺纹沿螺纹小径处展开,即可视为一悬壁梁,如图3所示。 图3 螺杆的一圈螺纹展开 以校核螺杆为例,每圈螺纹承受的平均作用力F/z作用在中径d2的圆周上,则螺纹牙根部危险剖面A-A的变曲强度条件为:

ASME 压力容器强度计算 PVELITE Table of Contents

Table of Contents Cover Sheet (2) Title Page (3) Warnings and Errors : (4) Input Echo : (5) XY Coordinate Calculations : (11) Internal Pressure Calculations : (12) External Pressure Calculations : (18) Element and Detail Weights : (23) Nozzle Flange MAWP : (26) Conical Section : (27) Center of Gravity Calculation : (29) Nozzle Calcs. : Noz N1 Fr20 (30) Nozzle Calcs. : Noz N1 Fr40 (32) Nozzle Calcs. : Noz N1 Fr50 (34) Nozzle Schedule : (41) Nozzle Summary : (42) MDMT Summary : (43) Vessel Design Summary : (44) Problems/Failures Summary : (47)

Cover Page 2 DESIGN CALCULATION In Accordance with ASME Section VIII Division 1 ASME Code Version : 2010 Edition, 2011a Addenda Analysis Performed by : ZISHAN ENGINEERS (PVT.) LTD. Job File : C:\DOCUMENTS AND SETTINGS\ADMINISTRATOR\桌面\UNT Date of Analysis : Oct 8,2014 PV Elite 2012, January 2012

相关文档