文档库 最新最全的文档下载
当前位置:文档库 › 斜拉桥索力测试及应用

斜拉桥索力测试及应用

斜拉桥索力测试及应用
斜拉桥索力测试及应用

现代物业?新建设 2012年第11卷第5期

1 引言

斜拉索的索力是斜拉桥设计的一个重要参数,在施工和维修中要准确控制索力。迄今为止,测定索力普遍采用下述四种方法:

1.1 压力表测定

当前,拉索均使用液压千斤顶张拉,无一例外。由于千斤顶张拉油缸中的液压和张拉力有直接关系,所以只要测定张拉油缸的液压,就可求得索力。

由液压换算索力的办法由于其简单易行,因而是在施工过程中控制索力最实用的一种方法。

1.2 压力传感器测定

斜拉索张拉时,千斤顶的张拉力通过连接杆传到拉索锚具,如果在连接杆上套一个穿心式的压力传感器,张拉时处在千斤顶张拉活塞和连接杆螺母之间的传感器,在受压后就输出电讯号,于是就可在配套的二次仪表上读出千斤顶的张拉力。压力传感器的售价相当高,特别是大吨位的传感器就更贵,自身质量也大。因此,这种方法虽然测定的精度高,却只能在特定场合下使用。

1.3 频率法

索的张拉和频率之间存在一定关系。

对于柔性索:

式中:w —— 单位长度索重;

L —— 索长;

f

n

—— 第n阶自振频率。

对于两端铰接的刚性索:

式中:EI —— 索的弯曲刚度。

实际上,工程结构中的拉索,并不处在绝对静止的状态,而是时刻发生着随机振动。只是这种振动不那么明显,而且各阶频率混在一起,要用精密的拾振器才能发现,通过频谱分析,根据功率图谱上的峰值,才能最后判定拉索的各阶频率。频率既得,即可据此求算索力。现有的仪器及分析手段,测定频率的精度可达到0.005Hz。

通常拉索的端点并未作铰接处理,在靠近端点处还常安装减振圈,而拉索自身又或多或少具有一定的弯曲刚度。因此,拉索的计算长度L将稍短于拉索的实际长度

L

,需要适当给予修正。具体应视拉索和锚具的构造及减

振器安装的位置而定。如直接将索长L

代入公式,所得索力必然偏大。

现代建设 Modern Construction

斜拉桥的索力测试及应用

王力强1 刘经伟2

(1.嘉兴学院,浙江 嘉兴 314001;2.云南省交通规划设计研究院,云南 昆明 650021)摘 要:斜拉索的索力大小直接决定着斜拉桥的工作状态。采用准确的方法进行合理的索力测试是保证斜拉桥顺利施工和安全运营的必要手段。本文针对目前斜拉桥索力测试中常用的方法及其原理进行了阐述和比较,并结合工程实践重点介绍振动频率法在斜拉索的索力测试中的应用,并将测试结果与设计进行对比,评价桥梁的健康状况并提出进一步的维修和保养意见。

关键词:斜拉桥;索力测试;振动频率法;维修保养

中图分类号:U448.27 文献标识码:A 文章编号:1671-8089(2012)05-0008-04

Cable Force Measurement and Application of Cable-stayed Bridge

WANG Li-Qiang1 LIU Jing-wei2,

(1. JIAXING UNIVERSITY, 314001 ;2.YUNAN DESIGN INSTITUTE Yunnan,Kunming 650021)

Abstract: The cable force directly determines the working state of cable-stayed bridge. The accurate method for rational cable force test is to ensure the smooth construction of cable-stayed bridge and the safe operation of the necessary means. This article in view of the present cable force of cable-stayed bridge tests commonly used in the method and its principle are described and compared, and combined with the engineering practice, introduces the vibration frequency method of cable force measurement in the application, and the test results are compared with the design, evaluation of the health state of the bridge, and put forward the further repair and maintenance views.

Keywords: Cable-stayed bridge; Cable force measurement; Vibration frequency method; Repair and maintenance

– 8 –

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥得概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索与索塔三种构件组成。它就是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉与主塔受压为主得桥梁。斜拉索作为主梁与索塔得联系构件,将主梁荷载通过拉索得拉力传递到索塔上,同时还可以通过拉索得张拉对主梁施加体外预应力,拉索与主梁得结点可以视为主梁跨度内得若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁得受力性能,显著提高了桥梁得跨越能力。根据主梁所用建筑材料得不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥得主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义得混凝土斜拉桥,从此,混凝土斜拉桥进入了人们得视野。 混凝土斜拉桥得主梁与索塔一般由混凝土材料构成,为了提高主梁与索塔得适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔与主梁以受压为主,可以充分利用钢丝或钢绞线优异得受拉能力与混凝土良好得受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁得抗裂能力。从设计方面瞧,既要考虑结构总体布置、结构体系选择得合理性,又要考虑釆用何种方法寻求成桥索力得最优解,还要考虑施工得便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理得施工流程,设法寻求合理得施工初拉力,还要做好施工过程中施工参数得动态控制与调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何与材料非线性以及施工方法等因素对设计与施工得影响。 二、斜拉桥索力优化方法 斜拉桥就是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节得特点,我们可通过对拉索索力得调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理得成桥状态,国内外许多学者都做了大量得研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态得索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束得索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束得索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥得最合理得成桥状态本来也没有一个统一得标准,所以很难说哪一种方法一定优于另外得方法。下面将各种方法得原理介绍如下: ①刚性支承连续梁法 这种方法就是使用最早得方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力得竖向分力

斜拉桥索力测试方法及原理综述

斜拉桥索力测试方法及原理综述 王玉田 (青岛理工大学土木工程学院青岛266033) 摘要斜拉索的索力大小直接决定着斜拉桥的工作状态,采用准确的方法进行合理的索力测试是保证斜拉桥顺利施工和安全运营的必要手段。本文针对目前斜拉桥索力测试中常用的方法及其原理进 行了阐述和比较,并指出了各种方法的特点和适用场合。 关键词斜拉桥索力测试综述 Summary of Methods and Theories to Cable Force Measurement of Cable—Stayed Bridges Wang Yu-tian (School of Civil Engineering, Qingdao Technological University, Qingdao, 266033) Abstract Cable force decides the working state of the cable-stayed bridge directly. Measuring the cable force of the cable-stayed bridge through some exact method is the guarantee to construction and operation. This paper summarises the methods and their theories usually uesed in cable force of cable-stayed bridge measuring. Furthermore, Features and their applying places are pointed out. Keywords cable—stayed bridges cable force measurement summary 斜拉索是斜拉桥的一个重要组成部分,斜拉索的工作状态是斜拉桥是否处于正常状态的主要决定因素,所以,能否对斜拉索索力进行精确的测量,在很大程度上决定着斜拉桥施工的成败和正常的运营。斜拉桥索力测试的方法很多,经过近年来的实践,许多方法已经被淘汰(如“扭力扳手测试法”,误差较大),目前常用的有以下几种: 1. 压力表测定法 目前,斜拉索均使用液压千斤顶张拉。该方法的原理就是根据千斤顶张拉油缸中的液压推算千斤顶的张拉力,并认为千斤顶的张拉力就等于拉索索力。所以,只要通过精密压力表或液压传感器测定油缸的液压,就可求得索力。通常使用0.3~0.5级的精密压力表,并应事先对液压系统进行标定,测得索力的精度可达到1%~2%。 压力表测定法简单易行,比较直观、可靠,是施工中控制索力最适用的方法。但该法所用仪器较笨重,移动不便,且经常有油不回零的情况,影响测试精度。并且不适合于已张拉好的斜拉索,如运营中的索力测试。 2. 压力传感器测定法 张拉时,在张拉连杆上粘贴应变片或利用穿心式压力传感器,也可在锚头和锚座之间安装测

斜拉桥荷载试验方案

××大桥 成桥荷载试验方案 ×××××××××××××× 2012年6月18日

第1章概况 (1) 1.1 桥梁概况 (2) 1.2 试验目的 (3) 1.3 试验依据 (3) 1.4 项目实施内容 (3) 第2章结构初始状态检查 (4) 2.1检查目的 (4) 2.2 检查主要内容 (4) 2.2.1 桥梁有关资料的搜集 (4) 2.2.2 主桥跨结构外观质量检查 (4) 2.2.3 桥面标高测量 (5) 2.2.4恒载作用下斜拉索索力的测定 (5) 第3章静力荷载试验方案 (6) 3.1 测试截面的确定 (7) 3.2 测点布置 (7) 3.2.1 应变测点 (7) 3.2.2 主梁、主塔变位测点 (8) 3.2.3 索力测试 (9) 3.3 试验荷载 (9) 3.4 试验工况及加载位置确定 (10) 3.4.1 试验工况 (10) 3.4.2 试验荷载布置 (10) 3.5 加载效率 (13) 3.6 加载分级 (13) 3.7测试方法 (14) 3.7.1应变测试方法 (14) 3.7.2位移测试方法 (14)

3.7.3索力测试方法 (14) 3.8加载程序及试验规定 (14) 3.8.1加载程序 (14) 3.8.2试验规则 (15) 第4章动力荷载试验实施方案 (15) 4.1 动力荷载试验原则 (16) 4.1.1 试验目的 (16) 4.1.2 测试项目与测试方法 (16) 4.2 动力试验测试内容 (16) 4.2.1脉动试验 (16) 4.2.2无障碍行车试验 (16) 4.3动力试验的测点布置 (17) 4.3.1 脉动试验 (17) 4.3.2. 无障碍行车试验 (17) 第5章试验分工协作、实施细则与计划安排 (17) 5.1 分工协作 (18) 5.1.1试验现场准备工作 (18) 5.1.2 试验测试准备工作 (18) 5.1.3 试验加载测试车辆的准备工作 (18) 5.2 试验进度计划及人员安排 (19) 5.2.1 试验进度计划安排 (19) 5.2.2 人员安排 (19)

斜拉桥索力测试方法及其发展趋势

斜拉桥索力测试方法及其发展趋势 黄尚廉唐德东 重庆大学光电工程学院光电技术及系统教育部重点实验室,重庆 400044 摘要:索是斜拉桥的主要受力构件之一,它的受力状态是桥梁安全与正常使用的重要指标。监测桥索的索力对于及时反映桥索的工作状态和调整桥索的结构内力是极为重要的,从而有效防止桥索的偏载和维护桥梁的运行安全。本文综述了常用索力测试方法,并分析了每种方法的基本原理和优缺点,指出它的发展趋势和需要研究和解决的问题。 关键字:桥索;索力;频率;磁弹效应 Method of measure cable stress and trend of development Huang Shang-lian Tang De-dong The Key Lab for Optoelectronic Technique and System, Ministry of Education, Dept. of Optoelectronic Engineer, Chongqing University, Chongqing 400044 Abstract: Steel cable is one of components which supports stress of cable stay bridge, which tense state is important index of bridge safety and nature use. In order to effectively avoid deflection load of cable and maintain bridge safe of using, monitoring cable tense stress state parameters is very important to feedback cable working states in time and adjust cables tense stress. This article present method of measure cable stress in common use, analyze its ultimate principle and its merits and defects, and point its development trend and problem of solving. Key words: bridge cable; cable tense; frequency; magnetoelastic phenomenon 1引言 随着人类生产生活水平的提高,对大跨度桥梁的建设需求越来越迫切,加上建桥技术和高强度材料的日益发展,斜拉桥逐步有能力胜任对大跨度发展的要求。如国内外已建的斜拉桥中,它们的跨度分别为:法国诺曼底桥856m,日本多多罗大桥890m,上海杨浦大桥602m,南京长江第二大桥628m,这些已向人们展示了斜拉桥强大的跨越能力。 斜拉桥为高次超静定结构,它依靠斜拉索为主梁提供弹性约束,桥跨结构的重量和桥上活载绝大部分或全部通过斜拉索传递到塔柱上,因此,索是斜拉桥的主要受力构件之一,它的受力状态直接影响斜拉桥本身的健康状态。由于在斜拉桥施工或成桥后的日常使用过程中,存在各种误差和偶然因素的联合作用,将使索的结构内力和线形偏离正常状态,因此及时监测斜拉桥索的受力状态是非常重要的,已成为斜拉桥健康监测的重要内容之一。 索力测定目前国内外一般采用4种方法[1]:(1)压力表测定;(2)压力传感器测定;(3)频率测定法;(4) 磁弹效应法。因此,如何选用合 高等学校博士学科点专向科研基金资助:20030611023 理有效的测试方法对斜拉桥施工监控和成桥后的健康监测具有重要意义。 2常用测试方法的原理及其优缺点 2.1 压力表法 用千斤顶张拉桥索时(如图1),通过精密压力表或液压传感器测定油缸的液压,就可求得索力[1][2]。这种方法简单易行,是施工中控制索力最实用的方法,其精度可达1%~2%。它可以用在斜拉桥施工过程中对索力的调整,但由于压力表本身的一些特性,有指针易偏位,高压时指针抖动激烈,读数人为误差大,负荷示值需转换等缺点,不可用于成桥后的动态索力监测。 图1 千斤顶张拉斜拉索示意图 2.2 压力传感器法 https://www.wendangku.net/doc/c617620210.html,

矮塔斜拉桥的设计与施工

文章编号:1671-2579(2004)01-0014-03 矮塔斜拉桥的设计与施工 ———日本新东明高速公路上的京川桥 金增洪 编译 (中交公路规划设计院,北京市 100010) 摘 要:日本新东明高速公路上的京川桥,位于观光和娱乐区,而且处在地震高发区。因此,桥梁既要考虑高抗震特性又要考虑美学特性。该矮塔斜拉桥的悬臂跨度达到96.5m ,已属日本国内此类桥梁中最大者。此悬臂跨径几乎等效于现有PC 斜拉桥的跨径。桥墩由高耸的钢管混凝土结构形成的组合桥墩,高56.5m 。 关键词:预应力混凝土;矮塔斜拉桥;斜拉索;预制;组合桥墩 Ξ 1 引言 矮塔斜拉桥是由法国马秀佛特(Mathivat )教授于1988年建议的,称谓超配量体外索PC 桥(Extradosed prestressing concrete bridge )。这种桥梁是从体外预应力桥发展而来,从应用跨径长度观点来看,矮塔斜拉桥的性态处于PC 箱梁桥和PC 斜拉桥之间。 京川桥跨越日本二级河流,该河为流经日本滨松市和滨北市行政管辖区之间的一条界河。建桥地点是观光和娱乐区域,还是地震高发区。因此,既要考虑桥梁的高抗震特性,也要考虑美学设计。至于矮塔斜拉桥悬臂跨径长度,是日本国内同类桥梁中的最大跨径。这种悬臂跨径相当于现有PC 斜拉桥的跨径(译者注:指日本国内现有斜拉桥的跨径)。京川桥的总体布置见图1所示 。 图1 京川桥总体布置图(单位:cm ) 2 一般概念 京川桥是由三肢桥墩支承的双幅箱梁组成的,而 桥面的长度为268m 。两主跨各长133m ,由44根间距为6m 的斜拉索支承(每一幅桥面在塔的每一侧各 有2×11根=22根斜拉索)。塔的高度为20m ,在顶 上安装索鞍。桥墩总高度为56.5m 。各墩截面:在基底部位尺寸为9.0m ×7.0m ;在与上部结构联结部位的尺寸为5.0m ×7.0m 。桥墩和桥塔都选用钢管混凝土新结构。钢管混凝土组合结构,不仅展示其特有的高延展性和高抗震性能效应,采用螺旋高强钢索箍 14 中  外 公 路 第24卷 第1期 2004年2月 Ξ 收稿日期:2003-03-11

索力测试原理

2.斜拉索索力 主要提供各根斜拉索的初始张拉力,并对张拉过程中各根钢绞线的均匀性及整根斜拉索索力值进行监控。根据张力弦振动公式: ρ δL F 21= (3) 式中:F ——弦的自振频率; L ——弦的长度; δ——弦的应力; ρ——弦的材料密度。 可知,明确了弦的材料和长度之后,测量弦的振动频率就可以确定弦的拉力。 当张紧的斜拉索横向抗弯刚度忽略不计时,其动平衡微分方程为: 假定斜拉索两端是铰接,解微分方程可得索力 式中:f n —斜拉索第n 阶自振频率(Hz ); L —斜拉索计算长度(m ); n —振动频率阶数。 如考虑斜拉索的抗弯刚度,则索力: 02222=??-???x y T t y g W g n f W L T n 2224=22 22224L EI n g n f W L T n π-=(4) (5) (6)

式中:EI —斜拉索抗弯刚度。 上式中第二项222L EI n π表现为斜拉索弯曲刚度对索力的修 正。 对于施州大桥的斜拉索是两端固定匀质受力的钢索,因此也可以似作为弦,将式(5)中的g WL /42提出来作为一个比例系数K ,则斜拉索的拉力T 与其基频F 可简化为如下关系: 2KF T = (7) 式中:K ——比例系数; F ——索的基频; T ——钢索索力(kN )。 其中基频 n f F n /= (8) 其中: f n ——斜拉索第n 阶自振频率(Hz ); n ——振频率的阶数。 因此,通过测量钢索的主振动频率,就可以求出钢索的拉力。其中(7)式中比例系数K 为 g W L K /42= (9) 其中: W ——索的单位长质量(kg/m ); L ——索两嵌固点之间的长度(m )。 通过对斜拉索单位长质量和各个索的计算索长的确定可以计算出各个斜拉索的比例系数见表3.2.1(表中BS1-BS14 、ZS1-ZS14分

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥的概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索和索塔三种构件组成。它是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉和主塔受压为主的桥梁。斜拉索作为主梁和索塔的联系构件,将主梁荷载通过拉索的拉力传递到索塔上,同时还可以通过拉索的张拉对主梁施加体外预应力,拉索与主梁的结点可以视为主梁跨度内的若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁的受力性能,显著提高了桥梁的跨越能力。根据主梁所用建筑材料的不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥的主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义的混凝土斜拉桥,从此,混凝土斜拉桥进入了人们的视野。 混凝土斜拉桥的主梁和索塔一般由混凝土材料构成,为了提高主梁和索塔的适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔和主梁以受压为主,可以充分利用钢丝或钢绞线优异的受拉能力和混凝土良好的受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁的抗裂能力。从设计方面看,既要考虑结构总体布置、结构体系选择的合理性,又要考虑釆用何种方法寻求成桥索力的最优解,还要考虑施工的便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理的施工流程,设法寻求合理的施工初拉力,还要做好施工过程中施工参数的动态控制和调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何和材料非线性以及施工方法等因素对设计和施工的影响。 二、斜拉桥索力优化方法 斜拉桥是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节的特点,我们可通过对拉索索力的调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理的成桥状态,国内外许多学者都做了大量的研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态的索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束的索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束的索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥的最合理的成桥状态本来也没有一个统一的标准,所以很难说哪一种方法一定优于另外的方法。下面将各种方法的原理介绍如下: ①刚性支承连续梁法 这种方法是使用最早的方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力的竖向分力与

矮塔斜拉桥概述

矮塔斜拉桥概述 1.1矮塔斜拉桥的定义和特点 矮塔斜拉桥为近20年来出现的一种新桥型,瑞士、日本、韩国等一些国家这几年修建了多座这种桥梁。由于它优越的结构性能,良好的经济指标,越来越显示出巨大的发展潜力。我国在这种桥型上起步稍晚,2001年建成的漳州战备大桥,是国内第一座真正意义上的矮塔斜拉桥。 对于这种桥型的称谓尚未统一。日本的屋代南桥与屋代北桥为两座轻载铁路桥,初看起来象斜拉桥,因而日本的桥梁界对其笼统地称为斜拉桥。小田原港桥是一座公路桥,日本桥梁界没有把它称为斜拉桥,而是沿用了法国工程师1988年提出的名称—Extra-dosed Prestressing Concrete Bridge,即超配量体外索PC桥,简称EPC桥。实际上屋代南、北桥与小田原港桥其结构体系非常相似,同样可以称为EPC桥。在美国,这种桥有称为“Extra-dosed Prestressing Concrete Bridge”的,也有称为“Extra-dosed Cable-stayed Bridge”的。国内的称谓也一直存在争论,1995年我国著名桥梁专家严国敏先生首次把它定义为“部分斜拉桥”。其含义是:在结构性能上,斜拉索仅仅分担部分荷载,还有相当部分的荷载由梁的受弯、受剪来承受。“部分斜拉”即源于斜拉索的斜拉程度。后来国内一些文章根据这种桥型塔高较矮的特点,又把这种桥型定义为矮塔斜拉桥。 矮塔斜拉桥的受力是以梁为主,索为辅,所以梁体高度介于梁式桥与斜拉桥之间,大约是同跨径梁式桥的1/2倍或斜拉桥的2倍。截面一般采用变截面形式,特殊情况采用等截面。 矮塔斜拉桥的桥塔一般采用实心截面。塔高为主跨的1/8~1/12,由于桥塔矮,刚度大,一般不考虑失稳问题。梁上无索区较之一般斜拉桥要长,而且除了主孔中部和边孔端部的无索区段之外,还有较明显的塔旁无索区段。边孔与主孔的跨度比值较之斜拉桥要大。一般斜拉桥边孔与主孔的跨度比值一般小于0.5,多数在0.4左右,而矮塔斜拉桥与一般连续梁(刚构)桥相似,为避免端支点出现负反力,边孔与主孔的跨度之比一般会大于0.5,较合理的比值在0.6左右。 为了充分利用部分的高度,拉索多成扇形布置,拉索尽量向塔上部集中通过。塔顶索鞍的作用如同体外预应力索的转向点,斜拉索在转向点一般被固定而无滑动。在建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,即外钢管埋设于混凝土塔内,内套管套在外钢管中,斜拉索穿过内钢管,在两侧出口处设置抗滑锚头顶紧内管口,阻止内管滑移。斜拉索在梁上宜布置在边跨中及1/3中跨处。此外,矮塔斜拉桥由于塔较矮,塔顶水平位移不会很大,因此没有斜拉桥的特征构

江肇西江特大桥矮塔斜拉桥主塔施工方案(索鞍式)

2010年11期(总第71期 )作者简介:罗庆湘(1981-),男,重庆人,工程师,主要从事高速公路建设与管理。 1工程概况 江肇西江特大桥主桥共四个主塔,塔号为29#~32#塔,主塔为独柱式刚劲混凝土结构,截面为八边形,并在顺桥上刻有0.1m ,宽0.7m 的景观饰条。主塔高度为30.5m (含索顶以上4m 装饰段),主塔截面等宽段顺桥向宽5m ,横桥向宽2.5m ;塔底5m 范围,顺桥向厚为5m ,横桥向由2.5m 渐变到3.1m 。 图1主塔一般构造图 本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ,拉索通过预埋钢导管穿过塔柱,在主梁上张拉。斜拉索采用Φs 15.2mm 环氧涂层钢绞线斜拉索,标准强度为1860MPa ,斜拉索规格分别为43-Φs 15.2mm 和55-Φs 15.2mm ,采用钢绞线拉索群锚体系。斜拉索为单索面双排索,布置在主梁的中央分隔代处,全桥共128 根斜拉索。钢绞线外层采用HDPE 护套。减振装置及锚具采用斜拉索专用材料。 2施工方案简介 主塔分六节施工,其中最大施工节段为5.4m ;主塔内设劲性骨架,用于钢筋和索鞍定位;模板施工采用无支架翻模施工,模板采用定型钢模板,均设有阴阳缝,由模板厂加工,现场拼装。考虑到主塔外观,该主塔模板不采用对拉杆在塔身中间穿过来固定模板,而采用桁架式模板翻模施工,塔吊辅助翻模。 3主塔施工流程 图2主塔施工流程 江肇西江特大桥矮塔斜拉桥主塔施工方案 罗庆湘,闫化堂 (广东省长大公路工程有限公司,广东 广州 510000) 摘 要:江肇西江特大桥主塔为独柱式刚劲混凝土结构,截面为八边形;主塔高度为30.5m ,主塔截面等宽段顺 桥向宽5m ,横桥向宽2.5m ;本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ;拉索通过预埋钢导管穿过塔柱;采用C60混凝土。本文介绍了江肇西江特大桥主塔施工方案,重点介绍了劲性骨架设计及施工、索鞍定位以及混凝土防裂等。 关键词:矮塔斜拉;主塔;施工方案中图分类号:U44 文献标识码: B 265

矮塔斜拉桥研究的新进展

矮塔斜拉桥研究的新进展 陈从春1,周海智2,肖汝诚1 (1.同济大学桥梁工程系,上海200092; 2.同济大学建筑设计研究院,上海200092) 摘 要:简要叙述矮塔斜拉桥在国内外的应用及研究状况,讨论该种桥型的中文和英文关键词,提出索梁恒载比、索梁活载比和名义刚度的概念,并对这种桥型进行界定,试图揭示这类桥梁的力学本质,最后对该种桥型的发展作了展望。 关键词:矮塔斜拉桥;应力幅;索梁恒载比;索梁活载比;名义刚度中图分类号:U 448.27 文献标识码:A 文章编号:1671-7767(2006)01-0070-04 收稿日期:2005-11-22 作者简介:陈从春(1970-),男,博士生,1992年毕业于湖南大学公路与城市道路专业,工学学士,1999毕业于武汉理工大学岩土工程专业,工学硕士。 0 引 言 随着桥梁技术的发展,桥梁应用的两大趋势是十分明显的,即传统桥梁的轻型化和组合化。组合体系桥梁极大地丰富了桥梁造型。组合体系桥中比较有代表性的是拱梁组合体系、斜拉-连续梁(刚构)体系等,其中斜拉-连续梁(刚构)体系是一种比较新颖的桥型,近10年来应用较多,受到广泛的关注。普遍认为,由Chr istian M enn 设计的建于1980年的的甘特(Ganter)大桥,是斜拉-连续(刚构)体系桥的先驱,其混凝土箱形梁由预应力混凝土斜拉板/悬挂0在非常矮的塔上,这种板可以看成是一种刚性的斜拉索,该桥的出现形成了斜拉桥的一个分支)))板拉桥,由于其与环境的完美结合,成为一道风景。甘特大桥的出现为其后的矮塔斜拉桥的出现奠定了基础。甘特大桥之后,又有墨西哥的帕帕加约(Papagayo )大桥、美国得克萨斯州的巴顿河(Bar -to n Creek)大桥及葡萄牙的索科雷多斯(Socorr-i dos)大桥等相继建成[1]。 1988年法国工程师Jacg ues M athivat 在设计位于法国西南的阿勒特#达雷(Arr ?t Darr ü)高架桥的比较方案时,首次明确提出了矮塔斜拉桥的方案。该方案是跨度为100m 的预应力混凝土等截面箱梁,塔、梁固结,斜拉索穿过矮塔上的鞍座与主梁锚固。 与此同时,1990年德国的Antonie Naaman 提出了一种组合体外预应力索桥,体外索的一部分伸出主梁之上,锚固在墩顶处主梁的刚柱上[2] 。这一种体系与法国Jacgues M athivat 的方案十分类似。 目前这种桥在各国得到广泛应用,日本已建成此类桥梁20多座,中国大陆地区已建和在建的已达 10多座,中国台湾地区有2座,瑞士、菲律宾、老挝、帕劳群岛、克罗地亚各1座,美国珍珠港在建1座;其中,中国在建的惠青黄河公路桥、江珠高速荷麻溪大桥分别达到220m 和230m (预应力混凝土梁),芜湖长江大桥达到340m(钢桁梁),分别为同类桥梁最大跨径。 尽管这种桥梁发展很快,但仍然有很多问题没有很好地解决,本文将就研究的最新情况作一论述。1 矮塔斜拉桥的称谓 对于这种桥型的称呼尚未统一,法国工程师Jacgues M athivat 在提出他的方案时,命名为/ex -tra -dosed PC bridg e 0,直译为/超剂量预应力混凝土桥梁0;日本工程界一直采用这种名称( ¨é?ー ?橋);在美国,这种桥有称为/extra -dosed PC bridg e 0的,也有称为/extrado sed cable -stay ed bridg e 0的;在我国台湾,最初将这种结构称为/外置预应力桥0,后来根据其外形类似恐龙高耸的脊背,而称为/脊背桥0、/拱背桥0。国内的称呼一直存在争论,学者严国敏将其称为/部分斜拉桥0,理由是这种桥型受力特性介于斜拉桥和连续梁之间,桥的刚度主要由梁体提供,斜拉索主要起体外预应力的作用;王伯惠、顾安邦、徐君兰等学者认为应该称为/矮塔斜拉桥0,而/部分斜拉桥0不够明确,没有道出其外在的形状与内在的结构特征,早期的稀索结构也有/部分0的性质。 目前,这种体系与最初相比又丰富了很多,主梁不仅采用预应力混凝土结构,还可采用钢结构(如中国的芜湖长江大桥),以及钢与混凝土的组合结构(如波形钢腹板梁及结合梁),不仅可以采用刚性梁,

斜拉桥检测

斜拉桥检测 斜拉桥应定期进行动力特性、重要部位的内力、拉索索力、拉索探伤和静载的检测,时间间隔不得超过7年。检测报告应结合历年的各项检测结果综合分析。应通过结构监测,掌握桥梁在使用过程中结构构件的变化和力学性能及空间位移情况。 每天宜巡检1~2次。 1 塔 斜拉桥索塔部分的养护,视其结构类型可按钢筋混凝土桥、预应力混凝土桥及钢桥的相关规定进行。 按期检查索塔的变位、倾斜和混凝土表面的破损情况,必要时可进行混凝土强度检测。发现主塔混凝土产生裂纹,应在其表层涂聚合物防水材料予以预防。塔体裂缝宽度在0.2mm 以上的,应采取高压灌注环氧树脂封闭。裂缝宽度在0.2mm以下的,可采用环氧或聚合物防水材料进行刮涂封闭。 2 拉索 斜拉索的保护层,通车后第1、2年内每季度检查一次,以后每半年检查一次。每天应目测检查一次(可借助简单工具),对异常情况作好记录,进一步检查,并做出技术状况的评定。 每3年对拉索护层及钢丝锈蚀情况进行检测,可采用无损探伤或剥开已损坏的护层检查,并测量锈蚀钢丝的实际有效面积。 拉索索力每年进行一次测量,大桥竣工最后一次调索的索力应与设计索力进行比较,了解拉索索力变化状况及松弛现象。 必须经常观察拉索的振动情况,并作好风速、风向、雨量、拉索振动状况的记录,并应检查拉索减振措施的有效性,对失效的减振装置应重新安装或更换。 拉索梁端的护筒及护套不得有锈蚀、开裂、剥落、连接螺栓松动、崩断、护套与拉索的接合部护层的损伤和露丝。塔端锚头、钢主梁端锚头必须每半年进行一次保养,对在钢梁外侧并有钢盖板盖的锚头应每3年进行一次保养。 锚具的锚杯及锚杯外梯形螺纹和螺母不得锈蚀和变形,锚板不得断裂;墩头应无异常。 锚固结构的支承垫块不得锈蚀、位移、变形;梁端锚箱不得锈蚀、变形;锚箱与主钢梁腹

矮塔斜拉桥

浅谈矮塔斜拉桥和多塔斜拉桥 矮塔斜拉桥是介于连续梁与斜拉桥之间的一种斜拉组合体系桥,具有塔矮、梁刚、索集中的特点。 矮塔斜拉桥主梁刚度较大,是主要的承重构件,斜拉索对梁起加劲、调整受力的作用,斜拉索的恒载索力占总索力(恒载索力十活载索力)的比重较斜拉桥大,斜拉索的应力变幅较小,疲劳问题不突出,因而斜拉索的容许应力可取0.6pk f ,从而降低工程造价。矮塔斜拉桥与连续梁相比具有结构新颖跨越能力大、施工简单、经济等优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。使得矮塔斜拉桥具有广阔的发展空间。 矮塔斜拉桥结构特点: 1、塔高较矮。拉索倾角较小,拉索为主梁提供较大的轴向力,并且拉索尽可能密集地从塔顶鞍座上通过,锚固于主梁。一般塔高可取主跨的1/8-1/12; 2、以梁为主,索为辅,梁体高度约是同跨径梁式桥的1/2或斜拉桥的2倍,梁高与跨度之比较大,一般为1/40-1/20,并且主梁自身承受大部分荷载作用约70%斜拉索只承受30%起到帮扶作用; 3、主梁无索区段较一般斜拉桥要长,有较明显的塔旁无索区段,不设置端锚索; 4、边孔与主孔的跨度比值在0.5-0.6左右,类似连续梁; 5、为了充分利用矮塔的高度,拉索多成扇形布置且布置较集中,通常布置 在边跨、中跨跨中1/3附近。在己建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,拉索应力变幅一般只有斜拉桥的1/3左右,施工过程及合拢后,基本不需要进行拉索索力调整; 6、适用跨径宜选择在100m-200m 之间,如果采用组合梁或复合梁,则跨径可达300m. 7、尤其适用于多塔多跨和塔高受限制的情形,从刚度和疲劳考虑,它更适用于铁路桥或双层桥面,但采用多跨时存在较大的挠度问题。 矮塔斜拉桥的受力特点: 索塔将斜拉索索力按一定比例分配给主梁的水平和垂直方向,当主梁刚度较大时,就可以降低塔高,以节约材料,并给主梁提供较大的水平分力,以解决主梁体内预应力的不足。所以矮塔斜拉桥索塔的作用主要是通过分配斜拉索索力,从而实现对结构性能的改善。索塔对索力的分配作用不仅与自身高度有关,同时还与索力大小有关。拉索、预应力钢筋的用量和索塔塔高是相互影响的,索塔高些,拉索用量可少些,则预应力筋也可以相应少些,反之,亦然。在一定的范围内,通过索力优化调整因塔高降低对结构的负面影响,具有十分重要的意义。同

斜拉桥索力测试方法

斜拉桥索力测试方法 1.引言 索力测试无论是在斜拉桥的建设过程中还是在其日常维护检测中都具有举足轻重的地位。索力是否处在合理的范围内将直接影响结构的整体受力状态和线形的平顺程度,所以对拉索的索力进行定时的测试是斜拉桥、下承式拱桥和悬索桥等带索桥梁日常维护的重要内容。经实践验证,进行索力测试时,不同的测试方法和不同的工程也存在较大的差异,这是由于不同的索力测试方法所需的计算参数不能准确测定,不同工程也因其具有自身特点和各异的环境因素所致。索力测试前必须选定合适的测试方法,考虑到影响测试精度的各种因素,例如影响振动法测试精度的因素有:仪器、计算模式、边界条件、索长、外界环境、斜度以及垂度等。当这些因素在索力测试时如果处理不当则会对测试结果造成不小的误差。所以,对不同的索力测试方法及其影响因素进行分析显得格外重要。 2.索力测试方法 2.1千斤顶压力表测定法 现阶段斜拉桥的施工现场,斜拉索均使用千斤顶张拉,其原理为:千斤顶张拉油缸中的液压和斜拉索的拉力有直接的关系,所以我们可以根据精密压力表或液压传感器测定油缸的液压,然后就可根据液压反推出索力。但此法现阶段还存在以下缺陷: (1)当拉索安装完成后,若还想用此法来测试索力将会变的十分困难和不便,工程量也很大。 (2)千斤顶在张拉过程中对拉索的锚杆螺纹会产生很大的损害。 (3)此法所得到的索力值只能代表张拉端的局部索力,不能代表整跟拉索的索力大小。 (4)在测试之前需要事先标定,如果标定粗糙,误差将会很难控制。 2.2 压力传感器测定法 该方法一般与振动法联合使用,可作为对振动法测定索力结果的一种校核,已安装的传感器还可以在成桥后的运营阶段连续测定索力值,还适用于成桥后运营状态下的索力长期监控。压力传感器测定法的原理是永久安装压力传感器在斜拉索的锚固端或张拉端,传感器的感应锚头的压力与斜拉索的索力成一定的比例关系,所以可通过传感器感应锚头的压力来反算斜拉索的索力,此法测量结果精度高,而且索力在索中的位置明确。

斜拉桥索力测试及应用

现代物业?新建设 2012年第11卷第5期 1 引言 斜拉索的索力是斜拉桥设计的一个重要参数,在施工和维修中要准确控制索力。迄今为止,测定索力普遍采用下述四种方法: 1.1 压力表测定 当前,拉索均使用液压千斤顶张拉,无一例外。由于千斤顶张拉油缸中的液压和张拉力有直接关系,所以只要测定张拉油缸的液压,就可求得索力。 由液压换算索力的办法由于其简单易行,因而是在施工过程中控制索力最实用的一种方法。 1.2 压力传感器测定 斜拉索张拉时,千斤顶的张拉力通过连接杆传到拉索锚具,如果在连接杆上套一个穿心式的压力传感器,张拉时处在千斤顶张拉活塞和连接杆螺母之间的传感器,在受压后就输出电讯号,于是就可在配套的二次仪表上读出千斤顶的张拉力。压力传感器的售价相当高,特别是大吨位的传感器就更贵,自身质量也大。因此,这种方法虽然测定的精度高,却只能在特定场合下使用。 1.3 频率法 索的张拉和频率之间存在一定关系。 对于柔性索: 式中:w —— 单位长度索重; L —— 索长; f n —— 第n阶自振频率。 对于两端铰接的刚性索: 式中:EI —— 索的弯曲刚度。 实际上,工程结构中的拉索,并不处在绝对静止的状态,而是时刻发生着随机振动。只是这种振动不那么明显,而且各阶频率混在一起,要用精密的拾振器才能发现,通过频谱分析,根据功率图谱上的峰值,才能最后判定拉索的各阶频率。频率既得,即可据此求算索力。现有的仪器及分析手段,测定频率的精度可达到0.005Hz。 通常拉索的端点并未作铰接处理,在靠近端点处还常安装减振圈,而拉索自身又或多或少具有一定的弯曲刚度。因此,拉索的计算长度L将稍短于拉索的实际长度 L ,需要适当给予修正。具体应视拉索和锚具的构造及减 振器安装的位置而定。如直接将索长L 代入公式,所得索力必然偏大。 现代建设 Modern Construction 斜拉桥的索力测试及应用 王力强1 刘经伟2 (1.嘉兴学院,浙江 嘉兴 314001;2.云南省交通规划设计研究院,云南 昆明 650021)摘 要:斜拉索的索力大小直接决定着斜拉桥的工作状态。采用准确的方法进行合理的索力测试是保证斜拉桥顺利施工和安全运营的必要手段。本文针对目前斜拉桥索力测试中常用的方法及其原理进行了阐述和比较,并结合工程实践重点介绍振动频率法在斜拉索的索力测试中的应用,并将测试结果与设计进行对比,评价桥梁的健康状况并提出进一步的维修和保养意见。 关键词:斜拉桥;索力测试;振动频率法;维修保养 中图分类号:U448.27 文献标识码:A 文章编号:1671-8089(2012)05-0008-04 Cable Force Measurement and Application of Cable-stayed Bridge WANG Li-Qiang1 LIU Jing-wei2, (1. JIAXING UNIVERSITY, 314001 ;2.YUNAN DESIGN INSTITUTE Yunnan,Kunming 650021) Abstract: The cable force directly determines the working state of cable-stayed bridge. The accurate method for rational cable force test is to ensure the smooth construction of cable-stayed bridge and the safe operation of the necessary means. This article in view of the present cable force of cable-stayed bridge tests commonly used in the method and its principle are described and compared, and combined with the engineering practice, introduces the vibration frequency method of cable force measurement in the application, and the test results are compared with the design, evaluation of the health state of the bridge, and put forward the further repair and maintenance views. Keywords: Cable-stayed bridge; Cable force measurement; Vibration frequency method; Repair and maintenance – 8 –

斜拉桥施工索力张拉控制及优化

斜拉桥施工索力张拉控制及优化 研究背景:随着经济和技术的发展,以及斜拉桥合理的结构形式,我国修建了大量的斜拉桥。因此该类桥梁的施工控制就显得尤为重要。国内外学者及工程技术人员对斜拉桥的施工控制进行了许多研究,提出了卡尔曼滤波法、最小二乘误差控制法、自适应控制法、无应力状态控制法等许多实用控制方法。这些方法的实质都是基于对施工反馈数据的误差分析,通过计算和施工手段对结构的目标状态和施工的实施状态进行控制调整,达到对施工误差进行控制的目的。施工控制的方法必须与各类斜拉桥设计、施工的特点相结合才能在确保结构安全及施工便捷的前提下切实可靠地实现控制的目标。目前国内大多数斜拉桥的施工控制都是针对常规的混凝土斜拉桥进行的,其相应的控制方法也是针对常规混凝土斜拉桥的施工特点提出来的,本文着重阐述对于常规混凝土斜拉桥的施工控制过程中的索力张拉控制及优化方法。 斜拉索施工过程:斜拉索安装完毕,即进行张拉工作。张拉前对千斤顶、油泵、油表进行编号、配套,张拉设备定期进行标定。斜拉索正常状态按设计指令分2次张拉,第1次张拉按油表读数控制,张拉时4根索严格分级同步对称进行;第2次张拉是在监控利用频率法测完索力后,以斜拉索锚头拔出量进行精确控制。施工监控包括对索力、应力、应变、线形、温度、主塔偏位的监控。施工监控在凌晨气温相对稳定时进行,保证在凌晨5点前完成。索力测试采用应变仪捕捉索自振频率,当测出索力误差超过2时,应对索力进行调整,直到满足要求。索力调整完毕立即对应力、应变、线形、温度、主塔偏位进行测量。可分阶段地进行张拉、调索。在牵索挂篮悬浇时,在控制好挂篮底模标高后,在节段砼灌注过程中,当砼灌注至1/4、2/4、3/4,及砼灌注完后,均需进行调整索力及挂篮底模标高。当主塔施工至与边跨合拢前、中跨合拢前和合拢后、二期恒载安装后均需按设计要求对全桥斜拉索进行统一检测调整,使全桥线型满足设计要求。并在对每节段主梁悬浇进行监控时,对主梁最前端的5~6对拉索的索力进行测定,观察其变化幅度是否在设计范围内。在斜拉索张拉前,应将张拉千斤顶进行精确标定,标定出其校正曲线,确保张拉力的准确,张拉千斤顶将悬挂在用于斜拉索挂设的滑动架上随支架上下滑动,张拉时,千斤顶支撑在张拉架上,当千斤顶将斜拉索按设计要求拉长以后,即将锚头上锚固螺母内拧加以固定,然后放松千斤顶完成一次斜拉索的张拉。 在斜拉索张拉调整过程中,需将主塔两方向及上下游方向四根索同时分步进行。值得注意的是,当次中跨与边跨合拢后,边跨的斜拉索是在已灌注好的主梁上进行安装,但其索力

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键技术研究

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键技术研究

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键 技术研究 中铁六局集团天津铁路建设有限公司 科技研发项目立项报告 申请单位:中铁六局集团天津铁路建设有限公司 项目起止时间:201*年**月至201*年**月 中铁六局集团天津铁路建设有限公司制订 一、立项目的(不少于300字) 天津津保铁路三线矮塔斜拉桥是我国首座三线铁路曲线矮塔斜拉桥,其空间行为明显,受力复杂,主墩结构特殊,施工工艺复杂,技术标准高。且工程位于天津市西青区,跨越外环桥、外环河,主墩承台侵入既有外环河,基坑挖深最大为11m,并紧邻外环桥桥墩,主塔采用搭设支架分阶段浇筑混凝土,施工工艺复杂,技术标准高,施工难度大,施工过程中需要解决如下问题: (1)软土地区临近桥墩深基坑支护研究 本工程所在的天津地区是一个地下水位高、土质差的软弱土地区,并且本桥主基坑位于外环河内。天津地区软土为渤海环境沉积形成,具有触变性、流变性、高压缩性、低强度、低透水性、不均匀性等特性。软土地区开挖基坑的时候容易使支护结构产生过度的位移,从而导致紧临建筑物发生不均匀沉降、地下管道开裂等不良影响和后果。正是由于上述原因本工程在软土中的基坑工程成为重点处理对象,处理措施的优劣很有可能影

响整个工程的成败。 (2)跨既有桥梁支架体系方案研究 本工程桥梁作为全国首座三线铁路矮塔斜拉桥,以最大孔跨84米,净空24米的现浇箱梁横跨天津市外环线公路桥梁,支架搭设工程对保证现浇箱梁施工安全、保证下部外环线公路桥梁的结构和运营安全起到决定性作用。 (3)非对称矮塔铁路斜拉桥塔梁施工控制研究 本工程桥梁为三线曲线铁路非对称矮塔斜拉桥,在我国尚无先例,所以设计和施工可参考的依据较少,因此更加重了不确定因素对工程的影响。当结构在施工过程中出现施工状态偏离理想的设计状态时,分析原因可知,一方面由于设计构件截面尺寸、预应力筋张拉力、材料弹性模量、容重、收缩系数和徐变系数等计算参数往往与施工中实际情况有一定的差距,此外环境温度、临时荷载、施工误差等等也常常影响结构实际变位偏离设计理想状态,另一方面,结构施工立模超高、构件超重和预应力筋张拉力误差等也是导致结构出现偏差的重要因素,如不加以控制调整,就会造成结构偏离设计成桥状态,甚至危及安全。因此大跨度预应力混凝土桥梁的施工控制难度相对较大,对其施工过程进行检测和控制是十分必要的。 二、国内外现状及发展趋势(不少于300字) 1、软土地区临近桥墩深基坑支护研究 基坑工程是基础、地下工程中比较全面和复杂的问题,除了涉及到土力学古典强度理论和稳定理论,还涉及到变形问题和土的支护及相互作用

相关文档