文档库 最新最全的文档下载
当前位置:文档库 › 水文地质参数计算公式(精)

水文地质参数计算公式(精)

水文地质参数计算公式(精)
水文地质参数计算公式(精)

8.1 一般规定

8.1.1 水文地质参数的计算,必须在分析勘察区水文地质条件的基础上,合理地选用公式(选用的公式应注明出处)。

8.1.2 本章所列潜水孔的计算公式,当采用观测孔资料时,其使用范围应限制在抽水孔水位下降漏斗坡度小于1/4处。

8.2 渗透系数

8.2.1 单孔稳定流抽水试验,当利用抽水孔的水位下降资料计算渗透系数时,可采用下列公式:

1 当Q~s(或Δh2)关系曲线呈直线时,

1)承压水完整孔:

(8.2.1-1)

2)承压水非完整孔:

当M>150r,l/M>0.1时:

(8.2.1-2)

或当过滤器位于含水层的顶部或底部时:

(8.2.1-3)

3)潜水完整孔:

(8.2.1-4)

4)潜水非完整孔:

当>150r,l>0.1时:

(8.2.1-5)

或当过滤器位于含水层的顶部或底部时:

(8.2.1-6)式中K——渗透系数(m/d);

Q——出水量(m3/d);

s——水位下降值(m);

M——承压水含水层的厚度(m);

H——自然情况下潜水含水层的厚度(m);

h——潜水含水层在自然情况下和抽水试验时的厚度的平均值(m);

h——潜水含水层在抽水试验时的厚度(m);

l——过滤器的长度(m);

r——抽水孔过滤器的半径(m);

R——影响半径(m)。

2 当Q~s(或Δh2)关系曲线呈曲线时,可采用插值法得出Q~s 代数多项式,即:

s=a1Q+a2Q2+……a n Qn (8.2.1-7)

式中a1、a2……a n——待定系数。

注:a1宜按均差表求得后,可相应地将公式(8.2.1-1)、(8.2.1-2)、(8.2.1-3)中的

Q/s和公式(8.2.1-4)、(8.2.1-5)、(8.2.1-6)中的以1/a1代换,分别进行计算。

3 当s/Q (或Δh2/Q)~Q关系曲线呈直线时,可采用作图截距法求出a1后,按本条第二款代换,并计算。

8.2.2 单孔稳定流抽水试验,当利用观测孔中的水位下降资料计算渗透系数时,若观测孔中的值s(或Δh2)在s(或Δh2)~lgr关系曲线上能连成直线,可采用下列公式:

1 承压水完整孔:

(8.2.2-1)

2 潜水完整孔:

(8.2.2-2)

式中s1、s2——在s~lgr关系曲线的直线段上任意两点的纵坐标值(m);

——在Δh2~lgr关系曲线的直线段上任意两点的纵坐标值(m2);

r1、r2———在s(或Δh2)~lgr关系曲线上纵坐标为s1、s2(或)的两点至抽水孔的距离(m)。

8.2.3 单孔非稳定流抽水试验,在没有补给的条件下,利用抽水孔或观测孔的水位下降资料计算渗透系数时,可采用下列公式:

1 配线法:

1)承压水完整孔:

2)潜水完整孔:

式中W(u)——井函数;

S——承压水含水层的释水系数;

μ——潜水含水层的给水度。

2 直线法:

当<0.01时,可采用公式(8.2.2-1)、(8.2.2-2)或下列公式:1) 承压水完整孔:

(8.2.3-5)

水完整孔:

(8.2.3-6)

式中s1、s2——观测孔或抽水孔在s~lgt关系曲线的直线段上任意两点的纵坐标值(m);

——观测孔或抽水孔在Δh2~lgt关系曲线的直线段上任意两点的纵坐标值(m2);

t1、t2——在s (或Δh2)~lgt关系曲线上纵坐标为s1、s2(或)两点的相应时间(min)。

8.2.4 单孔非稳定流抽水试验,在有越流补给(不考虑弱透水层水的释放)的条件下,利用s~lgt关系曲线上拐点处的斜率计算渗透系数时,可采用下式:

(8.2.4)

式中r——观测孔至抽水孔的距离(m);

B——越流参数;

m i——s~lgt关系曲线上拐点处的斜率。

注:1 拐点处的斜率,应根据抽水孔或观测孔中的稳定最大下降值的1/2确定曲线的拐点位置及拐点处的水位下降值,再通过拐点作切线计算得出。

2 越流参数,应根据,从函数表中查出相应的r/B,然后确定越流参数B。

8.2.5 稳定流抽水试验或非稳定流抽水试验,当利用水位恢复资料计算渗透系数时,可采用下列公式:

1 停止抽水前,若动水位已稳定,可采用公式(8.2.4)计算,式中的m i值应采用恢复水

位的曲线上拐点的斜率。

2 停止抽水前,若动水位没有稳定,仍呈直线下降时,可采用下列公式:

1)承压水完整孔:

(8.2.5-1)2)潜水完整孔:

(8.2.5-2)式中t k——抽水开始到停止的时间(min);

t T——抽水停止时算起的恢复时间(min);

s——水位恢复时的剩余下降值(m);

h——水位恢复时的潜水含水层厚度(m)。

注:1 当利用观测孔资料时,应符合当<0.01时的要求。

2 如恢复水位曲线直线段的延长线不通过原点时,应分析其原因,必要时应进行修正。

8.2.6 利用同位素示踪测井资料计算渗透系数时,可采用下列公式:

(8.2.6-1)

(8.2.6-2)

式中V f——测点的渗透速度(m/d);

I——测试孔附近的地下水水力坡度;

r——测试孔滤水管内半径(m);

r0——探头半径(m);

t——示踪剂浓度从N0变化到N t所需的时间(d);

N0——同位素在孔中的初始计数率;

N t——同位素t时的计数率;

N b——放射性本底计数率;

a——流场畸变校正系数。

8.3 给水度和释水系数

8.3.1 潜水含水层的给水度和承压水含水层的释水系数,可利用单孔非稳定流抽水试验观测孔的水位下降资料计算确定,或采用野外试验和室内试验的方法确定。

8.4 影响半径

8.4.1 利用稳定流抽水试验观测孔中的水位下降资料计算影响半径时,可采用下列公式:1 承压水完整孔:

(8.4.1-1)

2 潜水完整孔:

(8.4.1-2)

8.4.2 缺少观测孔的水位下降资料时,影响半径可采用经验数据,也可选用有关公式计算。

8.5 降水入渗系数

8.5.1 勘察区或附近设有地下水均衡场时,降水入渗系数可直接采用均衡场的降水入渗系数的观测计算值或采用比拟法确定。

8.5.2 在平原地区,利用降水过程前后的地下水水位观测资料计算潜水含水层的一次降水入渗系数时,可采用下式近似计算:

α=μ(h max-h±Δh·t)/X (8.5.2)

式中α——一次降水入渗系数;

h max——降水后观测孔中的最大水柱高度(m);

h——降水前观测孔中的水柱高度(m);

Δh——临近降水前,地下水水位的天然平均降(升)速(m/d);

t——从h变到h max的时间(d);

X——t日内降水总量(m)。

水文地质参数计算公式

8.1 一般规定 8.1.1 水文地质参数的计算,必须在分析勘察区水文地质条件的基础上,合理地选用公式(选用的公式应注明出处)。 8.1.2 本章所列潜水孔的计算公式,当采用观测孔资料时,其使用范围应限制在抽水孔水位下降漏斗坡度小于1/4处。 8.2 渗透系数 8.2.1 单孔稳定流抽水试验,当利用抽水孔的水位下降资料计算渗透系数时,可采用下列公式: 1 当Q~s(或Δh2)关系曲线呈直线时, 1)承压水完整孔: (8.2.1-1) 2)承压水非完整孔: 当M>150r,l/M>0.1时: (8.2.1-2) 或当过滤器位于含水层的顶部或底部时: (8.2.1-3)

3)潜水完整孔: (8.2.1-4) 4)潜水非完整孔: 当>150r,l>0.1时: (8.2.1-5) 或当过滤器位于含水层的顶部或底部时: (8.2.1-6)式中K——渗透系数(m/d); Q——出水量(m3/d); s——水位下降值(m); M——承压水含水层的厚度(m); H——自然情况下潜水含水层的厚度(m); h——潜水含水层在自然情况下和抽水试验时的厚度的平均值(m); h——潜水含水层在抽水试验时的厚度(m); l——过滤器的长度(m); r——抽水孔过滤器的半径(m);

R——影响半径(m)。 2 当Q~s(或Δh2)关系曲线呈曲线时,可采用插值法得出Q~s 代数多项式,即: s=a1Q+a2Q2+……a n Qn (8.2.1-7) 式中a1、a2……a n——待定系数。 注:a1宜按均差表求得后,可相应地将公式(8.2.1-1)、(8.2.1-2)、(8.2.1-3)中的 Q/s和公式(8.2.1-4)、(8.2.1-5)、(8.2.1-6)中的以1/a1代换,分别进行计算。 3 当s/Q (或Δh2/Q)~Q关系曲线呈直线时,可采用作图截距法求出a1后,按本条第二款代换,并计算。 8.2.2 单孔稳定流抽水试验,当利用观测孔中的水位下降资料计算渗透系数时,若观测孔中的值s(或Δh2)在s(或Δh2)~lgr关系曲线上能连成直线,可采用下列公式: 1 承压水完整孔: (8.2.2-1) 2 潜水完整孔: (8.2.2-2) 式中s1、s2——在s~lgr关系曲线的直线段上任意两点的纵坐标值(m); ——在Δh2~lgr关系曲线的直线段上任意两点的纵坐标值(m2); r1、r2———在s(或Δh2)~lgr关系曲线上纵坐标为s1、s2(或)的两点至抽水孔的距离(m)。

中海达七参数计算

HI-RTK道路版简易操作流程 一、架设基准站: 选择视野开阔且地势较高的地方架设基站,基站附近不应有高楼或成片密林(卫星接收不好)、大面积水塘(多路径效应严重)、高压输电线或变压器(有干扰)。基站一般架设在未知点上,后面的说明均征对这种情况。(此种情况下基站无需对中整平) 二、新建项目: 打开HI-RTK道路软件,进入“项目”,选定Unnamed,“套用”,输入项目名称后确认,(选择‘套用’而不是‘新建’的目的是为了使建立的项目里面不含任何人为参数) 然后:项目信息---坐标系统---(将坐标系统名称改为“中国-‘项目名’ ”)并确认每个选项的原始参数是否正确,需要改动的地方请改正---保存---退出---(弹出“是否更新点库”)是。 三、设置基准站: 1. GPS---接收机信息---连接GPS---连接---搜索(接收机)---(搜索到仪器后)停止---(选择仪器号)连接。 2.接收机信息---基准站设置---平滑---(采集10秒后)确认---(查看并确认另外两个选项内容是否正确)---确定---断开蓝牙连接。 四、移动站设置: 1. GPS---接收机信息---连接GPS---连接---搜索(接收机)---(搜索到仪器后)停止---(选择仪器号)连接。 2.接收机信息---移动站设置---(确认每个选项内容)---确定。 五、采集已知点并求取参数: 1.采集已知点:已知点采集的时候建议采用“平滑采集”,按钮为工具栏倒数第二个按钮。(最少采集两个已知点,计算七参数时至少需要三个已知点)

2.输入已知点理论坐标到点库:碎步测量---控制点库---添加(工具栏第一个按钮)---(输入点名,X,Y,H后确认)。 3.参数计算: (主界面)参数---坐标系统---参数计算---(选择计算类型,采集两个已知点时用‘四参数+高程拟合’)---添加---(‘源点’为外业采集的点,‘目标’为输入的已知点,按钮为调用点库信息。)---保存---(继续添加)---解算---运用---(坐标系统)保存---(是否覆盖)确定---确定---(更新点库)是---退出。(请确认点对配对正确) 4.进行碎步采集或者放样。 5.数据导出:从项目或者测量界面进入“记录点库”,点击工具栏最后一个按钮,输入导出文件名、选择导出文件类型后确定,然后手簿连接电脑拷贝出对应数据即可。 这个是最全面,最权威的说明书了。

转坐标系详细步骤

转坐标系详细步骤

————————————————————————————————作者:————————————————————————————————日期: ?

“北京54坐标系”转“西安80坐标系”一、数据说明 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面讲述利用已知的3个以上(本例采用4个点计算)的公共点计算七参数方法转换: 二、利用4个已知公共点计算转换七参数 1、数据准备 (1)将已知54、80坐标系直角坐标拷贝到文本文档,其排列格式如下(图1、图2):不加带号。 图1 54直角坐标 图2 80直角坐标 (2)将已知54、80坐标系直角坐标利用MAPGIS“投影变换”转换为经纬度坐标,且坐标单位为“秒”,这样计算出的参数用来转换为80坐标系时更精确。具体操作步骤如下: 1)启动MAPGIS下“投影变换模块”,点击“投影变换”下“用户文件投影转换”弹出“用户数据点文件投影转换”对话框,如图3; 2)点击“打开文件”,选择已准备的“54直角坐标.txt”文本文档,打开后选择“按指定分隔符”后弹出的对话框点击确定激活“设置分隔符”选项,点击“设置分隔符”,其设置方式为:①“Tal键”、“空格”两个选

图3 图4

项前画勾,②修改“属性名称所在行”,点击其下拉箭头选择“无”字下面一组数据,③将“属性名称”修改为x、y,④“数据类型”修改为“5双精度”,⑤“小数位”修改为“5”或其他均可,但最好至少为“2”,其设置与最终转换出坐标的小数位数相关。设置完成后点击“确定”。如图4。 3)设置“用户投影参数”及“结果投影参数”其设置方式如图5、图6。注意:投影中心点经度一定要输入,如经度为105°,其格式为1050000,“用户投影参数”为“投影平面直角坐标”;“结果投影参数”为“地理坐标系”,且“比例尺分母”为“1”,“坐标单位”为“妙”,“投影中心点经度”要输入。二者“椭球参数”均为“54坐标系”。 图5用户投影参数 图6 结果投影参数 4)以上参数设置完成后点击“投影变换”——“写到文件”,弹出对话框如图7 ,先新建“54经纬度坐标.txt”,选中后点击保存,选择替换。 5)按照上述1)—4)步骤将已知的80直角坐标转换为以“秒”为单位的经纬度坐标。注意:在“用户投影参数”及“结果投影参数”设置时,二者“椭球参数”均为“80坐标系”,其他参数同上。 转换后的54和80坐标系以“秒”为单位的经纬度坐标如下:图7、图8。坐标中小数点前为“6位数”的是“经度”,小数点前为“5位数”的是“纬度”。 图7 54经纬度坐标图8 80经纬度坐标

水文地质复习

一、填空 1、岩石的空隙特征包括空隙的(形状)、(大小)、(多少)、(分布规律)、(连通性)。 2、根据成因可将空隙分为三大类(松散岩石中的空隙)、(坚硬岩石中的裂隙)、(可溶岩石中的溶穴)。 3、岩石中水的存在形式(气态水)、(结合水)、(重力水)、(固态水)、(矿物质中的水)、(毛细水)。 4、达西公式(V=K〔(h2-h1)÷L〕)。 5、地下水化学成分形成的作用主要有(溶滤作用)、( 浓缩作用)、( 脱硫酸作用)、( 脱碳酸作用)、( 混合作用)、( 阴离子交替吸附作用)、( 人类活动作用)。 6、水文地质调查的要点( )、( )、( )、( )、( )。 7.水文地质学是研究(合理利用地下水或防治其危害的)的科学。它研究(在与岩石圈)、(水圈)、(大气圈)、(生物圈)及人类活动相互作用下地下水(水量)和(水质)的时空变化规律。 8.据地下水埋藏条件,可将地下水分为( 包气带水)、( 潜水)和( 承压水)。 9.渗透系数可以定量说明岩石的(渗透性能)。渗透系数愈大,岩石的透水能力(越强)。 10.流网是由一系列( )与( )组成的网格。

11.地下水系统包括( 地下水含水系统)和( 地下水流动水系统)。 12.( 流线)是渗流场中某一瞬时的一条线,线上各水质点在此瞬时的流向均与此线相切。(迹线)是渗流场中某一时间段内某一水质点的运动轨迹。 1.岩石空隙是地下水储存场所和运动通道。空隙的、、连通情况和分布规 律,对地下水的分布和运动具有重要影响。 2.岩石空隙可分为松散岩石中的、坚硬岩石中的和可溶岩石中 的。 3.孔隙度的大小主要取决于及情况,另外颗粒形状及胶结充填情况 也影响孔隙度。 4.岩石裂隙按成因分为:、和。 5.地下水按岩层的空隙类型可分为:、和。 6.通常以、、、持水度和透水性来表征与水分的储 容和运移有关的岩石性质。 7.体积含水量与重量含水量之间的关系? 8.给水度、持水度、孔隙度之间的关系? 9.简述影响孔隙度大小的主要因素,并说明如何影响? 10.简述粘土孔隙度较高的原因? 11.结合水、重力水和毛细水有何特点? 12.影响给水度的因素有哪些,如何影响? 13.影响岩石透水性的因素有哪些,如何影响? 14.简述太沙基有效应力原理和过量抽取地下水引起地面沉降的原因? 15.岩石空隙分为哪几类,各有什么特点? 16.简述自然界岩石中空隙发育状况的复杂性? 1.包气带自上而下可分为、和。 2.岩层按其渗透性可分为与。 3.根据地下水的埋藏条件,可将地下水分为、及。 4.地下水的赋存特征对其水量、水质时空分布有决定意义,其中最重要的是 和。 5.按含水介质(空隙)类型,可将地下水分为、及。 6.承压水获得补给时,测压水位,一方面,由于压强增大含水层中水的密 度;另一方面,由于空隙水压力增大,有效应力,含水层骨架发生少量回弹,空隙度。 7.承压水含水层获得补给时,增加的水量通过水的密度及含水介质空隙的 而容纳。 8.承压含水层排泄时,减少的水量表现为含水层中水的密度及含水介质空 隙。

求取水文地质参数的测井方法

求取水文地质参数的测井方法 武 毅1,2 (1.中国地质大学(武汉) 430074  2.中国地质调查局水文地质工程地质技术方法研究所 河北保定 071051;  3.河北保定市自来水总公司,保定 071051 )  摘要 利用测井资料求取水文地质参数是地下水勘查工作中的一个重要内容,也是降低勘探成本,提高勘查成果质量的一个重要措施。本文介绍了利用测井资料求取地层孔隙度、地层含水量、地层水矿化度等技术方法,既包括常规方法,也简单介绍了核磁共振、介电常数新的测井技术与方法。 关键词 测井技术与方法 水文地质参数 地球物理测井是地下水勘查工作中的一个重要内容,通过测井可以获取地下含水层的位置、厚度、准确划分咸淡水以及求取各含水层的含水率、孔隙度、渗透率等重要的水文地质参数。其结果不但对指导成井具有重要意义,也是地下水资源评价的重要参考依据。 1测定地层孔隙度的测井方法  地层孔隙度是评价地下水资源量的一个重要参数。目前,用于求取地层孔隙度的测井方法有以下5种。 1.1 电阻率测井  电阻率测井求取地层孔隙度的基础是阿尔奇公式,对不含泥质的纯地层,当孔隙完全充水时,地层的电阻率o R 与孔隙水电阻率w R 成正比,其比例系数F 称为地层因素。即: w o FR R = (1) 大量岩样测量数据表明,F 与孔隙度Φ有以下实验关系。 m a F Φ= (2) 由(1)、(2)式可以得出: m o R aRw =φ (3) 作者:武毅,男,1963年生,高级工程师,博士生,主要从事水文物探勘查技术研究工作。

该孔隙度代表地层水所占的孔隙度,称之为含水孔隙度。 在应用阿尔奇公式时应注意以下两点: ①公式中m 、a 参数对该公式的应用效果有十分重要的影响,而且他们又是随着地区 甚至解释层段而变化。故应根据本地区地质特征,用实验统计方法得出适合于本区的解释参数值。 ②应用该公式的理想条件应是具有颗粒孔隙的纯地层。对泥质较多的地层和裂缝性地层,直接应用该公式时,得不到令人满意的结果,此时应作相应的泥质校正。 1.2声波测井  1.2.1纯砂岩地层  声波测井测量的沿井壁滑行的纵波,孔隙度与声波传播时差之间存在线性关系,即: ma f t l t t ??+=?ΦΦ)(,或ma f ma t t t t ??????=Φ (4) 式中:t ?:由声波时差曲线上所读出的地层声波时差;ma t ?:岩石骨架的声波时差; f t ?:孔隙中流体的声波时差。 式(4)适用于压实和胶结良好的纯砂岩。但对于疏松的未压实、未胶结地层,由于孔隙直径较大,矿物颗粒间接触不好,故矿物颗粒与孔隙水的交界面对声波传播影响较大,使孔隙度相同的疏松砂层的声波时差要比压实砂岩大,因此需引入压实校正系数ρc 进行校正,即: ρc ma t f t ma t t 1???????=Φ (5) ρc 为压实校正系数其值大于等于1,确定其值的方法有; (1)声波孔隙度与岩芯分析孔隙度对比: 对一个地区的某个层段,找出岩芯分析孔隙度与相应的声波时差的经验关系,然后把取得的经验关系式与上式比较,便求出这个层段的压实系数ρc ; (2)声波孔隙度与密度孔隙度对比: 对于比较纯的砂岩,按f ma b ma D ρρρρ??=Φ式计算出密度孔隙度D Φ,可认为是岩石的有效孔隙度,故可选择饱和液体的纯砂岩,按声波孔隙度计算式求出声波孔隙度s Φ,则压实系数D s c ΦΦ=ρ; (3)非压实泥岩与压实泥岩声波时差的比较:

水文地质学知识点整理

地下水的概念P1:地下水是赋存于地表以下岩石(土)空隙中各种形态的水的总称。既有液态的水液,也有气态的水汽,也包括固态的水冰,还有介于它们之间其他形态的水。 地下水的功能属性P2:地下水的资源属性,地下水是生态因子,地下水是环境(灾害)因子,地下水是一种重要的地质营力,地下水是地球深部的信息载体。 水文地质学的研究方法P4:野外调查,野外试验,室内试验,遥感,地球物理勘察,信息技术的应用。 第一章水循环与地下水赋存 1、了解地球内部圈层构P7 地球圈层构造划分表 地球外部圈层:由五个大致成层分布的自然子系统组成,按照性质可以分成3类。即3个无机子系统———大气圈、水圈、岩石圈。1个类有机子系统———土壤圈。1个有机子系统———生物圈。 2、地球水圈可以划分为地质水圈和水文水圈。P9 3、地球上的水循环P10:地球各个圈层中的水相互联系、相互转化的过程统称为大气水的水循环,又叫做自然界的水循环。按其循环途径的长短、循环速度的快慢以及涉及层圈的范围,可分为地质循环和水文循环两类。 4、岩石(土)介质中水的存在形式P17页

5、赋存介质的水理性质P19-20:指与水的储容和运移有关的赋存介质的性质,主要包括空隙的大小、多少、连通程度及其分布的均匀程度,这些性质的差异,会使其储容、滞留、释放以及透过水的能力不同。表征介质水理性质的指标有容水度,给水度,持水度。 容水度:指介质能够容纳一定水量的性质。 给水性:指饱水介质在重力作用下,能够自由给出一定水量的性质持水性:指重力释水后,介质能够保持一定水量的性能。 二、地下水的基本类型及其特征 1、包气带和饱水带:P21 2、越流P22:把两个含水层透过该弱透水层发生垂直水量交换的现象称为地下水的越流。 按照地下水的埋藏条件,可以把地下水分为潜水、承压水、与上层滞水。其中潜水和承压水在一定条件下是可以相互转化的。P23 3、潜水的概念P26:潜水是地表一下埋藏在饱水带中第一个稳定隔水层智商的具有自由水面的重力水。

已知七参数输入方法

已知七参数输入方法 我们在测量过程中,常常会遇到要求我们利用已知的七参数进行测量的情况,下面我们来看一下如何在仪器中输入七参数。 1、在主菜单屏幕上选择管理: 七参数:使用严格3D 经典方法产生转换的参数. 该方法使用GPS 测量点(WGS84 椭球 )的直角坐标,并将这些坐标与地 方坐标的直角坐标相比较.通过这种方法,计算出用来将坐标从一个系统转换到另一个系统中平移量,旋转量和尺度因子.经典 3D 转换方法可确定最多7个转换参数(3个平移参数,3个旋转参数,和1个尺度因子). 2、选择坐标系: 3、新建一个坐标系:

4、在名称行里输入一个坐标系统的名字: 5、将光标移至转换一行,点击回车键: 6、点击F2新建:

7、在概要界面输入一个七参数名称,然后点击参数: 8、输入已知的七参数,(也有输入四参数的,即不输旋转参数): 9、在更多界面下选择莫洛金斯基或布沙-沃尔夫,一般选择后者,然后保存: Molodensky-Badekas ——莫洛金斯基 一种转换模型,其旋转原点是系统A 中公共点的重心. Bursa-Wolf ——布沙-沃尔夫 对系统A 来说,旋转原点为笛卡儿坐标系统原点的转换模型.

10、选择做好参数的转换文件,继续: 11、将光标移至椭球行,回车: 在大地测量中,除非特别定义,椭球是 指椭圆绕短半轴旋转形成的数学图形 (有时也称回转椭球体),两个量定义一 个椭球,它们是长半轴的长度; 扁率 f. The Flattening is one of the quantities to specify an ellipsoid. f = (a-b)/a = 1 - sqrt(1-e2) where: a ... semi-major axis b ... semi-minor axis e ... eccentricity 12、选择要用的椭球(西安-80或北京-54) 如果没有需要的椭球,请点击 SHIFT键,在点击F5键即可调 阅所有椭球 13、将光标移至投影行,回车,然后新建,选择横轴莫卡托,然后输入投影参数,保存: 假定东坐标:为避免坐标出现负值,我 国将坐标原点东坐标规定为500,000 米。 中央子午线:定义地图投影经度的中央 线。是使用在地图投影中的带常数。 带宽:投影带的宽度。 注意:投影参数一定要在开始工作前落 实清楚,否则将影响投影后坐标。

07第七章水文地质参数的计算

第七章水文地质参数的计算水文地质参数是表征含水介质水文地质性能的数量指标,是地下水资源评价的重要基础资料,主要包括含水介质的渗透系数和导水系数、承压含水层的储水系数、潜水含水层的重力给水度、弱透水层的越流系数及水动力弥散系数等,还有表征与岩土性质、水文气象等因素的有关参数,如降水入渗系数、潜水蒸发强度、灌溉入渗补给系数等。 水文地质参数常通过野外试验、实验室测试及根据地下水动态观测资料采用有关理论公式计算求取,或采取数值法反演求参等。 第一节给水度 一、影响给水度的主要因素 给水度(μ)是表征潜水含水层给水能力或储水能力的一个指标,给水度和饱水带的岩性有关,随排水时间、潜水埋深、水位变化幅度及水质的变化而变化。不同岩性给水度经验值见表7.l。

二、给水度的确定方法 确定给水度的方法除非稳定流抽水试验法(参考《地下水动力学》等文献)外,还常用下列方法: 1.根据抽水前后包气带上层天然温度的变化来确定p 值 根据包气带中非饱和流的运移和分带规律知,抽水前包气带内土层的天然湿度分布应如图 7.1中的 Oacd 线所示。抽水后,潜水面由 A 下降到 B (下降水头高度为功),故毛细水带将下移,由aa '段下移到bb '段,此时的土层天然湿度分布线则变为图中的Oacd 。对比抽水前后的两条湿度分布线可知,由于抽水使水位下降,水位变动带将给出一定量的水。根据水均衡原理,抽水前后包气带内湿度之差,应等于潜水位下降Δh 时包气带(主要是毛细水带)所给出之水量(μΔh )即 h W W Z i i n i i ?=-?∑=μ)(121 故给水度为

h W W Z i i n i i ?-?=∑=) (121μ (7.1) 式中:△Z i ——包气带天然湿度测定分段长度(m ); △h ——抽水产生的潜水面下移深度(m ); W 1i ,W 2i ;——抽水前后△Z i 段内的土层天然湿度(%); n ——取样数。 2.根据潜水水位动态观测资料用有限差分法确定μ值 如果潜水单向流动,隔水层水平,含水层均质,可沿流向布置3个地下水动态观测孔(图7.2),然后根据水位动态观测资料,按下式计算。值: h h t h x t K t 22t 2,2,32t 1,22)2-) (2h h ??++?????= ωμ (7.2) 式中:h 1,t 、h 2,t 、h 3,t ——1、2、3号观测孔t 时刻水位,即含水层水流度(m );

MAPGIS中坐标转换中七参数法

MAPGIS 中坐标转换中七参数法 京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,丫平移,Z平移,X旋转(WX,丫旋转(WY,Z旋转(WY,尺度变化(DM。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面具体的步骤: 启动“投影变换模块”,单击“文件”菜单下“打开文件”命 令,将演示数据“演示数据_北京54.WT、“演示数据_北京 54.WL、“演示数据—北京54.WP打开。1、单击“投影转换” 菜单下“S坐标系转换”命令,系统弹出“转换坐标值” “话框⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位—米”;⑵、在“输出”一栏中,坐标系设置为“西 安80坐标系”,单位设置为“线类单位—米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中, 输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z), 如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一

栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、 单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来;2、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:西安80坐标系;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。 3、单击“投影转换”菜单下“ MAPGI毀影转换/选转换线文件”命令,系统弹出“选择文件”对话框 选中待转换的文件“演示数据_北京54.WL',单击“确定”按 钮; 4、设置文件的Tic点,在“投影变换”模块下提供了两种方法:手工设置和文件间拷贝,这里不作详细的说明; 5、单击“投影转换”菜单下“编辑当前投影参数”命令,系统弹出 “输入投影参数”对话框,如图6所示,根据数据的实际情况来设置 其地图参数坐标系类型:大地坐标系 椭球参数:北京54投影类型:高斯-克吕格投影比例尺分母:1坐标单

水文地质计算KR值公式选择

水文地质计算K R值公式 选择 Modified by JEEP on December 26th, 2020.

水文地质计算K 、R 值公式 选 择 一、 承压水完整井K 值计算 1、承压完整井 r R S M Q K lg 366.0?= 裘布依 2、承压完整井有一个观测孔 3、承压完整孔 二、 承压水非完整井K 值计算 1、承压非完整井 S M Q K ?= π2 用于潜水时将M 换 成H 2、承压水非完整井(井壁进水) 式中r —过滤器半径,长度L< 3、承压水非完整井(井壁、井底进水) 4、 承压水非完整孔(GB50027—规 范) 当M>150r, L/M>1时 三、 潜水完整井K 值计算 1、实用于潜水—承压水完整井及非完整井 2、潜水完整井 ()r R S S H Q K lg 2733.0-= 裘 布依 3、潜水完整井 四、 潜水非完整孔K 值计算 1、潜水非完整孔 当1.0,150>>h L r h 时: 式中:H —自然情况下,潜水含水层厚度(m ); h —潜水含水层在自然情况下和抽水时的厚度 的平均值(m ); h —潜水含水层在抽水时的厚度(m ); Q —抽水孔大降深时的流量(m 3/d )。 2、潜水非完整孔 五、影响半径计算公式 1、 承压水概略计算 K S R 10= 吉哈尔特 KHI Q R 2= 凯尔盖 2、潜水概略计算

K H S R ?=2 对直径大的和 单井算出的R 值偏大 3 μ KHt R = 威伯 六、 利用观测孔水位下降值计算R 值 1、承压水完整井、两个观测孔 2 11 221lg lg lg S S r S r S R --= 裘布依 2、潜水完整井 注: S 1,S 2—观测孔降深(m ) r 1,r 2—观测孔至抽水孔距离 (m ) H —潜水含水层厚度(m ) R —影响半径(m ) t —时间(日) μ—给水度 I —地下水水力坡度 在2221,h h ??—在2h ?—lgr 关系曲线的直线段上任意两点的纵坐标值(m 2)。 七、 给水度、释水系数、渗透系 数、导水系数、传导系数 1、潜水含水层的给水度(μ):又叫延迟储水系, 即水能从岩层中自由流出的能力,数值等于流出的水体积和岩石体积之比。对裂隙岩石,可用裂隙率或 岩溶率近似代替给水度。计算公 式: 式中:∑c Q —钻孔抽水稳定之前消耗的全部贮存量(静储量); V —稳定降落漏斗 的体积(m 3); H —钻孔抽水前含水层的厚度(m ); 0h —抽水稳定时孔内水 柱高度(m ); λ—取决于降落漏斗的形状,H h 0和 R r 0值的系 数。 可查河北水文地质手册P552表8-1-24

arcgis七参数精确转换

在ArcGIS Desktop中进行三参数或七参数精确投影转换 Desktop, 投影, ArcGIS, 参数 ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差。在项目的前期数据准备工作中,需要进行更加精确的三参数或七参数投影转换。下面介绍两种办法来在ArcGIS Desktop中进行这种转换。 方法1:在ArcMap中进行动态转换(On the fly) 假设原投影坐标系统为Xian80坐标系统,本例选择为系统预设的Projected Coordinate Systems\Gauss Kruger\Xian 1980\Xian 1980 GK Zone 20投影,中央经线为117度,要转换成Beijing 1954\Beijing 1954 GK Zone 20N。 在ArcMap中加载了图层之后,打开View-Data Frame Properties对话框,显示当前的投影坐标系统为Xian 1980 GK Zone 20,在下面的选择坐标系统框中选择Beijing 1954 GK Zone 20N,在右边有一个按钮为Transformations...

点击打开一个投影转换对话框,可以在对话框中看到Convert from和Into表明了我们想 从什么坐标系统转换到什么坐标系统。

在下方的using下拉框右边,点击New...,新建一个投影转换公式,在Method下拉框中可以选择一系列转换方法,其中有一些是三参数的,有一些是七参数的,然后在参数表中输 入各个转换参数。 输入完毕以后,点击OK,回到之前的投影转换对话框,再点击OK,就完成了对当前地图的动态投影转换。这时还没有对图层文件本身的投影进行转换,要转换图层文件本身的投影,

水文地质参数有哪些

水文地质参数有哪些 水文地质参数,反映含水层或透水层水文地质性能的指标。如渗透系数、导水系数、水位传导系数、压力传导系数、给水度、释水系数、越流系数等,都是基本的水文地质参数。水文地质参数是进行各种水文地质计算时不可缺少的数据。一般是通过勘探试验测求水文地质参数。 渗透系数,又称水力传导系数,是水力坡度为1时,地下水在介质中的渗透速度。为表征介质导水能力的重要水文地质参数。渗透系数不仅与介质性质有关,还与在介质中运动的地下水的粘滞系数、比重及温度等物理性质有关。根据达西定律:V=-KH/I式中,V为渗透速度;H为地下水水头;I为渗透距离;K为介质的渗透系数,量纲为(L/T)。其与渗透率的关系为K=r?k/μ(K为渗透系数;k为渗透率;r为地下水的比重;μ为地下水动力粘滞系数)。从关系式中可知渗透系数与水的粘滞系数成反比,而后者随温度的升高而减小,因此,渗透系数随温度的升高而增大。在地下水温度变化较大时,应作相应的换算。在地下水矿化度显著增高时,水的比重和粘滞系数均增大,渗透系数则随之而变化。在这种情况下,一般采用与液体性质无关的渗透率较为方便。导水系数,表示含水层全部厚度导水能力的参数。通常,可定义为水力坡度为1时,地下水通过单位含水层垂直断面的流量。导水系数T 等于含水层渗透系数K与含水层厚度m的乘积。量纲为(L/T)。压力传导系数,又称水力扩散系数,为导水系数与释水系数之比。它表征在弹性动态条件下承压含水层中水头传递速度的参数。压力传导系数a=T/s(T为导水系数;S为释水系数)。量纲为(L2/T)。水位传导系数,也称水力扩散系数。它表征在弹性动态条件下潜水含水层中水位变化传播速度的参数。水位传导系数aw=Kh/μ(K为渗透系数;h为潜水含水层平均厚度;μ为给水度)。量纲为(L2/T)。释水系数,又称贮水系数或弹性给水度。水头下降一个单位时,从单位面积含水层全部厚度的柱体中,由于水的膨胀和岩层的压缩而释放出的水量;或者水头上升一个单位时,其所贮入的水量。它是表征含水层(或弱透水层)全部厚度释水(贮水)能力的参数。含水层释水系数S(对承压含水层常用μ表示)等于含水层厚度m与单位释水系数Ss的乘积,即S=mSs。对潜水含水层总释水系数S=μ+hSs,μ为给水度;h为含水层厚度,Ss为潜水含水层单位释水系数,一般因μ》hSs,所以通常以给水度近似代表潜水含水层的总释水系数S。有效孔隙度,相互连通的孔隙体积与土或岩石总体积之比,一般用百分数表示。有效孔隙体积不包括结合水和气体所占的体积,仅指地下水可以在其中流动的部分。越流系数表征弱透水层垂直方向上传导越流水量能力的参数。即当抽水含水层(主含水层)与上部(或下部)补给层之间的水头差为一个单位时,垂直渗透水流通过弱透水层与抽水含水层单位界面的流量。换言之,是指含水层顶(底)板弱透水层的垂直渗透系数K′与其厚度m′之值,即K′/m′。量纲为(1/T)。 转载请注明本文来源: 中国环境修复网https://www.wendangku.net/doc/c712199250.html, 原文地址: https://www.wendangku.net/doc/c712199250.html,/investigation/2010/1110/article_26.html

手持GPS三参数计算方法

手持GPS三参数计算方法 南方测绘石家庄工程项目部靳超 新机拿到手之后,设计方都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。 一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(北京54坐标系△A=-108、△F=0.0000005西安80△A=-3、△F=0),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。 测算三参数的基本方法是,首先在已知控制点上测量一个稳定的WGS-84大地坐标(BLH)值,然后,运用专用测量程序既可算出一个三参数来。三参数计算出来后,将其输入GPS中再到已知控制点上观测比对,最好再到另一已知控制点上观测检校,如比对检校差值在规定允许误差范围之内,既可运用于实际工程测量工作。一般来说,只要到一新工区或工程点间距较远(数十至上百公里以外)都要到已知控制点上重新进行观测比对检校,没有问题才能进行实际工作。 三参数的求取步骤如下: 一、获取已知点的经纬度 利用手持GPS到一个已知控制点上测量一个稳定(即精度比较高)的WGS84大地坐标(即B,L,H),也就是在手持GPS中将坐标系设置为:WGS84坐标系,显示格式为:经纬度格式。每种手持机设置的位置有所不同,请参阅说明书进行操作。 二、计算转换参数 一般手持机参数为:△X、△Y、△Z、△A、△F。△A、△F在北京54和西安80为固定值,我们主要计算:△X、△Y、△Z,即三参数。 我们使用COORD4.1(在此,感谢软件的作者:Jerry , 注意网上有其它版本的软件,某些功能可能有错误,如4.2版本)软件来自己求三参数。打开软件如图

水文地质参数求取的试验方法探讨

水文地质参数求取的试验方法探讨 本文结合实例对承压水采用抽水试验确定含水层水文地质参数的方法进行分析,探讨定流量(单孔或多孔)抽水试验确定含水层参数的可行性,具有较强的意义和价值。 标签:抽水试验水文地质参数试验方法 地下水资源评价工作中,水文地质参数的计算十分重要,其值确定的合理与否,直接影响到计算成果的可靠程度,进而关系到水资源评价的科学性。本文通过实测抽水试验数据分析了承压水水文地质参数的求取方法及可靠性。 1单井抽水试验配线法推求水文地质参数 (1)方法原理 承压完整井非稳定流抽水的泰斯公式为: (2)实例分析 以某化工集团地下水水源地抽水试验为例,水源地内建有深水井4眼,其中3#、1#、2#井孔呈西向东排列,3#、1#井间距215.6m,1#、2#井间距197.7m,4#井孔在2#井孔南422m,3#、2#井间距414m,1#、4#井间距466m,3#、4#井间距600m。 根据试验条件共进行了2组单孔抽水试验,第一组抽水孔为1#,观测孔为2#、3#,抽水历时5d,水位恢复观测2d;第二组抽水孔为3#,观测孔为2#、1#,抽水历时3d。步骤如下: ①抽水前准备就绪后,同时量测取水孔与观测孔的静水位(精确至0.01m),校正好测绳、钢卷尺、秒表等;开启抽水电泵各井孔并同时计时,约定在开机后第1,2,5,10,20,30,45,60,90,120,…,1 440,…,分钟,持续观测取水孔与观测孔水位降深St,通过安装在取水电泵上的流量计读取各取水时间段的抽水量,得到抽水试验过程相应的稳定抽水流量、取水t时刻取水孔与观测孔的对应水位降深St等数据; ②用校正好的测绳测量各观测孔距取水井孔的距离r1、r2,测量各井孔基准点高程; ③抽水结束停机时,以同样的时距观测取水孔与观测孔的对应水位降深St,得到取水孔和观测孔水位恢复的试验资料; ④根据试验资料采用图解分析法分析计算本次试验得到的含水层参数。

GPS七参数的计算

通过三个或三个以上已知点求解七参数模型中的参数: 不同空间直角坐标系之间的变换,其参数有(ΔX0,ΔY0,ΔZ0,ωX,ωY,ωZ,m)七个,其中(ΔX0,ΔY0,ΔZ0)为坐标平移量,(ωX,ωY,ωZ)为坐标轴间的三个旋转角度(又称为欧拉角),m为尺度因子。七参数模型如图。 以WGS84坐标系转换为北京54坐标系为例: 为计算模型中的七个参数,至少需要三个已知点的北京54空间坐标 (X,Y,Z)BJ54和WGS-84空间坐标(X,Y,Z)WGS84,利用最小二乘法求出七参数。 然而,我们已知的三个公共控制点的坐标成果,一种是GPS观测中可直接获得的WGS84椭球下的大地坐标经纬度(B,L,H),另一种是工程测量中使用的是高斯投影后的平面直角坐标(x,y,h)。即已知的三个公共控制点的坐标成果就是这两种形式的坐标表来表示的。首先,我们要把这两种形式的坐标都转换为七参数模型中的空间直角坐标。步骤如下: 1.将WGS84椭球下的大地坐标经纬度(B,L,H),采用WGS84椭球参数,转换为WGS84的空间直角坐标(X,Y,Z) 2.将北京54投影平面直角坐标(x,y,h),采用克拉索夫斯基椭球参数,转换为大地坐标((B,L,H)后,再转换为北京54的空间直角坐标(X,Y,Z)。 3.将转换得到的三个公共点的北京54空间坐标(X,Y,Z)BJ54和WGS-84空间坐标(X,Y,Z)WGS84代入七参数模型中,求解七个参数。 以上转换过程十分复杂,即涉及到大地坐标经纬度与空间直角坐标的换算,还涉及到空间直角坐标与平面直角坐标的投影。 通常,我也使用已有的计算程序来求解七参数的,在很多这些求解七参数的程序中,直接采用的是WGS84的大地坐标和北京54大地坐标来计算,就是你只需输入三个已知点的一套WGS84的大地坐标和一套北京54大地坐标,即可为你求解出七参数。

多种抽水试验方法确定水文地质参数①

龙源期刊网 https://www.wendangku.net/doc/c712199250.html, 多种抽水试验方法确定水文地质参数① 作者:谢昭宇 来源:《科技资讯》2013年第19期 摘要:随着地铁建设的突飞猛进,越来越多的基坑临近地铁线路,特别是建成并运行的 地铁线路,基坑施工降水对地铁的影响问题越发突出。本文通过工程实践,采用多种抽水试验方法,为设计提供准确的水文地质参数。 关键词:地铁基坑抽水试验水文地质参数 中图分类号:TU413 文献标识码:A 文章编号:1672-3791(2013)07(a)-0041-02 抽水试验[pumping test],包括自试井抽取一定水量而在某距离之各观测井测定各种时间距地下水位的变化,观测数据利用各种地下水流理论式或其图解法分析抽水试验的结果。抽水试验按孔数可分为:单孔抽水试验、多孔抽水、群孔干扰抽水;按水位稳定性分为:稳定流抽水试验和非稳定流抽水试验方法;按抽水孔类型分为:完整井和非完整井。 抽水试验应在洗井结束,洗井质量已达规定要求后进行。抽水试验的类型、下降次数及延续时间应按照《供水水文地质勘察规范》(TJ27—78)及《城市供水水文地质勘察规范》中有关规定执行。试验前,应根据井孔结构、水位降深、流量及其它条件,合理选择抽水设备和测试仪具。抽水设备可用量桶、空气压缩机及各种水泵;流量测量,当流量小于2 L/s时,可用量桶;大于2 L/s时;应用堰箱(三角堰、梯形堰或矩形堰)或孔板流量计;高压自流水可用喷水管喷发高度测量法测量流量;水位测量可用测钟、浮标水位计或电测水位计;水温测量一般可用缓变温度计或带温度计的测钟。抽水设备安装后,应先进行试抽,经调试能满足试验要求后,再正式抽水。采用空气压缩机作抽水试验时,应下测水位管,在测水位管内测量动水位。抽水试验中应做好地面排水,使抽出的水排至试验孔影响范围以外。在抽水试验中,应 及时进行静止水位、动水位、恢复水位、流量、水温、气温等项观测,并及时如实记录,不得任意涂改或追记。如遇水位、流量、水的浑浊度及机械运转等发生突变时,应做详细记录,并及时查明原因。 1 工程概况 拟建场地原始地貌单元属冲积阶地。本项目场地表面多为建筑垃圾堆填。场次范围内埋藏地层的岩性及野外特征自上而下分别为人工填土、冲洪积黏土、砾砂、黏土、砾砂、残积砾质粘性土、燕山期粗粒花岗岩。场地内地下水有填土层中上层滞水、砂层中孔隙潜水、承压水及下伏基岩强~中风化层中孔隙—裂隙承压水。含水层的富水性和透水性为弱~中等,接受大气降水和侧向迳流补给。

水文学与水文地质学重点总结

水文学与水文地质学 第一章 1、水文学概念:水文学是研究自然界中各种水体的形成、分布、循环和与环境相互作用的一门科学。 2、水文循环 (1)水的这种既无明确的“开端”,有无明确的“终了”的无休止的循环运动过程称为水文循环。 (2)水分由海洋输送到大陆又回到海洋的循环称为大循环或外循环。 水分在陆地内部或海洋内部的循环称为小循环或内循环。为区分这两种小循环,将前者叫做陆地小循环,后者叫做海洋小循环。 (3)内因——水的三态在常温条件下的相互转化 外因——太阳辐射和地心引力 (4)四个环节:水分蒸发—水汽输送—凝结降水—径流 3、水文循环的时空分布变化特点(简答—扩展) (1)水循环永无止境 (2)水文现象在时间上既有具周期性又具有随机性 (3)水文现象在地区分布上既具有相似性又具有特殊性 4、水量平衡原理概念:水量平衡是指在自然水循环过程中,任意区域在一定时间内,输入水量与输出水量之差等于该区域的蓄水变化量。 第二章 1、河流基本特征(看透书P15—P17、小题) (1)河流长度(L) 自河源沿主河道至河口的长度。 深泓线(中泓线):河槽中沿流向各最大水深点的连线。 (2)河流的弯曲系数(Φ) 河流的弯曲系数等于河流长度与河源到河口之间的直线距离之比。 (3)河槽特征 1)河流的断面 河流横断面 河谷 河槽:基本河槽洪水河槽 过水断面 河流的纵断面 2)河流平面形态 (4)河流纵比降(J) 河流纵比降指任意河段首尾两端的高程差与其长度之比 河段纵断面近于直线:J=(Z1-Z2)/L 河段纵断面呈折线:J=[(Z0+Z1)L1+(Z1+Z2)L2+…+(Z n-1+Z n)L n-2Z0L]/L2 (5)河流分段 一条河流按照河段不同的特征,沿水流方向可划分为河源、上游、中游、下游和河口5段。 2、流域的概念:流域是指汇集地表径流和地下径流的区域,是相对河流的某一端面而言。

南方RTK测量如何求七参数

南方RTK测量如何求七参数 通常最大距离小于10公里的测区,使用四参数就可以了,很多论文的实验结论都证明了对于小范围的测区,使用四参数坐标转换的结果优于七参数坐标转换的结果。 1.参数求解的过程基本相同,就是在测区中心位置架设好基准站,然后使用流动站新建工程,设置基本的投影的参数,如西安80坐标系,高斯投影,中央子午线,Y坐标常数500km等, 2.直接使用流动站到三个及以上已知高等级控制点测量固定解 状态下的坐标。 3. 求解参数:依次输入已知控制点的成果坐标,并指定之前RTK 测量获得对应控制点的坐标,保存参数后应用。 4.检核:使用应用参数后的RTK流动站,测量一个已知的控制点,并检查观测坐标值与成果坐标的互差。 南方灵锐S82RTK操作步骤及使用技巧分享 首次分享者:郜亚辉已被分享1次评论(0) 复制链接分享转载举报 一.基准站部分

1)基准站安装 1.在基准站架设点上安置脚架,安装上基座,再将基准站主机用连接头安置于基座之上,对中整平(如架在未知点上,则大致整平即可)。 注意:基准站架设点可以架在已知点或未知点上,这两种架法都可以使用,但在校正参数时操作步骤有所差异。 2. 安置发射天线和电台,将发射天线用连接头安置在另一脚架上,将电台挂在脚架的一侧,用发射天线电缆接在电台上,再用电源电缆将主机、电台和蓄电池接好,注意电源的正负极必须连接正确(红正黑负),否则保险丝将被烧断。 注意:主机和电台上的接口都是唯一的,在接线时必须红点对红点,拔出连线接头时一定要捏紧线头部位,不可直接握住连线强行拨出。 2)主机操作 1.打开主机

主机上只有一个操作按钮(电源键),轻按电源键打开主机,主机开始自动初始化和搜索卫星,当卫星数和卫星质量达到要求后(大约1分钟),主机上的DL指示灯开始5秒钟快闪2次,表明基准站开始正常工作。 2.打开电台 在打开主机后,就可以打开电台。轻按电台上的“ON/OFF”按钮打开电台,当主机上的DL指示灯开始5秒钟快闪2次时,同时电台上的TX指示灯会开始每秒钟闪1次。这时,整个基准站部分开始正常工作。电台后面有个扳手,是高低功率转换的,高功率为H(High),低功率为L(Low)。 注意:为了让主机能搜索到更多数量卫星和高质量卫星,基准站一般应选在周围视野开阔,避免在高度截止角15度以内有大型建筑物;避免附近有干扰源,如高压线、变压器和发射塔等;不要有大面积水域;为了让基准站差分信号能传播的更远,基准站一般应选在地势较高的位置。 二.移动站部分 1)移动站安装

相关文档