文档库 最新最全的文档下载
当前位置:文档库 › Spark MLlib之朴素贝叶斯分类算法

Spark MLlib之朴素贝叶斯分类算法

Spark MLlib之朴素贝叶斯分类算法
Spark MLlib之朴素贝叶斯分类算法

【分类算法】

何为分类算法?简单来说,就是将具有某些特性的物体归类对应到一个已知的类别集合中的某个类别上。从数学角度来说,可以做如下定义:

已知集合: C={y 1 ,y 2 ,..,y n } 和 I={x 1 ,x 2 ,..,x m ,..} ,确定映射规则 y=f(x) ,使

得任意x i ∈I 有且仅有一个y j ∈C 使得 y j =f(x i ) 成立。

其中,C为类别集合,I为待分类的物体,f则为分类器,分类算法的主要任务就是构造分类器f。

分类算法的构造通常需要一个已知类别的集合来进行训练,通常来说训练出来的分类算法不可能达到100%的准确率。分类器的质量往往与训练数据、验证数据、训练数据样本大小等因素相关。

举个例子,我们日常生活中看到一个陌生人,要做的第一件事情就是判断其性别,判断性别的过程就是

一个分类的过程。根据以往的生活经验,通常经过头发长短、服饰和体型这三个要素就能判断出来一个

人的性别。这里的“生活经验”就是一个训练好的关于性别判断的模型,其训练数据是日常生活中遇到

的形形色色的人。突然有一天,一个娘炮走到了你面前,长发飘飘,穿着紧身的衣裤,可是体型却很man,于是你就疑惑了,根据以往的经验——也就是已经训练好的模型,无法判断这个人的性别。于是你学会

了通过喉结来判断其性别,这样你的模型被训练的质量更高了。但不可否认的是,永远会出现一个让你

无法判断性别的人。所以模型永远无法达到100%的准确,只会随着训练数据的不断增多而无限接近100%

的准确。

【贝斯叶公式】

贝叶斯公式,或者叫做贝叶斯定理,是贝叶斯分类的基础。而贝叶斯分类是一类分类算法的统称,这一

类算法的基础都是贝叶斯公式。目前研究较多的四种贝叶斯分类算法有:Naive Bayes、TAN、BAN和GBN。理工科的学生在大学应该都学过概率论,其中最重要的几个公式中就有贝叶斯公式——用来描述两个条

件概率之间的关系,比如P(A|B)和P(B|A)。如何在已知事件A和B分别发生的概率,和事件B发生时事

件A发生的概率,来求得事件A发生时事件B发生的概率,这就是贝叶斯公式的作用。其表述如下:

【朴素贝叶斯分类】

朴素贝叶斯分类,Naive Bayes,你也可以叫它NB算法。其核心思想非常简单:对于某一预测项,分别

计算该预测项为各个分类的概率,然后选择概率最大的分类为其预测分类。就好像你预测一个娘炮是女

人的可能性是40%,是男人的可能性是41%,那么就可以判断他是男人。

Naive Bayes的数学定义如下:

1.设 x={a 1 ,a 2 ,..,a m } 为一个待分类项,而每个 a i 为 x 的一个特征属性

2.已知类别集合 C={y 1 ,y 2 ,..,y n }

3.计算 x 为各个类别的概率: P(y 1 |x),P(y 2 |x),..,P(y n |x)

4.如果 P(y k |x)=max{P(y 1 |x),P(y 2 |x),..,P(y n |x)} ,则 x 的类别为 y k

如何获取第四步中的最大值,也就是如何计算第三步中的各个条件概率最为重要。可以采用如下做法:

1.获取训练数据集,即分类已知的数据集

2.统计得到在各类别下各个特征属性的条件概率估计,即: P(a 1 |y 1 ),P(a 2 |y 1 ),...,P(a m |y

1 );P(a 1 |y

2 ),P(a 2 |y 2 ),...,P(a m |y 2 );...;P(a 1 |y n ),P(a 2 |y n ),...,P(a m |y

n ) ,其中的数据可以是离散的也可以是连续的

3.如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导: P(y i |x)=P(x|y i )P(y i )P(x) 对于某x来说,分母是固定的,所以只要找出分子最大的即为条件概率最大的。又因为各特征属性是条

件独立的,所以有: P(x|y i )P(y i )=P(a 1 |y i )P(a 2 |y i )...P(a m |y i )P(y i )=P(y

i )∏ m j=1 P(a j |y i )

【朴素贝叶斯分类】

其中第一列代表类别,训练数据中有三种类别:0、1、2。第2-4列代表数据的三个维度,可以想象成前

文中性别分类算法中的头发长度、服饰和体型这三个要素。通常来说为了保证每个要素的权值相差不大,需要取相对的数值,例如头发长度/最长的头发长度。

0,1 0 0

0,2 0 0

0,1 0 0.1

0,2 0 0.2

0,1 0.1 0

0,2 0.2 0

1,0 1 0.1

1,0 2 0.2

1,0.1 1 0

1,0.2 2 0

1,0 1 0

1,0 2 0

2,0.1 0 1

2,0.2 0 2

2,0 0.1 1

2,0 0.2 2

2,0 0 1

2,0 0 2

public static void main(String[] args) {

SparkConf sparkConf = new SparkConf().setAppName("Bayes").setMaster("local[2]");

JavaSparkContext sc = new JavaSparkContext(sparkConf);

JavaRDD data = sc.textFile("/home/yurnom/data/sample_naive_bayes_data.txt");

RDD parsedData = data.map(line -> {

String[] parts = line.split(",");

double[] values = Arrays.stream(parts[1].split(" "))

.mapToDouble(Double::parseDouble)

.toArray();

//LabeledPoint代表一条训练数据,即打过标签的数据

return new LabeledPoint(Double.parseDouble(parts[0]), Vectors.dense(values));

}).rdd();

//分隔为两个部分,60%的数据用于训练,40%的用于测试

RDD[] splits = parsedData.randomSplit(new double[]{0.6, 0.4}, 11L);

JavaRDD training = splits[0].toJavaRDD();

JavaRDD test = splits[1].toJavaRDD();

//训练模型, Additive smoothing的值为1.0(默认值)

final NaiveBayesModel model = NaiveBayes.train(training.rdd(), 1.0);

JavaRDD prediction = test.map(p -> model.predict(p.features()));

JavaPairRDD predictionAndLabel =

prediction.zip(test.map(LabeledPoint::label));

//用测试数据来验证模型的精度

double accuracy = 1.0 * predictionAndLabel.filter(pl -> pl._1().equals(pl._2())).count() / test.count();

System.out.println("Accuracy=" + accuracy);

//预测类别

System.out.println("Prediction of (0.5, 3.0, 0.5):" + model.predict(Vectors.dense(new double[]{0.5, 3.0, 0.5})));

System.out.println("Prediction of (1.5, 0.4, 0.6):" + model.predict(Vectors.dense(new double[]{1.5, 0.4, 0.6})));

System.out.println("Prediction of (0.3, 0.4, 2.6):" + model.predict(Vectors.dense(new double[]{0.3, 0.4, 2.6})));

}

结果

Accuracy=1.0

Prediction of (0.5, 3.0, 0.5):1.0

Prediction of (1.5, 0.4, 0.6):0.0

Prediction of (0.3, 0.4, 2.6):2.0

由于数据的人为捏造过度,可以看到此次训练的模型精度十分高为100%,即测试数据的类别和用模型预测出来的对于类别完全吻合,实际生产环境中是无法达到100%的。后面又预测了3个不在训练数据中的数据,结果和大脑判断的类别完全相同

Naive Bayes是最简单的分类算法之一。由于其简单的特性,使得训练数据的选取对于精确度的影响十分大。在我们的生产环境中,通常将训练数据进行六四分,六分用来训练数据,四分用来测试精确度。但即便如此,测试输出的精确度也往往高于实际生产环境中的精确度。不断的增加训练模型的数据量是一个较为有效的提高精度的方法,但提高的范围也十分有限。

朴素贝叶斯分类算法及其MapReduce实现

最近发现很多公司招聘数据挖掘的职位都提到贝叶斯分类,其实我不太清楚他们是要求理解贝叶斯分类算法,还是要求只需要通过工具(SPSS,SAS,Mahout)使用贝叶斯分类算法进行分类。 反正不管是需求什么都最好是了解其原理,才能知其然,还知其所以然。我尽量简单的描述贝叶斯定义和分类算法,复杂而有全面的描述参考“数据挖掘:概念与技术”。贝叶斯是一个人,叫(Thomas Bayes),下面这哥们就是。 本文介绍了贝叶斯定理,朴素贝叶斯分类算法及其使用MapReduce实现。 贝叶斯定理 首先了解下贝叶斯定理 P X H P(H) P H X= 是不是有感觉都是符号看起来真复杂,我们根据下图理解贝叶斯定理。 这里D是所有顾客(全集),H是购买H商品的顾客,X是购买X商品的顾客。自然X∩H是即购买X又购买H的顾客。 P(X) 指先验概率,指所有顾客中购买X的概率。同理P(H)指的是所有顾客中购买H 的概率,见下式。

X P X= H P H= P(H|X) 指后验概率,在购买X商品的顾客,购买H的概率。同理P(X|H)指的是购买H商品的顾客购买X的概率,见下式。 X∩H P H|X= X∩H P X|H= 将这些公式带入上面贝叶斯定理自然就成立了。 朴素贝叶斯分类 分类算法有很多,基本上决策树,贝叶斯分类和神经网络是齐名的。朴素贝叶斯分类假定一个属性值对给定分类的影响独立于其他属性值。 描述: 这里有个例子假定我们有一个顾客X(age = middle,income=high,sex =man):?年龄(age)取值可以是:小(young),中(middle),大(old) ?收入(income)取值可以是:低(low),中(average),高(high) ?性别(sex)取值可以是:男(man),女(woman) 其选择电脑颜色的分类标号H:白色(white),蓝色(blue),粉色(pink) 问题: 用朴素贝叶斯分类法预测顾客X,选择哪个颜色的分类标号,也就是预测X属于具有最高后验概率的分类。 解答: Step 1 也就是说我们要分别计算X选择分类标号为白色(white),蓝色(blue),粉色(pink)的后验概率,然后进行比较取其中最大值。 根据贝叶斯定理

大数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

朴素贝叶斯算法详细总结

朴素贝叶斯算法详细总结 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。朴素贝叶斯原理简单,却有着坚实的数学理论基础,对于刚开始学习算法或者数学基础差的同学们来说,还是会遇到一些困难,花费一定的时间。比如小编刚准备学习的时候,看到贝叶斯公式还是有点小害怕的,也不知道自己能不能搞定。至此,人工智能头条特别为大家寻找并推荐一些文章,希望大家在看过学习后,不仅能消除心里的小恐惧,还能高效、容易理解的get到这个方法,从中获得启发没准还能追到一个女朋友,脱单我们是有技术的。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 ▌分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。 既然是贝叶斯分类算法,那么分类的数学描述又是什么呢? 从数学角度来说,分类问题可做如下定义: 已知集合C=y1,y2,……,yn 和I=x1,x2,……,xn确定映射规则y=f(),使得任意xi∈I有且仅有一个yi∈C,使得yi∈f(xi)成立。 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。那么如何由指定特征,得到我们最终的类别,也是我们下面要讲的,每一个不同的分类算法,对

朴素贝叶斯在文本分类上的应用

2019年1月 取此事件作为第一事件,其时空坐标为P1(0,0,0,0),P1′(0,0,0,0),在Σ′系经过时间t′=n/ν′后,Σ′系中会看到第n个波峰通过Σ′系的原点,由于波峰和波谷是绝对的,因此Σ系中也会看到第n个波峰通过Σ′系的原点,我们把此事件记为第二事件,P2(x,0,0,t),P2′(0,0,0,t′).则根据洛伦兹变换,我们有x=γut′,t=γt′。在Σ系中看到t时刻第n个波峰通过(x, 0,0)点,则此时该电磁波通过Σ系原点的周期数为n+νxcosθ/c,也就是: n+νxcosθc=νt→ν=ν′ γ(1-u c cosθ)(5)这就是光的多普勒效应[2],如果ν′是该电磁波的固有频率的话,从式(5)可以看出,两参考系相向运动时,Σ系中看到的光的频率会变大,也就是发生了蓝移;反之,Σ系中看到的光的频率会变小,也就是发生了红移;θ=90°时,只要两惯性系有相对运动,也可看到光的红移现象,这就是光的横向多普勒效应,这是声学多普勒效应中没有的现象,其本质为狭义相对论中的时间变缓。3结语 在本文中,通过对狭义相对论的研究,最终得到了光的多普勒效应的表达式,并通过与声学多普勒效应的对比研究,理解了声学多普勒效应和光学多普勒效应的异同。当限定条件为低速运动时,我们可以在经典物理学的框架下研究问题,比如声学多普勒效应,但如果要研究高速运动的光波,我们就需要在狭义相对论的框架下研究问题,比如光的多普勒效应。相对论乃是当代物理学研究的基石,通过本次研究,使我深刻的意识到了科学家为此做出的巨大贡献,为他们献上最诚挚的敬意。 参考文献 [1]肖志俊.对麦克斯韦方程组的探讨[J].通信技术,2008,41(9):81~83. [2]金永君.光多普勒效应及应用[J].现代物理知识,2003(4):14~15.收稿日期:2018-12-17 朴素贝叶斯在文本分类上的应用 孟天乐(天津市海河中学,天津市300202) 【摘要】文本分类任务是自然语言处理领域中的一个重要分支任务,在现实中有着重要的应用,例如网络舆情分析、商品评论情感分析、新闻领域类别分析等等。朴素贝叶斯方法是一种常见的分类模型,它是一种基于贝叶斯定理和特征条件独立性假设的分类方法。本文主要探究文本分类的流程方法和朴素贝叶斯这一方法的原理并将这种方法应用到文本分类的一个任务—— —垃圾邮件过滤。 【关键词】文本分类;监督学习;朴素贝叶斯;数学模型;垃圾邮件过滤 【中图分类号】TP391.1【文献标识码】A【文章编号】1006-4222(2019)01-0244-02 1前言 随着互联网时代的发展,文本数据的产生变得越来越容易和普遍,处理这些文本数据也变得越来越必要。文本分类任务是自然语言处理领域中的一个重要分支任务,也是机器学习技术中一个重要的应用,应用场景涉及生活的方方面面,如网络舆情分析,商品评论情感分析,新闻领域类别分析等等。 朴素贝叶斯方法是机器学习中一个重要的方法,这是一种基于贝叶斯定理和特征条件独立性假设的分类方法。相关研究和实验显示,这种方法在文本分类任务上的效果较好。2文本分类的流程 文本分类任务不同于其他的分类任务,文本是一种非结构化的数据,需要在使用机器学习模型之前进行一些适当的预处理和文本表示的工作,然后再将处理后的数据输入到模型中得出分类的结论。 2.1分词 中文语言词与词之间没有天然的间隔,这一点不同于很多西方语言(如英语等)。所以中文自然语言处理首要步骤就是要对文本进行分词预处理,即判断出词与词之间的间隔。常用的中文分词工具有jieba,复旦大学的fudannlp,斯坦福大学的stanford分词器等等。 2.2停用词的过滤 中文语言中存在一些没有意义的词,准确的说是对分类没有意义的词,例如语气词、助词、量词等等,去除这些词有利于去掉一些分类时的噪音信息,同时对降低文本向量的维度,提高文本分类的速度也有一定的帮助。 2.3文本向量的表示 文本向量的表示是将非结构化数据转换成结构化数据的一个重要步骤,在这一步骤中,我们使用一个个向量来表示文本的内容,常见的文本表示方法主要有以下几种方法: 2.3.1TF模型 文本特征向量的每一个维度对应词典中的一个词,其取值为该词在文档中的出现频次。 给定词典W={w1,w2,…,w V},文档d可以表示为特征向量d={d1,d2,…,d V},其中V为词典大小,w i表示词典中的第i个 词,t i表示词w i在文档d中出现的次数。即tf(t,d)表示词t在文档d中出现的频次,其代表了词t在文档d中的重要程度。TF模型的特点是模型假设文档中出现频次越高的词对刻画文档信息所起的作用越大,但是TF有一个缺点,就是不考虑不同词对区分不同文档的不同贡献。有一些词尽管在文档中出现的次数较少,但是有可能是分类过程中十分重要的特征,有一些词尽管会经常出现在众多的文档中,但是可能对分类任务没有太大的帮助。于是基于TF模型,存在一个改进的TF-IDF模型。 2.3.2TF-IDF模型 在计算每一个词的权重时,不仅考虑词频,还考虑包含词 论述244

朴素贝叶斯算法

朴素贝叶斯算法 1.算法简介 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。 2.算法定义 朴素贝叶斯分类的正式定义如下: 1)设为一个待分类项,而每个a为x的一个特征属性; 2)有类别集合; 3)计算。 4)如果,则。 其中关键是如何计算步骤3)中的各个条件概率。计算过程如下: (1)找到一个已知分类的待分类项集合,该集合称为训练样本集。 (2)统计得到在各类别下各个特征属性的条件概率估计。即 (3)如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导: 因为分母对于所有类别为常数,因此只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有: 可以看到,整个朴素贝叶斯分类分为三个阶段: 第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。 第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条

件概率估计,并将结果记录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。 第三阶段——应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。 3.估计类别下特征属性划分的条件概率及Laplace校准 ?估计类别下特征属性划分的条件概率 计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。 当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。即: 而 因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。 ?Laplace校准 当某个类别下某个特征项划分没有出现时,会产生P(a|y)=0的现象,这会令分类器质量大大降低。为了解决这个问题,引入Laplace校准,就是对每个类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。 ●Laplace校准详解 假设离散型随机变量z有{1,2,…,k}共k个值,用 j (),{1,2,,} p z j j k Φ=== 来表示每个值的概率。假设在m个训练样本中,z的观察值是其中每一个观察值对应k个值中的一个。那么z=j出现的概率为: Laplace校准将每个特征值出现次数事先都加1,通俗讲就是假设它们都出现过一次。那么修改后的表达式为:

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

基于朴素贝叶斯的文本分类算法

基于朴素贝叶斯的文本分类算法 摘要:常用的文本分类方法有支持向量机、K-近邻算法和朴素贝叶斯。其中朴素贝叶斯具有容易实现,运行速度快的特点,被广泛使用。本文详细介绍了朴素贝叶斯的基本原理,讨论了两种常见模型:多项式模型(MM)和伯努利模型(BM),实现了可运行的代码,并进行了一些数据测试。 关键字:朴素贝叶斯;文本分类 Text Classification Algorithm Based on Naive Bayes Author: soulmachine Email:soulmachine@https://www.wendangku.net/doc/c717815950.html, Blog:https://www.wendangku.net/doc/c717815950.html, Abstract:Usually there are three methods for text classification: SVM、KNN and Na?ve Bayes. Na?ve Bayes is easy to implement and fast, so it is widely used. This article introduced the theory of Na?ve Bayes and discussed two popular models: multinomial model(MM) and Bernoulli model(BM) in details, implemented runnable code and performed some data tests. Keywords: na?ve bayes; text classification 第1章贝叶斯原理 1.1 贝叶斯公式 设A、B是两个事件,且P(A)>0,称 为在事件A发生的条件下事件B发生的条件概率。 乘法公式P(XYZ)=P(Z|XY)P(Y|X)P(X) 全概率公式P(X)=P(X|Y 1)+ P(X|Y 2 )+…+ P(X|Y n ) 贝叶斯公式 在此处,贝叶斯公式,我们要用到的是

贝叶斯分类算法

最近在面试中,除了基础& 算法& 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法,而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关聚类& 分类算法的系列文章以作为自己备试之用(尽管貌似已无多大必要,但还是觉得应该写下以备将来常常回顾思考)。行文杂乱,但侥幸若能对读者也起到一定帮助,则幸甚至哉。 本分类& 聚类算法系列借鉴和参考了两本书,一本是Tom M.Mitchhell所著的机器学习,一本是数据挖掘导论,这两本书皆分别是机器学习& 数据挖掘领域的开山or杠鼎之作,读者有继续深入下去的兴趣的话,不妨在阅读本文之后,课后细细研读这两本书。除此之外,还参考了网上不少牛人的作品(文末已注明参考文献或链接),在此,皆一一表示感谢。 本分类& 聚类算法系列暂称之为Top 10 Algorithms in Data Mining,其中,各篇分别有以下具体内容: 1. 开篇:决策树学习Decision Tree,与贝叶斯分类算法(含隐马可夫模型HMM); 2. 第二篇:支持向量机SVM(support vector machine),与神经网络ANN; 3. 第三篇:待定... 说白了,一年多以前,我在本blog内写过一篇文章,叫做:数据挖掘领域十大经典算法初探(题外话:最初有个出版社的朋友便是因此文找到的我,尽管现在看来,我离出书日期仍是遥遥无期)。现在,我抽取其中几个最值得一写的几个算法每一个都写一遍,以期对其有个大致通透的了解。 OK,全系列任何一篇文章若有任何错误,漏洞,或不妥之处,还请读者们一定要随时不吝赐教& 指正,谢谢各位。 基础储备:分类与聚类 在讲具体的分类和聚类算法之前,有必要讲一下什么是分类,什么是聚类,都包含哪些具体算法或问题。 常见的分类与聚类算法 简单来说,自然语言处理中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:朴素的贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,k-最近邻法(k-nearest neighbor,

朴素贝叶斯分类器应用

朴素贝叶斯分类器的应用 作者:阮一峰 日期:2013年12月16日 生活中很多场合需要用到分类,比如新闻分类、病人分类等等。 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。 一、病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。 某个医院早上收了六个门诊病人,如下表。 症状职业疾病 打喷嚏护士感冒 打喷嚏农夫过敏 头痛建筑工人脑震荡 头痛建筑工人感冒 打喷嚏教师感冒 头痛教师脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B)

可得 P(感冒|打喷嚏x建筑工人) = P(打喷嚏x建筑工人|感冒) x P(感冒) / P(打喷嚏x建筑工人) 假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了 P(感冒|打喷嚏x建筑工人) = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) / P(打喷嚏) x P(建筑工人) 这是可以计算的。 P(感冒|打喷嚏x建筑工人) = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 = 0.66 因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。 这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。 二、朴素贝叶斯分类器的公式 假设某个体有n项特征(Feature),分别为F1、F2、...、F n。现有m个类别(Category),分别为C1、C2、...、C m。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C) / P(F1F2...Fn) 由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求 P(F1F2...Fn|C)P(C) 的最大值。

机器学习实验报告-朴素贝叶斯学习和分类文本

机器学习实验报告 朴素贝叶斯学习和分类文本 (2015年度秋季学期) 一、实验内容 问题:通过朴素贝叶斯学习和分类文本 目标:可以通过训练好的贝叶斯分类器对文本正确分类二、实验设计

实验原理与设计: 在分类(classification)问题中,常常需要把一个事物分到某个类别。一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。类别也是有很多种,用集合Y=y1,y2,…ym表示。如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。 这就是所谓的分类(Classification)。x的集合记为X,称为属性集。一般X和Y 的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),其中最大的那个y,即为x所属分类。根据贝叶斯公式,后验概率为 在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。 在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到China,即打上china标 签。 我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:γ:X→C这种类型的学习方法叫做有监督学习,因为事先有一个监督者(我们事先给出了一堆打好标签的文档)像个老师一样监督着整个学习过程。朴素贝叶斯分类器是一种有监督学习。 实验主要代码: 1、 由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词。这里采用极易中文分词组件

Bayes分类器原理

贝叶斯分类器 一、朴素贝叶斯分类器原理 目标: 计算(|)j P C t 。注:t 是一个多维的文本向量 分析: 由于数据t 是一个新的数据,(|)j P C t 无法在训练数据集中统计出来。因此需要转换。根据概率论中的贝叶斯定理 (|)()(|)() P B A P A P A B P B = 将(|)j P C t 的计算转换为: (|)() (|)()j j j P t C P C P C t P t = (1) 其中,()j P C 表示类C j 在整个数据空间中的出现概率,可以在训练集中统计出来(即用C j 在训练数据集中出现的频率()j F C 来作为概率()j P C 。但(|)j P t C 和()P t 仍然不能统计出来。 首先,对于(|)j P t C ,它表示在类j C 中出现数据t 的概率。根据“属性独立性假设”,即对于属于类j C 的所有数据,它们个各属性出现某个值的概率是相互独立的。如,判断一个干部是否是“好干部”(分类)时,其属性“生活作风=好”的概率(P(生活作风=好|好干部))与“工作态度=好”的概率(P(工作态度=好|好干部))是独立的,没有潜在的相互关联。换句话说,一个好干部,其生活作风的好坏与其工作态度的好坏完全无关。我们知道这并不能反映真实的情况,因而说是一种“假设”。使用该假设来分类的方法称为“朴素贝叶斯分类”。 根据上述假设,类j C 中出现数据t 的概率等于其中出现t 中各属性值的概率的乘积。即: (|)(|)j k j k P t C P t C =∏ (2) 其中,k t 是数据t 的第k 个属性值。 其次,对于公式(1)中的()P t ,即数据t 在整个数据空间中出现的概率,等于它在各

贝叶斯分类器工作原理

贝叶斯分类器工作原理原理 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一 种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简 单很多。我们甚至可以把它归结为一个如下所示的公式: 其中实例用T{X0,X1,…,Xn-1}表示,类别用C 表示,AXi 表示Xi 的 父节点集合。 选取其中后验概率最大的c ,即分类结果,可用如下公式表示 () ()()() ()( ) 0011111 00011111 0|,, ,|,,, ,C c |,i i n n n i i X i n n n i i X i P C c X x X x X x P C c P X x A C c P X x X x X x P P X x A C c ---=---========= ===∝===∏∏()() 1 0arg max |A ,i n c C i i X i c P C c P X x C c -∈=====∏

上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用1中存储的数据,计算构造模型所需的互信息和条件互信息。 3.使用2种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。6.选取其中后验概率最大的类c,即预测结果。 其流程图如下所示:

朴素贝叶斯分类算法代码实现

朴素贝叶斯分类算法 一.贝叶斯分类的原理 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。 贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式: P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 贝叶斯公式: P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x) 其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。 二.贝叶斯伪代码 整个算法可以分为两个部分,“建立模型”与“进行预测”,其建立模型的伪代码如下: numAttrValues 等简单的数据从本地数据结构中直接读取 构建几个关键的计数表 for(为每一个实例) { for( 每个属性 ){ 为 numClassAndAttr 中当前类,当前属性,当前取值的单元加 1 为 attFrequencies 中当前取值单元加 1 } } 预测的伪代码如下: for(每一个类别){ for(对每个属性 xj){ for(对每个属性 xi){

朴素贝叶斯分类的改进

朴素贝叶斯分类器的改进 摘要:朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,以及它的被动学习策略,影响了它的分类性能。本文从不同的角度出发,讨论并分析了三种改进朴素贝叶斯分类性能的方法。为进一步的研究打下坚实的基础。 关键词:朴素贝叶斯;主动学习;贝叶斯网络分类器;训练样本;树增广朴素贝叶斯 1 问题描述 随着计算机与信息技术的发展,人类获取的知识和能够及时处理的数据之间的差距在加大,从而导致了一个尴尬的境地,即“丰富的数据”和“贫乏的知识”并存。在数据挖掘技术中,分类技术能对大量的数据进行分析、学习,并建立相应问题领域中的分类模型。分类技术解决问题的关键是构造分类器。分类器是一个能自动将未知文档标定为某类的函数。通过训练集训练以后,能将待分类的文档分到预先定义的目录中。常用的分类器的构造方法有决策树、朴素贝叶斯、支持向量机、k近邻、神经网络等多种分类法,在各种分类法中基于概率的贝叶斯分类法比较简单,在分类技术中得到了广泛的应用。在众多的分类器的构造方法与理论中,朴素贝叶斯分类器(Naive Bayesian Classifiers)[1]由于计算高效、精确度高。并具有坚实的理论基础而得到了广泛的应用。文献朴素贝叶斯的原理、研究成果进行了具体的阐述。文章首先介绍了朴素贝叶斯分类器,在此基础上分析所存在的问题。并从三个不同的角度对朴素贝叶斯加以改进。 2 研究现状 朴素贝叶斯分类器(Na?ve Bayesian Classifier)是一种基于Bayes理论的简单分类方法,它在很多领域都表现出优秀的性能[1][2]。朴素贝叶斯分类器的“朴素”指的是它的条件独立性假设,虽然在某些不满足独立性假设的情况下其仍然可能获得较好的结果[3],但是大量研究表明此时可以通过各种方法来提高朴素贝叶斯分类器的性能。改进朴素贝叶斯分类器的方式主要有两种:一种是放弃条件独立性假设,在NBC的基础上增加属性间可能存在的依赖关系;另一种是重新构建样本属性集,以新的属性组(不包括类别属性)代替原来的属性组,期望在新的属性间存在较好的条件独立关系。 目前对于第一种改进方法研究得较多[2][4][5]。这些算法一般都是在分类精度和算法复杂度之间进行折衷考虑,限制在一定的范围内而不是在所有属性构成的完全网中搜索条件依赖关系。虽然如

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks) 2010-09-18 22:50 by EricZhang(T2噬菌体), 2561 visits, 网摘, 收藏, 编辑 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 2.2、重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。在那个解决方案中,我做了如下假设: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。 但是,上述第二条假设很可能并不成立。一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。因此,我们为了获取更准确的分类,可以将假设修改如下: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。 iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。

贝叶斯分类

贝叶斯分类 1、定义:依据贝叶斯准则(两组间最大分离原则)建立的判别函数集进行的图像 分类。 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。 2、贝叶斯定理: (|)() (|) () P A B P B p B A P A 说明:(|) p A B表示事件B发生的前提下,事件A发生的概率;() p A表示事件A发生的概率;() p B事件B发生的概率。则可以求得事件A发生的前提下,事件B 发生的概率。贝叶斯定理给出了最小化误差的最优解决方法,可用于分类和预测。 将前面贝叶斯公式变化如下: 上述公式中,C代表类别,X代表特征,很明显,我们做出预测肯定是利用当前的特征,来判断输出的类别。当然这里也可以很明显的看到贝叶斯公式先验与后验概率之间的转换,很明显,P(c|x)在我们的定义里面是后验概率,也是我们想要得到的东西。而P(x)、P(c) 以及P(x|c)都是先验概率,它们分别X特征出现的概率,C类出现的概率,C类中,出现X的概率。而第一项对于多类分类来说,都是一样,都是当前观察到的特征,所以此项可以略去。那最终的结果就是计算P(x|c)*P(c)这一项,P(c)是可以通过观察来解决的。重点也就全部落在了P(x|c)上,上面对于此项的解释是在C类中,X特征出现的概率,其实简单来讲,就是X的概率密度。 3、特点 1)。贝叶斯分类并不是把一个对象绝对地指派给某一类,而是通过计算得出属于某一类的概率。具有最大概率的类便是该对象所属的类。2)。一般情况下在贝叶斯分类中所有的属性都潜在的起作用,即并不是一个或几个属性决定分类,而是所有的属性都参与分类。3)贝叶斯分类的属性可以是离散的、连续的、也可以是混合的。 4、分类:(1) 朴素贝叶斯算法。(2) TAN算法 1)朴素贝叶斯算法成立的前提是各属性之间互相独立。当数据集满足这种独立性假设时,分类的准确度较高,否则可能较低。另外,该算法没有分类规则输出。 设每个数据样本用一个n维特征向量来描述n个属性的值,即:X={x1,x2,…,xn},假定有m个类,分别用C1, C2,…,Cm表示。给定一个未知的数据样本X(即没有类标号),若朴素贝叶斯分类法将未知的样本X分配给类Ci,则一定是

基于朴素贝叶斯分类器的文本分类算法

基于朴素贝叶斯分类器的文本分类算法(上) 2010-02-21 10:23:43| 分类:Lucene | 标签:|字号大中小订阅 转载请保留作者信息: 作者:phinecos(洞庭散人) Blog:https://www.wendangku.net/doc/c717815950.html,/ Email:phinecos@https://www.wendangku.net/doc/c717815950.html, Preface 本文缘起于最近在读的一本书-- Tom M.Mitchell的《机器学习》,书中第6章详细讲解了贝叶斯学习的理论知识,为了将其应用到实际中来,参考了网上许多资料,从而得此文。文章将分为两个部分,第一部分将介绍贝叶斯学习的相关理论(如果你对理论不感兴趣,请直接跳至第二部分<<基于朴素贝叶斯分类器的文本分类算法(下)>>)。第二部分讲如何将贝叶斯分类器应用到中文文本分类,随文附上示例代码。 Introduction 我们在《概率论和数理统计》这门课的第一章都学过贝叶斯公式和全概率公式,先来简单复习下: 条件概率 定义设A, B是两个事件,且P(A)>0 称P(B∣A)=P(AB)/P(A)为在条件A下发生的条件事件B发生的条件概率。 乘法公式设P(A)>0 则有P(AB)=P(B∣A)P(A) 全概率公式和贝叶斯公式 定义设S为试验E的样本空间,B1, B2, …Bn为E的一组事件,若BiBj=Ф, i≠j, i, j=1, 2, …,n; B1∪B2∪…∪Bn=S则称B1, B2, …, Bn为样本空间的一个划分。 定理设试验E的样本空间为,A为E的事件,B1, B2, …,Bn为的一个划分,且P(Bi)>0 (i=1, 2, …n),则P(A)=P(A∣B1)P(B1)+P(A∣B2)+ …+P(A∣Bn)P(Bn)称为全概率公式。 定理设试验俄E的样本空间为S,A为E的事件,B1, B2, …,Bn为的一个划分,则 P(Bi∣A)=P(A∣Bi)P(Bi)/∑P(A|Bj)P(Bj)=P(B|Ai)P(Ai)/P(A) 称为贝叶斯公式。说明:i,j均为下标,求和均是1到n 下面我再举个简单的例子来说明下。 示例1 考虑一个医疗诊断问题,有两种可能的假设:(1)病人有癌症。(2)病人无癌症。样本数据来自某化验测试,它也有两种可能的结果:阳性和阴性。假设我们已经有先验知识:在所有人口中只有0.008的人患病。此外,化验测试对有病的患者有98%的可能返回阳性结果,对无病患者有97%的可能返回阴性结果。 上面的数据可以用以下概率式子表示:

朴素贝叶斯分类matlab实现

实验二 朴素贝叶斯分类 一、实验目的 通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes 分类器性能的因素,掌握基于Bayes 决策理论的随机模式分类的原理和方法。 二、实验内容 设计Bayes 决策理论的随机模式分类器,用matlab 实现。 三、方法手段 Bayes 分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。准则函数不同,所导出的判决规则就不同,分类结果也不同。使用哪种准则或方法应根据具体问题来确定。 四、Bayes 算法 朴素贝叶斯分类或简单贝叶斯分类的工作过程如下: (1)每个数据样本用一个n 维特征向量{}12,,...n X x x x =表示,分别描述对n 个属性A 1,A 2,…A n 样本的n 个度量。 (2)假定有m 个类C 1,C 2,…C m 。给定一个未知的数据样本X (即没有类标号),分类法将预测X 属于具有最高后验概率(条件X 下)的类。即是说,朴素贝叶斯分类将未知的样本分配给类C i ,当且仅当 》 ()(),1,i j P C X P C X j m j i >≤≤≠ () 这样,最大化()i P C X 。其()i P C X 最大的类C i 称为最大后验假定。根据贝叶斯定理 ()()()P X H P H P H X P X = , ()()() () i i i P X C P C P C X P X = () (3)由于P(X)对于所有类为常数,只需要()()i i P X C P C 最大即可。如果类的先验概率未知,则通常假定这些类是等概率的,即P(C 1)=P(C 2)=…=P(C m )。并据此只对()i P X 最大化。否则,最大化()()i i P X C P C 。注意,类的先验概率可以用()i i P C s s =计算其中 s i 是类C i 中的训练样本数,而s 是训练样本总数。 (4)给定具有许多属性的数据集,计算()i P X 的开销可能非常大。为降低计算 ()i P X 的开销,可以做类条件独立的朴素假定。给定样本的类标号,假定属性值相互条件

相关文档
相关文档 最新文档