文档库 最新最全的文档下载
当前位置:文档库 › 传感器探头重点

传感器探头重点

传感器探头重点
传感器探头重点

OD9000系列电涡流位移传感器

1.概述

电涡流位移传感器能测量被测体(必须是金属导体)与探头端面的相对位置。由于电涡流位移传感器长期工作可靠性好、灵敏度高、抗干扰能力强、非接触测量、响应速度快、不受油水等介质的影响,常被用于对大型旋转机械的轴位移、轴振动、轴转速等参数进行长期实时监测,可以分析出设备的工作状况和故障原因,有效地对设备进行保护及进行预测性维修。

系统主要包括探头、延伸电缆(用户可以根据需要选择)、前置器和附件。

二.技术指标

1.探头直径:可选

2.线性范围:根据用户要求

3.灵敏度:根据输出电压和量程决定

4.线性误差:<1%

5.频响:0~10KHZ

6.电缆长度:5m或9m(用户订货时选定)

7.工作温度:探头:-30~ +120℃;前置器:-20~ +65℃

8.使用电源:DC -24V(由仪表提供)

三.传感器安装的要求及方法

检测部位的选择

探头线圈产生的磁场范围是一定的,在被测体表面形成的涡流场也是一定的。当被测面为平面时,以正对探头中心线的点为中心,被测面直径应当大于探头头部直径1.5倍以上;当被测体为圆轴而且探头中心线与轴心线正交时,一般要求被测轴直径为探头头部直径的3倍以上。否则,灵敏度就会下降。

探头安装部位应使轴向位移为正值时检测间隙增加,若轴向位移为正值时,其检测间隙减小,请在订货时说明。

安装方法

1.探头的安装

探头需通过支架固定在机组上,如下图所示,支架由用户自行设计,设计的支架应有足

够的刚性,以防振动变形,探头在支架上

安装要牢固,不允许在运转时有松动。

现场安装时,探头与被检测金属面的安装

间隙,应根据产品校验证书上的位移、电

压特性表所规定的安装间隙来安装。切勿

强扭探头上的涡流线圈,高频电缆不能随

意扭折,插头不要随意拆装,以免造成损

坏。

探头的安装,也可在装置单独送电后,通过测量前置器输出电压来确定其间隙(可参照线性测试报告单)。

2.高频电缆的安装

前置器至探头间的电缆为高频电缆,此电缆的总长为9m或5m(用户订货时确定),电缆长度不准随意改变,否则会影响测量的准确度。安装后电缆位置要求固定,以免造成不必要的损坏;也可加金属软管保护(即铠装)。

因安装或使用的需要,9m或5m长的高频电缆中间可接高频接头,该接头在固定时必须浮空(即接头不能与机架或大地在电气上相通),否则会引入干扰。故在安装时,高频接头必须用绝缘材料密封包扎好。

3.前置器的安装

前置器应浮空安装(即前置器与机组在电气上应绝缘)。为保护前置器不受损伤,建议用户外加一只前置器保护盒,先将前置器通过绝缘板浮空固定在铁盒内,然后再将铁盒固定在机架或铁栏杆上。安装场所温度小于65℃,通风且振动小。前置器与监控仪的联接电缆用户可采用三芯屏蔽电缆,其长度可达数十米。其屏蔽层应在集控室处单端接入仪表地。

四.注意事项

1.用户在安装探头时,在探头面积三倍的净空范围内不应有其它金属物质

的存在;要避免探头碰伤撞伤;探头的安装要牢固,在运行中不能有丝

毫的松动。

2.电缆线不能扭折和任意加接;电缆中间的高频转换头连接好后应采取绝

缘措施,使其与大地在电气上隔离。

3.前置器时,前置器应安装在绝缘板上,使前置器在电气上与大地隔离。

前置器的三根信号传输线中间最好不要有接头。如有要考虑接头的接触电阻要尽可能小,以减少信号在传输线过程中的损耗。

传感器设计题目

《传感器》课程设计题目 一、开始前应解决的问题 1)从有关课程谈起! 2)统一思想认识,实践的机会,人人把握机遇 3)课程设计是什么?为什么课程设计?如何课程设计??我们应该怎么做??? 二、总体要求 课设题目尽量侧重于传感器检测模块设计!可能有部分题目是偏向系统设计型或理 论研究型,主要是绘制系统原理图、制作传感部分前端电路、实验调试及分析、撰写实验报告等。 三、初拟题目(题目+要求) 1、热电偶温度变送器设计 (1)设计测量温度范围-100~500℃的热电偶传感器 (2)选用合适的热电偶材料,设计测温电路,冷端补偿电路,解决非线性化 等问题 (3)有电路图,选型与有关计算,精度分析等 (4)采用实验室现成的热电偶进行调试 2、多路温度监控系统设计(AD590、LM35D、温敏电阻,至少两路,三人)

(1)选用集成温度传感器设计两路室温检测系统 (2)设计检测电路,及其与单片机的接口电路,采集程序设计(3)有电路图,选型与有关计算,精度分析等 3、温湿度监控系统设计 (1)选用集成温度传感器模块设计室内或仓库的温湿度检测系统(2)设计检测电路,及其与单片机的接口电路,采集程序设计(3)有电路图,选型与有关计算,精度分析等 4、电涡流位移传感器设计 (1)设计电涡流传感器探头 (2)设计电涡流传感器振荡电路,滤波、检波等电路 (3)有电路图,选型与必要的相关计算说明,精度分析及有关调试结果等 5、电涡流裂纹检测系统设计 (1)一有明显裂纹的铜板,要求能检测出裂纹的有无。 (2)设计电涡流传感器探头,电涡流传感器振荡电路,滤波、检波等电路。 (3)有电路图,选型与必要的相关计算说明,精度分析及有关调试结果等。 6、钢丝绳无损检测探头设计 (1)一有明显裂纹的钢丝绳,要求检测出裂纹的有无。 (2)设计电涡流传感器探头,电涡流传感器振荡电路,滤波、检波等电路。

传感器探头设计

电容传感器探头设计 1.选材与加工 温度变化会使电容传感器各部分的几何尺寸和介电常数发生变化,而湿度也会影响某些介质的介电常数和绝缘电阻值,因此必须进行正确的选材以及采用精细的加工工艺,以减小环境温度,湿度等变化产生的影响,保证绝缘材料的绝缘性能。 一般的,电容传感器的金属电极选用温度系数低的铁镍合金或陶瓷等材料,也可在陶瓷或石英等非金属材料上喷镀金或银,传感器内电极应加以密封,以防尘防,传感器电极的支架应具有一定的机械强度和稳定性能,并要有较高的绝缘电阻,如石英、云母及陶瓷等。另外,传感器的电介质宜采用空气或云母等介电常数的温度系数近似为零的电介质。 2.消除减小边缘效应 边缘效应会影响电容传感器的灵敏度和线性度,必须尽量消除或减小,为了减小边缘效应,可以通过减小极间距来实现,使传感器的极板直径远大于极板间距,但这种方法容易产生击穿,而且会限制测量范围"目一前常用的消除边缘效应的方法是使用等位环技术。并且在测量过程中应尽量避免极板间的振动,以保证测量结果的正确性。 3.探头设计 在设计电容传感器探头时,首先需要考虑探头极板的形状,根据对平板电容电场边缘效应的研究,对四种面积相等而形状不同的平板电容缘效应进行比较,其从大到小的顺序为:正三角形、正方形、正六边形、圆形。因此可知圆形电极的极板边缘效应最小,故在本设计中使用圆形的探头结构。 等位环 图1容传感器探头平面结构图 图1为本设计的电容传感器探头平面结构图,探头表面由一个圆形测量极板和两个同心金属圆环组成。两个同心圆环分别为等位保护环和地屏蔽环,三部分通过绝缘层相隔。等位保护环利用了等位技术,使其与中心测量极板等电位,转移了边缘效应,保证了测量极板内的电势分布均匀。地屏蔽环利用了法拉第屏蔽原理,即如果导体笼内部存在电荷时,将导体接地,与地球相连接,成为一个大导体,则导体笼的表面所感应的电荷几乎不受内部电荷的影响,从而隔绝了内外电场之间的影响,避免外界的电磁干扰。 电容传感器的机械尺寸决定了薄膜测厚仪的分辨率及抗干扰特性。因此,在进行机械设计时,首先要选定传感器的基本参数:

传感器的应用实例

传感器的应用实例 学习目标: 1、知道传感器应用的一般模式. 2、理解电子秤的原理----力传感器的应用. 3、理解话筒的原理----声传感器的应用. 4、理解电熨斗的原理----温度传感器的应用. 5、会设计简单的有关传感器应用的控制电路. 自主学习: 一、力传感器的应用-----电子秤 1.电子秤理有______片、电压放大器、模数转换器微处理器和数字显示器等器件.电阻应变片受到力的作用时,它的____会发生变化,把应变片放在合适的电路中,他能够把物体____这个力学量转换为____这个电学量,因而电子秤是____的应用. 2.工作原理:如图6-2-1所示,弹簧钢制成的梁形元件右端固定,在梁的上下表面各贴一个应变片,在梁的自由端施力F,则梁发生弯曲,上表面拉伸,下表面压缩, 上表面应变片的 电阻___,下表面应变片的电阻变小.F越大, 弯曲形变___, 应变片的阻值变化就越大. 如果让应变片中通过的电流保持恒定,那末上面应变片两端的电压 变大, 下面应变片两端的电压变小. 传感器把这两个电压的差值输 出.外力越大, 输出的电压差值也就, ___ 6-2-1 二、声传感器的应用----话筒 1、话筒是一种常用的____,其作用是把____转换成____. 话筒分为____,____,____等几种. 2、电容式话筒:原理:是绝缘支架,薄金属膜和固定电极形成一个电容器,被直流电源充电.当声波使膜片振动时,电容发生变化,电路中形成变化的电流,于是电阻R两端就输出了与声音变化规律相同的电压. 3.驻极体话筒:它的特点是____,____,____,____.其工作原理同电容式话筒,只是其内部感受声波的是____. 三、温度传感器的应用-----电熨斗 1.在电熨斗中,装有双金属片温度传感器,其作用是____,当温度发生变化时, 双金属片的____不同,从而能控制电路的通断 2.电熨斗的自动控温原理: 常温下,上、下触点是接触的,但温度过高时,由于双金属片受热膨胀系数不同,上部金属膨胀____,下部金属膨胀___,则双金属片向下弯曲,使触点分离,从而切断电源,停止加热.温度降低后, 双金属片恢复原状,重新接通电源,从而保持温度不变. 典型例题: 例1 用如图6-2-2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度.该装置是在矩形箱子的前、后壁上各安装一个有力敏电阻组成的压力传感器.用两根相同的轻弹簧夹着一个质量为2.0㎏的滑块,滑块可无摩擦滑动,两弹簧的另一端分别压在传感器a、b 上其压力大小可以直接从传感器的液晶显示屏上读出.现将装置沿运动方向固定在汽车上, 传感器b在前,a在后.汽车静止时, 传感器a、b的 示数均为10N(取g=10m/s2) 若传感器a示数为14N,b的示数为6.0N,求此时 汽车的加速度和方向?

传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结 1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。 一、传感器的组成 2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。 ③基本转换电路是将该电信号转换成便于传输,处理的电量。 二、传感器的分类 1、按被测量对象分类 (1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。 2、传感器按工作机理 (1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。 (2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。 3、按被测物理量分类 如位移传感器用于测量位移,温度传感器用于测量温度。 4、按工作原理分类主要是有利于传感器的设计和应用。 5、按传感器能量源分类 (1)无源型:不需外加电源。而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型; (2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。 6、按输出信号的性质分类 (1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF); (2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性; (3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。其代码“1”为高电平,“0”为低电平。 三、传感器的特性及主要性能指标 1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。 2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。 表征传感器静态特性的指标有线性度,敏感度,重复性等。 3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。传感器的动态特性取决于传感器的本身及输入信号的形式。传感器按其传递,转换信息的形式可分为①接触式环节;②模拟环节; ③数字环节。评定其动态特性:正弦周期信号、阶跃信号。 4、传感器的主要性能要求是:1)高精度、低成本。2)高灵敏度。3)工作可靠。4)稳定性好,应长期工作稳定,抗腐蚀性好;5)抗干扰能力强;6)动态性能良好。7)结构简单、小巧,使用维护方便等; 四、传感检测技术的地位和作用 1、地位:传感检测技术是一种随着现代科学技术的发展而迅猛发展的技术,是机电一体化系统不可缺少的关键技术之一。 2、作用:能够进行信息获取、信息转换、信息传递及信息处理等功能。应用:计算机集成制造系统(CIMS)、柔性制造系统(FMS)、加工中心(MC)、计算机辅助制造系统(CAM)。 五、基本特性的评价 1、测量范围:是指传感器在允许误差限内,其被测量值的范围; 量程:则是指传感器在测量范围内上限值和下限值之差。2、过载能力:一般情况下,在不引起传感器的规定性能指标永久改变条件下,传感器允许超过其测量范围的能力。过载能力通常用允许超过测量上限或下限的被测量值与量程的百分比表示。 3、灵敏度:是指传感器输出量Y与引起此变化的输入量的变化X之比。 4、灵敏度表示传感器或传感检测系统对被测物理量变化的反应能力。灵敏度越高越好,因为灵敏度越高,传感器所能感知的变化量越小,即被测量稍有微小变化,传感器就有较大输出。K值越大,对外界反应越强。 5、反映非线性误差的程度是线性度。线性度是以一定的拟合直线作基准与校准曲线作比较,用其不一致的最大偏差△Lmax与理论量程输出值Y(=ymax—ymin)的百分比进行计算。 6、稳定性在相同条件,相当长时间内,其输入/输出特性不发生变化的能力,影响传感器稳定性的因素是时间和环境。 7、温度影响其零漂,零漂是指还没输入时,输出值随时间变化而变化。长期使用会产生蠕变现象。 8、重复性:是衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标;(分散范围

传感器考试试题答案终极版

传感器原理考试试题 1、有一温度计,它的量程范围为0--200℃,精度等级为0.5级。该表可能出现的最大误差为__±1℃______,当测量100℃时的示值相对误差为_±%1_______。 2、传感器由___敏感元件___ 转换元件_、______测量电路_三部分组成 3、热电偶的回路电势由_接触电势、温差电势_两部分组成,热电偶产生回路电势的两个必要条件是_即热电偶必须用两种不同的热电极构成;热电偶的两接点必须具有不同的温度。。 4、电容式传感器有变面积型、变极板间距型、变介电常数型三种。 5.传感器的输入输出特性指标可分为_静态量_和____动态量_两大类,线性度和灵敏度是传感器的__静态_量_______指标,而频率响应特性是传感器的__动态量_指标。 6、传感器静态特性指标包括__线性度、__灵敏度、______重复性_______及迟滞现象。 7、金属应变片在金属丝拉伸极限内电阻的相对变化与_____应变____成正比。 8、当被测参数A、d或ε发生变化时,电容量C也随之变化,因此,电容式传感器可分为变面积型_、_变极距型_和_变介质型三种。 9、纵向压电效应与横向压电效应受拉力时产生电荷与拉力间关系分别为 F y。 和q y=?d11a b 10、外光电效应器件包括光电管和光电倍增管。 1、何为传感器的动态特性?动态特性主要的技术指标有哪些? (1)动态特性是指传感器对随时间变化的输入量的响应特性; (2)动态指标:对一阶传感器:时间常数;对二阶传感器:固有频率、阻尼比。

2、传感器的线性度如何确定?拟合直线有几种方法? 传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器的线性度;。 四种方法:理论拟合,端基连线拟合、过零旋转拟合、最小二乘法拟合。 3、应变片进行测量时为什么要进行温度补偿?常用的温度补偿方法有哪些? (1)金属的电阻本身具有热效应,从而使其产生附加的热应变; (2)基底材料、应变片、粘接剂、盖板等都存在随温度增加而长度应变的线膨胀效应,若它们各自的线膨胀系数不同,就会引起附加的由线膨胀引起的应变;常用的温度补偿法有单丝自补偿,双丝组合式自补偿和电路补偿法。 4、分布和寄生电容对电容传感器有什么影响?一般采取哪些措施可以减小其影响? 寄生电容器不稳定,导致传感器特性不稳定,可采用静电屏蔽减小其影响,分布电容和传感器电容并联,使传感器发生相对变化量大为降低,导致传感器灵敏度下降,用静电屏蔽和电缆驱动技术可以消除分布电容的影响。 5、热电偶测温时为什么要进行冷端补偿?冷端补偿的方法有哪些? 答:热电偶热电势的大小是热端温度和冷端的函数差,为保证输出热电势是被测温度的单值函数,必须使冷端温度保持恒定;热电偶分度表给出的热电势是以冷端温度0℃为依据,否则会产生误差。因此,常采用一些措施来消除冷锻温度变化所产生的影响,如冷端恒温法、冷端温度校正法、补偿导线法、补偿电桥法。 三、计算题 1、下图为圆形实芯铜试件,四个应变片粘贴方向为R1、R4 轴向粘贴,R 2、R3 圆周向粘贴,应变片的初始值R1=R2=R3=R4=100Ω,灵敏系数k=2,铜试件的箔 松系数μ= 0.285,不考虑应变片电阻率的变化,当试件受拉时测得R1 的变化Δ R1 = 0.2Ω。如电桥供压U = 2V,试写出ΔR2、ΔR3、ΔR4 输出U0(15分)

红外CO2二氧化碳传感器探头MinIR

MinIR? Low Power Carbon Dioxide Sensor MinIR is an ultra low power (5mW4), high performance CO2 sensor, ideally suited for battery operation and portable instruments. Based on patented IR LED and Detector technology and innovative optical designs, MinIR is the lowest power NDIR sensor available. MinIR is a third generation product from Gas Sensing Solutions Ltd – leaders in IR LED CO2 sensing. MinIR? Sensor

Connection Description Comments Note 3: User Configurable Filter Response. Note 4: Power measurements for standard CO2 sensor with 2 readings per second. This documentation is provided on an as-is basis and no warranty as to its suitability or accuracy for any particular purpose is either made or implied. Gas Sensing Solutions Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this information. Your statutory rights are not affected. This information is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice.

传感器重点总结

一、名词解释 1.偏差式测量用仪表指针的位移(即偏差)决定被测量的量值,这种测量方法称为偏差式测量。 2.零位式测量用指零仪表的零位反应测量系统的平衡状态,在测量系统平衡时,用已知的标准量决定被测量的量值,这种测量方法称为零位式测量。 3.微差式测量将被测量与已知的标准量相比较,取得差值后,再用偏差法测得此差值。 4.静态测量被测量在测量过程中是固定不变的,对这种被测量进行的测量称为静态测量。静态测量不需要考虑时间因素对测量的影响。 5.动态测量被测量在测量过程中是随时间不断变化的,对这种被测量进行的测量称为动态测量。 6.测量误差是测得值减去被测量的真值。 7.随机误差在同一测量条件下,多次测量被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。 8.迟滞传感器在相同工作条件下,输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出曲线不重合的现象。 9.电阻应变效应即导体在外界作用下产生机械变形(拉伸或压缩)时,其电阻值相应发生变化。 10.正压电效应机械能转换为电能的现象 11.逆压电效应当在电介质极化方向施加电场,这些电介质会产生几何变形,这种现象称为逆压电效应。 12.通常把沿电轴x方向的力作用下产生电荷的压电效应称为“纵向压电效应”。把沿机械轴y方向的力作用下产生电荷的压电效应称为“横向压电效应”。 13.在光线的作用下能够使物体产生一定方向的电动势的现象称为光生伏特效应。 14.光电池是一种直接将光能转换为电能的光电器件。 15.绝对湿度是指在一定温度和压力条件下,每单位体积的混合气体中所含水蒸气的质量。相对湿度是指气体的绝对湿度与同一温度下达到饱和状态的绝对湿度之比。 二、填空/选择 1.测量误差的表示方法有绝对误差、实际相对误差、引用误差、基本误差、附加误差。 2.传感器的静态特性性能指标有灵敏度、迟滞、线性度、重复性和漂移等。 3.传感器的时域动态性能指标有时间常数、延迟时间、上升时间、峰值时间、超调量、衰减比。 4.半导体应变片是用半导体材料制成的,其工作原理基于半导体材料的压阻效应。半导体材料的电阻率ρ随作用应力的变化而发生变化的现象称为压阻效应。 5.自感式电感传感器是利用线圈的变化来实现测量的,它由线圈、铁芯和衔铁三部分组成。 6. 变面积型电容式传感器(88页) 7.石英晶体纵向轴z称为光轴,经过六面体棱线并垂直于光轴的x称为电轴,与x和z同时垂直的轴y称为机械轴。 8.气敏传感器是用来检测气体类别、浓度和成分的传感器。 9.半导体气敏传感器是利用气体在半导体表面的氧化和还原反应导致敏感元件阻值变化而制成的。 10.图9-3、9-4直热式和旁热式气敏器件的符号(153页) 11.湿度是指大气中的水蒸气含量,通常采用绝对湿度和相对湿度两种表示方法。 12.频率在16~2×Hz之间,能为人耳所闻的机械波,称为声波;低于16Hz的机械波,称为次声波;高于2×Hz的机械波,称为超声波。 三、简答分析计算 1.迟滞的定义、原因、公式、曲线(30页) 2.习题9-7,ppt. 结构、Rp作用、测试过程、测量丝加热丝、旁热式优点等。(163页) 3.(171页)图10-5、10-6工作原理、公式计算

温度传感器主要形式和温度探头类型

温度传感器主要形式和温度探头类型 温度传感器三种主要形式 热电偶由两种不同的金属丝焊接而成,例如:NiCr-Ni(K型),利用热电效应来工作的,两种不同的金属丝,构成一个闭合回路,不同的两种导体存在着温差,两者产生电动热。因而在回路中形成一个大小的电流,此现象称之为热电现象。 铂电阻测量原理不同于热电偶测量方法。铂电阻传感器本质上来讲属于PTC热敏电阻的一种。金属的电阻率会随着温度的升高而增大,因此这种特性被用来测量温度。薄膜式铂电阻,由于结构超薄,因此在电阻不被影响的前提下,配置了一个玻璃套管,用以保护。目前通用的铂电阻的电阻值为100Ohm(0℃时),这是目前国际通用的铂电阻。另外一种PT100传感器采用绕线陶瓷式,此种方法将铂丝攻成螺旋状,再装入陶瓷基体内,此传感器结构十分紧密,在所有铂电阻传感器中,这种结构精度最高,使用时间持久并且无老化现象,但是相较于热电偶的测量原理,反应时间较缓,因此在应用时经常运用于食品科技,特别是实验室研发环节。 NTC热敏电阻使用较为广泛且较经济的一款温度传感器。由于混合的氧化物陶瓷材料构成,具有负的温度系数,这是称之为NTC的原因(negative temperature coefficient缩写)。随着温度的升高,阻值降低,这与PT100传感器的测量特性完全相反。

温度探头三种主要类型 刺入/浸入式探头 用于测量液体及固体的温度,探头的前端设计为针状刺入式。使用时如果测量探头的温度比被测物体低,根据能量守恒原理,热能会从被测物体热导至探头上;如果测量探头的温度比被测物体较高,同理热能则从探头传导至被测物体。这就意味着被测物体被加热升温,所测得的温度是加温之后的物体温度,在此测量情况,探头与介质的比值必须考虑,因为探头与介质的比值越好,越能更精准的测得物体获取的能量,由于能量转移的原因会导致测量时产生误差。我们一定要注意仪器测量的不是介质的温度,而是传感器的温度,此测量误差可以通过以下方式减小:刺入或浸入的深度10或15倍于探头的直径;当测量液体时,尽量何持液体的流动可以有效减少误差。 空气温度探头 用来测量空气温度,例如冷库、冷柜、空调室(调温)、通风场所(通风/排风)等,空气探头的传感器裸露,因此示值很容易受气流所影响,最好的解决方法是在气流为2-3m/s时,顺流轻移探头,使温度达成平衡稳定。 表面探头 用来测量物体的表面温度。空气温度探头和表面探头使用进行表面温度测量时,探头的前端必须垂直于被测物体,与被测物体充分完全的接触。必须注意的是探头与被测物的接触面必须平坦,否则在测量时则会影响测量结果。

几种常见传感器总结

几种常见传感器总结 1、红外对管: 红外对管是根据红外辐射式传感器原理制作的一种红外对射式传感器。与一般红外传感器一样,红外对管也由三部分构成:光学系统(发射管)、探测器(接收管)、信号调理及输出电路。红外探测器是利用红外辐射与物质相互作用所呈现的物理效应来探测红外辐射的。在此接收管通过对发射管所发出的红外线做出反应实现,实现信号的采集,再通过后续信号处理电路完成信号的采集和输出。 2、霍尔传感器: 霍尔传感器是基于霍尔效应的一种传感器。霍尔效应是指置于磁场中的静止载流导体, 当它的电流方向与磁场方向不一致时, 载流导体上平行于电流和磁场方向上的两个面之间产生电动势的现象。该电势称霍尔电势。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器,它具有灵敏度高,线性度好,稳定性高、体积小和耐高温等特点。对测速装置的要求是分辨能力强、高精度和尽可能短的检测时间。目前市场上的霍尔传感器都是集成了外围的测量电路输出的是数字信号,即当传感器检测到磁场时将输出高低电平信号。传感器主要包括两部分,一为检测部分的霍尔元件,一为提供磁场的磁钢。霍尔电流传感器反应速度一般在7微妙,根本不用考虑单片机循环判断的时间. 3、光电开关: 光电开关是一种利用感光元件对变化的入射光加以接收, 并进行光电转换, 同时加以某种形式的放大和控制, 从而获得最终的控制输出“开”、“关”信号的器件。上图为典型的光电开关结构图。是一种反射式的光电开关,它的发光元件和接收元件的光轴在同一平面且以某一角度相交,交点一般即为待测物所在处。当有物体经过时, 接收元件将接收到从物体表面反射的光, 没有物体时则接收不到。透射式的光电开关, 它的发光元件和接收元件的光轴是重合的。当不透明的物体位于或经过它们之间时, 会阻断光路, 使接收元件接收不到来自发光元件的光, 这样起到检测作用。光电开关的特点是小型、高速、非接触, 而且与TTL、MOS等电路容易结合。此类传感器目前也多为开关量传感器,输出的为1,0开关量信号,可以和单片机直接连接使用。光电开关广泛应用于工业控制、自动化包装线及安全装置中作光控制和光探测装置。可在自控系统中用作物体检测,产品计数, 料位检测,尺寸控制,安全报警及计算机输入接口等用途。 4、超声波传感器: 利用超声波在超声场中的物理特性和各种效应而研制的装置可称为超声波换能器、探测器或传感器。超声波探头按其工作原理可分为压电式、磁致伸缩式、电磁式等, 而以压电式最为常用。压电式超声波探头常用的材料是压电晶体和压电陶瓷, 这种传感器统称为压电式超声波探头。它是利用压电材料的压电效应来工作的: 逆压电效应将高频电振动转换成高频机械振动, 从而产生超声波, 可作为发射探头; 而利用正压电效应, 将超声振动波转换成电信号, 可用为接收探头。超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声

传感器与检测技术第二知识点总结

、电阻式传感器 1) 电阻式传感器的 原理:将被测量转化为传感器 电阻值的变化,并加上测量电路。 2) 主要的种类:电位器式、 应变式、热电阻、热敏电阻 应变电阻式传感器 1) 应变:在外部作用力下发生形变的现象。 2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化 a. 组成:弹性元件+电阻应变片 b. 主要测量对象:力、力矩、压力、加速度、重量。 c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成电压等 点的输出。 PL 3) 电阻值:R (电阻率、长度、截面积)。 A 4) 应力与应变的关系: 打二E ;(被测试件的应力=被测试件的材料弹性模量 *轴向应变) 应注意的问题: a. R3=R4; b. R1与 R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值; c. 补偿片的材料一样,个参数相同; d. 工作环境一样; 、电感式传感器 1) 电感式传感器的 原理:将输入物理量的变化转化为线圈 自感系数L 或互感系数 M 的变化 2) 种类:变磁阻式、变压器式、电涡流式。 3) 主要测量 物理量:位移、振动、压力、流量、比重。 变磁阻电感式传感器 1) 原理:衔铁移动导致气隙变化导致 电感量变化,从而得知位移量的大小方向。 点 八、、 5) 应力与力和受力面积的关系: 二(应力) F (力)

2)自感系数公式: 2 N 4 (( 磁导率)Ao (截面积) L 二2;(气隙厚度) 3) 种类:变气隙厚度、变气隙面积 4) 变磁阻电感式传感器的灵敏度取决于工作使得 当前厚度。 5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。 P56 6) 应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化) 差动变压器电感式传感器 1) 原理:把非电量的变化转化为互感量的变化。 2) 种类:变隙式、变面积式、螺线管式。 3) 测量电路:差动整流电路、相敏捡波电路。 电涡流电感式传感器 1) 电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产生电动 势,电动势将在导体表面形成闭合的电流回路。 Z W 「,r ,f ,x ) 等效阻抗 (电阻率、磁导率、尺寸 、励磁电流的频率、距 离) 2) 趋肤效应:电涡流只集中在导体表面的现象。 3) 原理:产生的感应电流产生新的交变磁场来反抗原磁场,式传感器的等效阻抗变化 4) 测量电路:调频式测量电路、调幅式测量电路。 5) 测量对象:位移、厚度、表面温度、速度、应力、材料损伤、振幅、转速。 三、电容式传感器 1) 原理:将非电量的变化转化为电容量的变化。 2) 特点:结构简单、体积小、分辨率高、动态响应好、温度稳定性好、电容量小、负载能力差、易受外 界环境的影响。 3) 测量对象:位移、振动、角度、加速度、压力,差压,液面、成分含量。 结构分类:平板和圆筒电容式传感器 1) 公式: >0 zr A d 2) 平板式电容器可分为三类:变极板覆盖面积的 的变极距型。 变面积型,变介质介电常数的 变介质型、变极板间距离 3) 测量电路:调频电路、运算放大器、变压器是交流电桥、二极管双 T 型交流电路、脉冲宽度调制电路 4) 典型应用 四、压电式传感器(有源) 1) 正压电效应:对某些电介质沿一定方向加外力使之形变,其内部产生极化而在表面产生 电荷聚集的现

传感器与检测技术期末考试试题与答案

第一章传感器基础 l.检测系统由哪几部分组成? 说明各部分的作用。 答:一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。当然其中还包括电源和传输通道等不可缺少的部分。下图给出了检测系统的组成框图。 检测系统的组成框图 传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的,因为检测系统的其它环节无法添加新的检测信息并且不易消除传感器所引入的误差。 测量电路的作用是将传感器的输出信号转换成易于测量的电压或电流信号。通常传感器输出信号是微弱的,就需要由测量电路加以放大,以满足显示记录装置的要求。根据需要测量电路还能进行阻抗匹配、微分、积分、线性化补偿等信号处理工作。 显示记录装置是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。 2.传感器的型号有几部分组成,各部分有何意义? 依次为主称(传感器)被测量—转换原理—序号 主称——传感器,代号C; 被测量——用一个或两个汉语拼音的第一个大写字母标记。见附录表2; 转换原理——用一个或两个汉语拼音的第一个大写字母标记。见附录表3; 序号——用一个阿拉伯数字标记,厂家自定,用来表征产品设计特性、性能参数、产品系列等。若产品性能参数不变,仅在局部有改动或变动时,其序号可在原序号后面顺序地加注大写字母A、B、C等,(其中I、Q不用)。 例:应变式位移传感器:C WY-YB-20;光纤压力传感器:C Y-GQ-2。 3.测量稳压电源输出电压随负载变化的情况时,应当采用何种测量方法? 如何进行? 答:测定稳压电源输出电压随负载电阻变化的情况时,最好采用微差式测量。此时输出电压认可表示为U0,U0=U+△U,其中△U是负载电阻变化所引起的输出电压变化量,相对U来讲为一小量。如果采用偏差法测量,仪表必须有较大量程以满足U0的要求,因此对△U,这个小量造成的U0的变化就很难测准。测量原理如下图所示: 图中使用了高灵敏度电压表——毫伏表和电位差计,R r和E分别表示稳压电源的内阻和电动势,凡表示稳压电源的负载,E1、R1和R w表示电位差计的参数。在测量前调整R1使电位差计工作电流I1为标准值。然后,使稳压电源负载电阻R1为额定值。调整RP的活动触点,使毫伏表指示为零,这相当于事先用零位式测量出额定输出电压U。正式测量开始后,只需增加或减小负载电阻R L的值,负载变动所引起的稳压电源输出电压U0的微小波动值ΔU,即可由毫伏表指示出来。根据U0=U+ΔU,稳压电源输出电压在各种负载下的值都可以准确地测量出来。微差式测量法的优点是反应速度快,测量精度高,特别适合于在线控制参数的测量。

传感器课程设计

传感器课程设计

摘要 本文介绍了红外线感应开关的原理,采用热释电红外探头(PT8A2621)将接收到的微弱信号加以放大,然后驱动继电器,制成红外热释电感应开关。本开关能探测来自移动人体的红外辐射,只要人体进入探测区域,开关会自动开启。该设计可作为企业、宾馆、商场及住宅的走廊、楼梯、电梯间、卫生间、库房等处的自动开关,起到“人来灯自亮,人走灯自灭”的作用,既新颖方便,又节约用电,在某些场所还能起到威慑盗窃活动的防范作用。本设计结构简单,本身不发任何类型的辐射,器件功耗很小,价格低廉,隐蔽性好,应用范围广,所以可以通过扩展而达到实际的应用。 关键词:红外线感应开关红外辐射探测区域

目录 第1章:总体方案概要 (1) 1.1意义及研究现状 (1) 1.2设计思路 (2) 第2章:设计方案各部分介绍 (3) 2.1热电是传感器的构成及工作原理 (3) 2.2低通滤波器 (4) 2.3信号放大器 (6) 第3章:仿真电路的建立与分析 (8) 3.1仿真电路建立 (8) 3.2仿真结果的分析 (8) 第4章:设计体会 (10) 参考文献 (10)

第1章:总体方案概要 1.1 意义及研究现状 电力作为一种洁净方便的能源广泛的应用于我们的生活与生产方面,因此电能的节能尤为重要,要节能首先就要做到节约能源,其次再通过科学研究发明更加人性化和节能的用电器。 热释电红外传感器是一种能检测人或动物发射的红外线而输出电信号的传感器。早在1938年,有人提出过利用热释电效应探测红外辐射,但并未受到重视,直到六十年代,随着激光、红外技术的迅速发展,才又推动了对热释电效应的研究和对热释电晶体的应用。热释电晶体已广泛用于红外光谱仪、红外遥感以及热辐射探测器,它可以作为红外激光的一种较理想的探测器。它目标正在被广泛的应用到各种自动化控制装置中。 (1)红外线感应灯控制系统的现状及发展趋势: 我国照明缺乏独创产品,模仿产品居多,基础加工落后,只顾外表,轻视功能,产品的品种比较单一,性能差。尤其是在“智能”照明方面,缺乏创新,与国外智能灯具在技术研究方面有着不小的差距。我国现阶段的照明系统一般采用主电源经配电箱分成多路配电输出线,提供照明灯回路用电,由串接在照明灯回路中的开关面板直接接通或断开供电线来实现对灯的控制,灯只有开和关两种状态,无逻辑时序及亮、暗调光控制,因而无法形成各种灯光亮度组合的场景及系统控制。全球性的能源短缺和环境污染在经济高速发展的中国表现得尤为突出,节能和环保是中国实现社会经济可持续发展所急需解决的问题。每年照明电能消耗约占全部电能消耗的12%~15%,作为能源消耗的大户,必须尽快寻找可以替代传统光源的节能环保光源。LED以其较之于传统照明光源所没有的优势,诸如较低的功率需求、较快的响应速度、绿色环保以及不断快速提高的发光效率等,成为目前我国今后照明系统发展的方向。基于目前国内国际形势,尤其是能源紧缺,智能照明必是以后照明系统的发展方向。智能照明将会使人们利用起来更加便利,改善家庭环境,不仅为建筑照明提供多种的艺术效果,而且使灯具控制和维护变得更为简单,而且具有可靠性高、安装布线容易。 (2)红外线感应灯控制系统的优点: 智能化已经成为当今建筑发展的主流技术,涵盖从空调系统、消防系统到安全防范系统以及完善的计算机网络和通信系统。但是长期以来,智能照明在国内一直被忽视,大多数建筑物仍然沿用传统的照明控制方式,部分智能大厦采用楼宇自控(BA)系统来监控照明,但也只能实现简单的区域照明和定时开关功能。相比之下,智能照明系统体现出强大的优越性,它在智能建筑中的应用越来越广泛。智能照明系统在智能建筑中的应用效果如下:

体温探头(体温传感器)监测原理框图

体温探头(体温传感器)监测原理框图 多参数功能监护仪能在医学临床诊断中提供病人的各种生理信息,通过各种类型传感器,可实时检测到人体的心电、心率、血氧、血压、体温等重要参数,实现对各生理信息的监督报警、存储和传输,是现行的一种监护病人的重要设备。 如下图:在人体温度测量的过程中,首先多参数监护仪对体温探头(体温传感器)施加正常的工作电压Vcc,珠海爱晟医疗科技生产的体温探头(体温传感器)RT一般置于电路的上偏置电路,并联一个固定的R2电阻,下偏置R1为一固定电阻。当温度变化时,体温探头的阻值发生变化,取样电压Vout在A/D识别与转换的输入电压发生变化,在A/D 识别与转换电路中,变化的输入电压与录入的温度与阻值R-T表对应的电压进行识别,输出相对应的温度变化的数字信号,通过解码识别和,在经过LCD的放大与驱动电路,驱动LCD显示出温度。

现行的体温探头(体温传感器)对于多参数监护仪来说,有YSI400和YSI700两种主流的兼容系列。其差异是温度探头(体温传感器)在同一温度下,YSI400兼容系列在人体温度R37℃对应的阻值为1.355KΩ, YSI700兼容系列在人体温度R37℃对应的阻值为6.017KΩ。我们看看在同一电路中,其电路输出的电压变化。 YSI400兼容系列YSI700兼容系列单位元件NTC MT1K355C37C3935A MT6K017C37C3935A 标称阻值R37℃ 1.355 6.017K?精度范围0.30.3% B值:25/5039353935K 供电(Vcc) 5.0 5.0V 下偏置R11010K?精度范围R111%固定电阻R2100100K?精度范围R211% 工作温度下限00℃ 工作温度上限6060℃R1正偏值10.1010.10K?R1-负偏值9.909.90K?R2+正偏值101.00101.00K?R2-负偏值99.0099.00K?

传感器知识点总结

小知识点总结: 1.传感器是能感受规定的被测量并按照一定规律转换成可 用输出信号的器件或装置,通常由敏感元件和转换元件组 成。其中,敏感元件是指传感器中直接感受被测量的部分,转换元件是指传感器能将敏感元件输出转换为适于传输 和测量的电信号部分。 2.传感器的静态特性:线性度、迟滞、重复性、分辨率、稳 定性、温度稳定性和多种抗干扰能力 3.电阻式传感器的种类繁多,应用广泛,其基本原理是将被 测物理量的变化转换成电阻值的变化,再经相应的测量电 路而最后显示被测量值的变化。 4.电位器通常都是由骨架、电阻元件及活动电刷组成。常用 的线绕式电位器的电阻元件由金属电阻丝绕成。 5.电阻丝要求电阻系数高,电阻温度系数小,强度高和延 展性好,对铜的热电动势要小,耐磨耐腐蚀,焊接性好。 6.电阻应变片的工作原理是基于电阻应变效应,即在导体产 生机械变形时,它的电阻值相应发生变化。 7.金属电阻应变片分金属丝式和箔式。箔式应变片横向效应 小。 8.电阻应变片除直接用来测量机械仪器等应变外,还可以与 某种形式的弹性敏感元件相配合,组成其他物理量的测试 传感器。 9.电感式传感器是利用线圈自感或互感的变化来实现测量 的一种装置。可以用来测量位移、振动、压力、流量、重 量、力矩、应变等多种物理量。 10.电感式传感器的核心部分是可变自感或可变互感。 11.变压器式传感器是将非电量转换为线圈间互感M的一种磁 电机构,很像变压器的工作原理,因此常称变压器式传感 器。这种传感器多采用差分形式。 12.金属导体置于变化着的磁场中,导体内就会产生感应电 流,称之为电涡流或涡流。这种现象称为涡流效应。涡流 式传感器就是在这种涡流效应的基础上建立起来的。13.电容式传感器是利用电容器原理,将非电量转换成电容 量,进而实现非电量到电量的转化的一种传感器。 14.电容式传感器可以有三种基本类型,即变极距型(非线 性)、变面积型(线性)和变介电常数型(线性)。 15.霍尔式传感器是利用霍尔元件基于霍尔效应原理而将被 测量、如电流、磁场、位移、压力等转换成电动势输出的 一种传感器。 16.热电式传感器是将温度变化转换为电量变化的装置,它利 用敏感元件的电磁参数随温度变化而变化的特性来达到 测量目的。 17.热电阻测温的基础:电阻率随温度升高而增大,具有正的 温度系数 18.目前应用最广泛的热电阻材料是铂和铜。 19.热电阻温度计最常用的测量电路是电桥电路(三线连接法 和四线连接法)。 20.工业用标准铂电阻100Ω和50Ω两种。分度号分别为 Pt100和Pt50. 21.热电偶产生的热电动势是由两种导体的接触电动势(珀尔 贴电动势)和单一导体的温差电动势(汤姆逊电动势)组 成的。 22.热敏电阻是用一种半导体材料制成的敏感元件,其特点是 电阻随温度变化而显著变化,能直接将温度的变化转换为 能量的变化。 23.测量方法按测量手段分有:直接测量、间接测量和联立测 量;按测量方式分有:偏差式测量、零位式测量和微差式 测量。 24.偏差式测量的标准量具不装在仪表内,而零位式测量和微 差式测量的标准量具装在仪表内。 25.测量误差的表示方法有以下3种:绝对误差、相对误差、 引用误差; 26.误差按其规律性分为三种,即系统误差、偶然误差和疏失 误差。 27.形成干扰的三要素:干扰源、耦合通道和对干扰敏感的接 收电路 28.为了抑制干扰,常用的电路隔离方法:光电隔离法、变压 器隔离法 简答: 1、什么是霍尔效应? 答:一块长为l、宽为b、厚为d的半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过时,在垂直于电流和磁场的方向上将产生电动势U h。这种现象称为霍尔效应。 2、简述热电偶的工作原理。 答:热电偶的测温原理基于物理的“热电效应”。所谓热电效应,就是当不同材料的导体组成一个闭合回路时,若两个结点的温度不同,那么在回路中将会产生电动势的现象。两点间的温差越大,产生的电动势就越大。引入适当的测量电路测量电动势的大小,就可测得温度的大小。 3、什么是引用误差? 答:人们将测量的绝对误差与测量仪表的上量限(满度)值的百分比定义为引用误差。 4、如何消除和减小边缘效应? 答:1、适当减小极间距,使电极直径或边长与间距比很大,可减小边缘效应的影响,但易产生击穿并有可能限制测量范围。2、电极应做得极薄使之与极间距相比很小,这样也可减小边缘电场的影响。3、在结构上增设等位环也可以用来消除边缘效应。论述:电容式传感器的设计要点 答:电容式传感器的高灵敏度、高精度等独特的优点是与其正确设计、选材以及精细的加工工艺分不开的。在设计传感器的过程中,在所要求的量程、温度和压力等范围内,应尽量使它具有低成本、高精度、高分辨率、稳定可靠和高的频率响应等。对于电容式传感器,设计时可以从下面几个方面予以考虑:1、保证绝缘材料的绝缘性能。必须从选材、结构、加工工艺等方面来减小温度等误差和保证绝缘材料具有高的绝缘性能。2、消

相关文档