文档库 最新最全的文档下载
当前位置:文档库 › 频谱分析

频谱分析

频谱分析
频谱分析

matlab 信号处理工具箱 帮助文档 谱估计专题 网络版地址

频谱分析

Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。

从数学上看,一个平稳随即过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式

()()j m

xx xx

m S R m e

ωω∞

-=-∞

=

注:()()

2

xx S X ωω=,其中()/2

/2

1

lim

N j n n N n N X x e N

ωω→∞=-=∑

πωπ-<≤。其matlab 近似

为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率

()()2/s

jfm f xx xx

m S f R m e

π∞

-=-∞

=

相关序列可以从功率谱用IDFT 变换求得:

()()()/2

2//2

2s

s

s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ

π

ωωπ--=

=?

?

序列n x 在整个Nyquist 间隔上的平均功率可以表示为

()()()

/2

/2

02s

s f xx xx xx s f S S f R d df f π

π

ωωπ-

-=

=?? 上式中的

()()2xx xx S P ωωπ=

以及()()xx xx s

S f P f f = 被定义为平稳随机信号n x 的power spectral density (PSD)(功率谱密度)

一个信号在频带[]1212,,0ωωωωπ≤<≤上的平均功率可以通过对PSD 在频带上积分求出

[]()()2

1

121

2

,xx

xx P P d P d ωωωωωω

ωωωω--

=

+??

从上式中可以看出()xx P ω是一个信号在一个无穷小频带上的功率浓度,这也是为什么它叫

做功率谱密度。

PSD 的单位是功率(e.g 瓦特)每单位频率。在()xx P ω的情况下,这是瓦特/弧度/抽或只是瓦特/弧度。在()xx P f 的情况下单位是瓦特/赫兹。PSD 对频率的积分得到的单位是瓦特,正如平均功率[]1

2

,P ωω所期望的那样。

对实信号,PSD 是关于直流信号对称的,所以0ωπ≤≤的()xx P ω就足够完整的描述PSD 了。然而要获得整个Nyquist 间隔上的平均功率,有必要引入单边PSD 的概念:

()()

020onesided xx P P πωωωωπ-≤

[]()2

121

,onesided

P P d ωωωω

ωω=

?

频谱估计方法

Matlab 信号处理工具箱提供了三种方法 Nonparametric methods (非参量类方法)

PSD 直接从信号本身估计出来。最简单的就是periodogram (周期图法),一种改进的周期图法是Welch's method 。更现代的一种方法是multitaper method (多椎体法)

Parametric methods (参量类方法)

这类方法是假设信号是一个由白噪声驱动的线性系统的输出。这类方法的例子是Yule-Walker autoregressive (AR) method 和Burg method 。这些方法先估计假设的产生信号的线性系统的参数。这些方法想要对可用数据相对较少的情况产生优于传统非参数方法的结果。

Subspace methods (子空间类)

又称为high-resolution methods (高分辨率法)或者super-resolution methods (超分辨率方法) 基于对自相关矩阵的特征分析或者特征值分解产生信号的频率分量。代表方法有multiple signal classification (MUSIC) method 或eigenvector (EV) method 。这类方法对线谱(正弦信号的谱)最合适,对检测噪声下的正弦信号很有效,特别是低信噪比的情况。

方法 描述

函数

周期图 PSD 估计

spectrum.periodogram, periodogram

Welch 重叠,加窗的信号段的平均周期图 spectrum.welch, pwelch, cpsd, tfestimate, mscohere 多椎体

多个正交窗(称为锥)的组合做谱估计

spectrum.mtm, pmtm Yule-Walker AR 时间序列的估计的自相关函数计算自回归(AR )谱估计

spectrum.yulear, pyulear

Burg

通过最小化线性预测误差计算自回归(AR )谱估计

spectrum.burg, pburg Covariance (协方差) 通过最小化前向预测误差做时间序列的自回归(AR )谱估计

spectrum.cov, pcov 修正协方差 通过最小化前向及后向预测误差做时间序列

的自回归(AR )谱估计 spectrum.mcov, pmcov MUSIC

多重信号分类

spectrum.music, pmusic 特征向量法 虚谱估计

spectrum.eigenvector, peig

Nonparametric Methods 非参数法

下面讨论periodogram, modified periodogram, Welch, 和 multitaper 法。同时也讨论CPSD 函数,传输函数估计和相关函数

Periodogram 周期图法

一个估计功率谱的简单方法是直接求随机过程抽样的DFT ,然后取结果的幅度的平方。这样的方法叫做周期图法。

一个长L 的信号[]L x n 的PSD 的周期图估计是

()()2

?L xx

s X f P f f L

=

注:这里()L X f 运用的是matlab 里面的fft 的定义不带归一化系数,所以要除以L 其中

()[]1

2/0

s L jfn f L L n X f x n e π--==∑

实际对()L X f 的计算可以只在有限的频率点上执行并且使用FFT 。实践上大多数周期图法的应用都计算N 点PSD 估计

()()2

?L k xx k

s X f P f f L

=,,0,1,,1s

k kf f k N N

=

=- 其中

()[]1

2/0

L jkn N L k L n X f x n e π--==∑

选择N 是大于L 的下一个2的幂次是明智的,要计算[]L k X f 我们直接对[]L x n 补零到长度为N 。假如L>N ,在计算[]L k X f 前,我们必须绕回[]L x n 模N 。

作为一个例子,考虑下面1001元素信号n x ,它包含了2个正弦信号和噪声

randn('state',0);

fs = 1000; % Sampling frequency

t = (0:fs)/fs; % One second worth of samples A = [1 2]; % Sinusoid amplitudes (row vector)

f = [150;140]; % Sinusoid frequencies (column vector) xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));

注意:最后三行表明了一个方便的表示正弦之和的方法,它等价于: xn = sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t));

对这个PSD 的周期图估计可以通过产生一个周期图对象(periodogram object )来计算 Hs = spectrum.periodogram('Hamming'); 估计的图形可以用psd 函数显示。

psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','twosided')

00.10.20.3

0.40.50.60.70.80.9

-80

-70-60-50-40-30-20

-100Frequency (kHz)

P o w e r /f r e q u e n c y (d B /H z )

Power Spectral Density Estimate via Periodogram

平均功率通过用下述求和去近似积分 求得

[Pxx,F] = psd(Hs,xn,fs,'twosided'); Pow = (fs/length(Pxx)) * sum(Pxx) Pow = 2.5059

你还可以用单边PSD 去计算平均功率

[Pxxo,F] = psd(Hs,xn,fs,'onesided');

Pow = (fs/(2*length(Pxxo))) * sum(Pxxo) Pow = 2.5011

周期图性能

下面从四个角度讨论周期图法估计的性能:泄漏,分辨率,偏差和方差。

频谱泄漏

考虑有限长信号[]L x n ,把它表示成无限长序列[]x n 乘以一个有限长矩形窗[]R w n 的乘积的形式经常很有用:

[][][]L R x n x n w n =?

因为时域的乘积等效于频域的卷积,所以上式的傅立叶变换是

()()()/2

/2

1

s s f L R s

f X f X W f d f ρρρ-=

-?

前文中导出的表达式

()()2

?L xx

s X f P f f L

=

说明卷积对周期图有影响。

正弦数据的卷积影响最容易理解。假设[]x n 是M 个复正弦的和

[]1

k M

j n k k x n A e ω==∑

其频谱是

()()1

M

s k k k X f f A f f δ==-∑

对一个有限长序列,就变成了

()()()()/2

1

1

/2

1s s f M M

L s k k R k R k k k s

f X f f A f W f d A W f f f δρρρ==-=

--=-∑∑?

所以在有限长信号的频谱中,Dirac 函数被替换成了形式为()R k W f f -的项,该项对应于矩形窗的中心在k f 的频率响应。

一个矩形窗的频率响应形状是一个sinc 信号,如下所示

-500

-400-300-200

-1000100200300400500

-80-70-60-50-40-30-20

-100矩形窗在物理频率上的功率谱密度

frequency/Hz

P S D d B w a t t /H z

该图显示了一个主瓣和若干旁瓣,最大旁瓣大约在主瓣下方13.5dB 处。这些旁瓣说明了频谱泄漏效应。无限长信号的功率严格的集中在离散频率点k f 处,而有限长信号在离散频率点k f 附近有连续的功率。

因为矩形窗越短,它的频率响应对Dirac 冲击的近似性越差,所以数据越短它的频谱泄漏越明显。考虑下面的100个采样的序列

randn('state',0)

fs = 1000; % Sampling frequency

t = (0:fs/10)/fs; % One-tenth of a second worth of samples A = [1 2]; % Sinusoid amplitudes f = [150;140]; % Sinusoid frequencies

xn = A*sin(2*pi*f*t) + 0.1*randn(size(t)); Hs = spectrum.periodogram; psd(Hs,xn,'Fs',fs,'NFFT',1024)

00.050.10.15

0.20.250.3

0.350.40.450.5

-80

-70-60-50-40-30-20

-100Frequency (kHz)

P o w e r /f r e q u e n c y (d B /H z )

It is important to note that the effect of spectral leakage is contingent solely on the length of the data record. It is not a consequence of the fact that the periodogram is computed at a finite number of frequency samples.

分辨率

分辨率指的是区分频谱特征的能力,是分析谱估计性能的关键概念。 要区分两个在频率上离得很近的正弦,要求两个频率差大于任何一个信号泄漏频谱的主瓣宽度。主瓣宽度定义为主瓣上峰值功率一半的点间的距离(3dB 带宽)。该宽度近似等于/s f L 两个频率为1f 2f 的正弦信号,可分辨条件是

()11s

f f f f L

?=->

上例中频率间隔10Hz ,数据长度要大于100抽才能使得周期图中两个频率可分辨。下图是只有67个数据长度的情况

randn('state',0)

fs = 1000; % Sampling frequency t = (0:fs/15)./fs; % 67 samples

A = [1 2]; % Sinusoid amplitudes f = [150;140]; % Sinusoid frequencies xn = A*sin(2*pi*f*t) + 0.1*randn(size(t)); Hs=spectrum.periodogram; psd(Hs,xn,'Fs',fs,'NFFT',1024)

00.050.10.15

0.20.250.30.350.40.450.5

-70

-60

-50

-40

-30

-20

-10

Frequency (kHz)

P o w e r /f r e q u e n c y (d B /H z )

上述对分辨率的讨论都是在高信噪比的情况进行的,因此没有考虑噪声。当信噪比低的时候,谱特征的分辨更难,而且周期图上会出现一些噪声的伪像,如下所示

0.05

0.1

0.15

0.20.250.30.35

0.4

0.45

0.5

-55-50-45-40-35-30-25-20-15

-10-5Frequency (kHz)

P o w e r /f r e q u e n c y (d B /H z )

Power Spectral Density Estimate via Periodogram

randn('state',0)

fs = 1000; % Sampling frequency

t = (0:fs/10)./fs; % One-tenth of a second worth of samples A = [1 2]; % Sinusoid amplitudes f = [150;140]; % Sinusoid frequencies xn = A*sin(2*pi*f*t) + 2*randn(size(t)); Hs=spectrum.periodogram; psd(Hs,xn,'Fs',fs,'NFFT',1024)

估计偏差

周期图是对PSD 的有偏估计。期望值可以是

()()()2/22/21s

s f L xx R s s f X f E P W f d f L f L ρρρ-????=-??????

? 该式和频谱泄漏中的()L X f 式相似,除了这里的表达式用的是平均功率而不是幅度。这暗示了周期图产生的估计对应于一个有泄漏的PSD 而非真正的PSD 。

注意()2

R W f ρ-本质上是一个三角Bartlett 窗(事实是两个矩形脉冲的卷积是三角脉冲。)这导致了最大旁瓣峰值比主瓣峰值低27dB ,大致是非平方矩形窗的2倍。 周期图估计是渐进无偏的。这从早期的一个观察结果可以明显看出,随着记录数据趋于无穷大,矩形窗对频谱对Dirac 函数的近似也就越来越好。然而在某些情况下,周期图法估计很差劲即使数据够长,这是因为周期图法的方差,如下所述。

周期图法的方差

()()()()22

2

sin 2/var 1sin 2/L s xx s s X f Lf f P f f L L f f ππ??????????≈+ ??? ???????????

L 趋于无穷大,方差也不趋于0。用统计学术语讲,该估计不是无偏估计。然而周期图在信

噪比大的时候仍然是有用的谱估计器,特别是数据够长。

修正周期图法

在fft 前先加窗,平滑数据的边缘。可以降低旁瓣的高度。

旁瓣是使用矩形窗产生的陡峭的剪切引入的寄生频率,对于非矩形窗,结束点衰减的平滑,所以引入较小的寄生频率。

但是,非矩形窗增宽了主瓣,因此降低了频谱分辨率。

函数periodogram 允许指定对数据加的窗,例如默认的矩形窗和Hamming 窗 randn('state',0)

fs = 1000; % Sampling frequency

t = (0:fs/10)./fs; % One-tenth of a second worth of samples A = [1 2]; % Sinusoid amplitudes f = [150;140]; % Sinusoid frequencies xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));

Hrect = spectrum.periodogram; psd(Hrect,xn,'Fs',fs,'NFFT',1024);

00.050.10.15

0.20.250.30.350.40.450.5

-80

-70-60-50-40-30-20

-100Frequency (kHz)

P o w e r /f r e q u e n c y (d B /H z )

Power Spectral Density Estimate via Periodogram

Hhamm = spectrum.periodogram('Hamming'); psd(Hhamm,xn,'Fs',fs,'NFFT',1024);

00.050.10.15

0.20.250.30.350.40.450.5

-80

-70-60-50-40-30-20

-100Frequency (kHz)

P o w e r /f r e q u e n c y (d B /H z )

Power Spectral Density Estimate via Periodogram

事实上加Hamming 窗后信号的主瓣大约是矩形窗主瓣的2倍。对固定长度信号,Hamming 窗能达到的谱估计分辨率大约是矩形窗分辨率的一半。这种冲突可以在某种程度上被变化窗所解决,例如Kaiser 窗。

非矩形窗会影响信号的功率,因为一些采样被削弱了。为了解决这个问题

函数函数periodogram 将窗归一化,有平均单位功率。这样的窗不影响信号的平均功率。 修正周期图法估计的PSD 是

()()2

?L xx

s X f P f f LU

=

其中U 是窗归一化常数

()1

20

1L n U w n L -==∑

假如U 保证估计是渐进无偏的。

Welch 法

包括:将数据序列划分为不同的段(可以有重叠),对每段进行改进周期图法估计,再平均。 用spectrum.welch 对象,或pwelch 函数。默认情况下数据划分为4段,50%重叠,应用Hamming 窗。

取平均的目的是减小方差,重叠会引入冗余但是加Hamming 窗可以部分消除这些冗余,因为窗给边缘数据的权重比较小。

数据段的缩短和非矩形窗的使用使得频谱分辨率下降。 下面的例子展示Welch 法的折衷。

首先用周期图法估计一个小信噪比下信号的PSD :

randn('state',1)

fs = 1000; % Sampling frequency t = (0:0.3*fs)./fs; % 301 samples

A = [2 8]; % Sinusoid amplitudes (row vector)

f = [150;140]; % Sinusoid frequencies (column vector) xn = A*sin(2*pi*f*t) + 5*randn(size(t)); Hs = spectrum.periodogram('rectangular') psd(Hs,xn,'Fs',fs,'NFFT',1024);

可以看出由于噪声太大,150Hz 正弦信号已经无法识别。

00.050.10.15

0.20.250.30.350.40.450.5

-60

-50

-40

-30

-20

-10

10

Frequency (kHz)

P o w e r /f r e q u e n c y (d B /H z )

Power Spectral Density Estimate via Periodogram

Hs = spectrum.welch('rectangular',150,50); psd(Hs,xn,'Fs',fs,'NFFT',512)

00.050.10.15

0.20.250.30.350.40.450.5

-25

-20

-15

-10

-5

5

10

Frequency (kHz)

P o w e r /f r e q u e n c y (d B /H z )

Power Spectral Density Estimate via Welch

可以看出两个信号峰,但是如果进一步削减方差,主瓣增宽也使得信号不可识别。

Hs = spectrum.welch('rectangular',100,75); psd(Hs,xn,'Fs',fs,'NFFT',512);

00.050.10.15

0.20.250.30.350.40.450.5

-20

-15

-10

-5

5

Frequency (kHz)

P o w e r /f r e q u e n c y (d B /H z )

Power Spectral Density Estimate via Welch

Welch 法的偏差

{}

()()/2

2

/2

1

?s s f welch

xx R s s f E P P W f d f L U

ρρρ-=

-?

其中s L 是分段数据的长度,()1

20

1L n U w n L -==∑是窗归一化常数。

对一定长度的数据,Welch 法估计的偏差会大于周期图法,因为s L L >

方差比较难以量化,因为它和分段长以及实用的窗都有关系,但是总的说方差反比于使用的段数。

多椎体法

周期图法估计可以用滤波器组来表示。L 个带通滤波器对信号[]L x n 进行滤波,每个滤波器的3dB 带宽是/s f L 。所有滤波器的幅度响应相似于矩形窗的幅度响应。周期图估计就是对每个滤波器输出信号功率的计算,仅仅使用输出信号的一个采样点计算输出信号功率,而且假设[]L x n 的PSD 在每个滤波器的频带上是常数。

信号长度增加,带通滤波器的带宽就在减少,近似度就更好。但是有两个原因对精确度有影响:1矩形窗对应的带通滤波器性能很差2每个带通滤波器输出信号功率的计算仅仅使用一个采样点,这使得估计很粗糙。

Welch法也可以用滤波器组给出相似的解释。在Welch法中使用了多个点来计算输出功率,降低了估计的方差。另一方面每个带通滤波器的带宽增大了,分辨率下降了。

(后面的部分因为现在研究暂时用不到,就没有翻译。)

ASK--FSK--PSK频谱特性分析

分析ASK 、FSK 、PSK 调制信号的频谱特性 ASK(Amplitude-shift Keying):幅移键控 ASK 指的是振幅键控方式。在二进制数字调制中每个符号只能表示0和1(+1或-1)。但在许多实际的数字传输系统中却往往采用多进制的数字调制方式。与二进制数字调制系统相比,多进制数字调制系统具有如下两个特点: 第一:在相同的信道码源调制中,每个符号可以携带log2M 比特信息,因此,当信道频带受限时可以使信息传输率增加,提高了频带利用率。但由此付出的代价是增加信号功率和实现上的复杂性。 第二,在相同的信息速率下,由于多进制方式的信道传输速率可以比二进制的低,因而多进制信号码源的持续时间要比二进制的宽。加宽码元宽度,就会增加信号码元的能量,也能减小由于信道特性引起的码间干扰的影响等。 ASK 这种调制方式是根据信号的不同,调节正弦波的幅度。幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。对于二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。 设S(t)频谱为S(ω),S2ASK(t)频谱为: 21 ()[()()] 2ASK c c S w s w w s w w =++- 2ASK 信号的频谱是将数字基带频谱中心搬移到载频处,带宽为基带带宽的两倍;又由 ()() n s n s t a g t nT =-∑ 可知,基带信号是由若干基本脉冲组成的, 因而基带信号的带宽完全由基本脉冲带宽决定。2ASK 信号的带宽取决于基带基本脉冲的带宽,是基本脉冲带宽的两倍。设矩形脉冲: 1,||/2()()() 20,s s t T T f t g t f t ≤?=?=-??其它 对其傅里叶变换得()f t 频谱为: sin(/2) ()/2S wT F w W =

AdobeAudition系列教程二频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用Adobe Audition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

Adobe-Audition-系列教程(二):频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真!? 1. 频谱显示模式? Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

Adobe-Audition-系列教程(二):频谱分析仪

AdobeAudition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 AdobeAudition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spe ctral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。

ASK--FSK--PSK频谱特性分析

分析ASK 、FSK 、PSK 调制信号的频谱特性 ASK(Amplitude-shift Keying):幅移键控 ASK 指的是振幅键控方式。在二进制数字调制中每个符号只能表示0和1(+1或-1)。但在许多实际的数字传输系统中却往往采用多进制的数字调制方式。与二进制数字调制系统相比,多进制数字调制系统具有如下两个特点: 第一:在相同的信道码源调制中,每个符号可以携带log2M 比特信息,因此,当信道频带受限时可以使信息传输率增加,提高了频带利用率。但由此付出的代价是增加信号功率和实现上的复杂性。 第二,在相同的信息速率下,由于多进制方式的信道传输速率可以比二进制的低,因而多进制信号码源的持续时间要比二进制的宽。加宽码元宽度,就会增加信号码元的能量,也能减小由于信道特性引起的码间干扰的影响等。 ASK 这种调制方式是根据信号的不同,调节正弦波的幅度。幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。对于二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。 设S(t)频谱为S(ω),S2ASK(t)频谱为: 21 ()[()()] 2ASK c c S w s w w s w w =++- 2ASK 信号的频谱是将数字基带频谱中心搬移到载频处,带宽为基带带宽的两倍;又由 ()() n s n s t a g t nT =-∑ 可知,基带信号是由若干基本脉冲组成的, 因而基带信号的带宽完全由基本脉冲带宽决定。2ASK 信号的带宽取决于基带基本脉冲的带宽,是基本脉冲带宽的两倍。设矩形脉冲: 1,||/2()()() 20,s s t T T f t g t f t ≤?=?=-??其它 对其傅里叶变换得()f t 频谱为:

实验:典型信号频谱分析报告

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并 能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

频谱分析(完整版)

Matlab 信号处理工具箱 帮助文档 谱估计专题 翻译:无名网友 & Lyra 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()()2 xx S X ωω=,其中()/2 /2 1lim N j n n N n N X x e N ωω→∞=-=∑πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数 的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ--= =? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ--= =? ? 上式中的 ()()2xx xx S P ωωπ= 以及()() xx xx s S f P f f =

用FFT对信号作频谱分析

实验三:用FFT 对信号作频谱分析 一、实验原理与方法 1、用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N π2,因此要求D N ≤π2。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 2、周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 3、对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 二、实验内容 1、对以下序列进行FFT 谱分析: )()(41n R n x = ?????≤≤-≤≤+=n n n n n n x 其他0 7483 01 )(2 ?????≤≤-≤≤-=n n n n n n x 其他0 7433 04)(3 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析。程序见附录3.1、实验结果见图3.1。 2、对以下周期序列进行谱分析: n n x 4cos )(4π = n n n x 8cos 4cos )(5π π+= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。程序见附录3.2、实验结果见图3.2。 3、对模拟周期信号进行频谱分析: t t t t x πππ20cos 16cos 8cos )(6++= 选择采样频率Fs=64Hz ,FFT 的变换区间N 为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。程序见附录3.3、实验结果见图3.3。

电子科技大学频谱分析实验

频谱分析仿真实验 一、实验目的: 1.了解离散傅立叶变换理论; 2.熟悉典型信号的波形和频谱特征。 3.编程实现DFT 变换,对信号进行频谱分析。 4.学会使用LabVIEW 提供的频谱分析函数。 二、实验内容: 1.设计DFT 变换程序,求取仿真信号的幅值频谱和相位谱。 2.使用LabVIEW 提供的频谱分析函数,分析仿真信号的频谱。 3.分析正弦、方波、三角波、锯齿波信号的频谱,并与理论计算值比较。 4.被测信号叠加噪声后,再进行测量和分析误差。 三、实验器材: 安装有LabVIEW 软件的计算机1台 四、实验原理: 1.非正弦周期函数的傅立叶分解 (1).定义 如果给定的周期函数)(t f 满足狄里赫利条件(函数在任意有限区间内,具有有限个极值点与不连续点),则该周期函数定可展开为一个收敛的正弦函数级数,如下式: ∑∑∞ =∞ =ψ+ω+ =ω+ω+ =1 010) cos() sin cos ()(k k km k k k t k A A t k b t k a a t f 其中,上式中的各个系数的计算公式为: ? ?-= = 22 0)(1 )(1T T T dt t f T dt t f T a T 为信号的周期。 ????π π -π-ωωπ=ωωπ= ω= ω= )()cos()(1)()cos()(1)cos()(2 )cos()(22022 0t d t k t f t d t k t f dt t k t f T dt t k t f T a T T T k ??? ?π π -π-ωωπ=ωωπ= ω= ω= )()sin()(1)()sin()(1)sin()(2 )sin()(22022 t d t k t f t d t k t f dt t k t f T dt t k t f T b T T T k 在该展开式中,0A 称为周期函数)(t f 的恒定分量,也称为直流分量;与原周期函数的周期相同的正弦分量)cos(11ψ+ωt A m 称为一次谐波,也称为基波分量。其他各项称为高次谐波(如2次谐波、3次谐波等等) (2).几种常用周期信号的傅立叶展开 1)方波

基于Matlab的相关频谱分析程序教程

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中()/2 /2 1 lim N j n n N n N X x e N ωω→∞=-=∑ πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ--= =? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ- -= =?? 上式中的

典型信号频谱分析

实验一典型信号频谱分析 一.实验要求 1.在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。 2.了解信号频谱分析的基本方法及仪器设备。 二.实验原理提示 1.典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本实验利用labVIEW虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2.频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时-频关系转换分析傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f为频率。用傅立叶变换将信号变换到频率域,其数学表达式为: 式中Cn画出信号的幅值谱曲线,从信号幅值谱判断信号特征。 本实验利用labVIEW平台上搭建的频谱分析仪来对信号进行频谱分析。由虚拟信号发生器产生一个典型波形的电压信号,用频谱分析仪对该信号进行频谱分析,得到频谱特性数据。分析结果用图形在计算机上显示出来,也可以通过打印机打印出来。

机械测试信号时域和频域特征分析

第一章绪论 1.1 概述 机械信号是指机械系统在运行过程中各种随时间变化的动态信息,经各种测试仪器拾取并记录和存储下来的数据或图像。机械设备是工业生产的基础,而机械信号处理与分析技术则是工业发展的一个重要基础技术。 随着各行各业的快速发展和各种各样的应用需求,信号分析和处理技术在信号处理速度、分辨能力、功能范围以及特殊处理等方面将会不断进步,新的处理激素将会不断涌现。当前信号处理的发展主要表现在:1.新技术、新方法的出现;2.实时能力的进一步提高;3.高分辨率频谱分析方法的研究三方面。 信号处理的发展与应用是相辅相成的,工业方面应用的需求是信号处理发展的动力,而信号处理的发展反过来又拓展了它的应用领域。机械信号的分析与处理方法从早期模拟系统向着数字化方向发展。在几乎所有的机械工程领域中,它一直是一个重要的研究课题。 机械信号分析与处理技术正在不断发展,它已有可能帮助从事故障诊断和监测的专业技术人员从机器运行记录中提取和归纳机器运行的基本规律,并且充分利用当前的运行状态和对未来条件的了解与研究,综合分析和处理各种干扰因素可能造成的影响,预测机器在未来运行期间的状态和动态特性,为发展预知维修制度、延长大修期及科学地制定设备的更新和维护计划提供依据,从而更为有效地保证机器的稳定可靠运行,提高大型关键设备的利用率和效率。 机械信号处理是通过对测量信号进行某种加工变换,削弱机械信号中的无用的冗余信号,滤除混杂的噪声干扰,或者将信号变成便于识别的形式以便提取它的特征值等。机械信号处理的基本流程图如图1.1所示。 图1.1 机械信号处理的基本流程 本文主要就第三、第四步骤展开讨论。

频谱分析

频谱分析: 将时域信号变换至频域加以分析的方法称为频谱分析。频谱分析的目的是把复杂的时间历程波形,经过傅里叶变换分解为若干单一的谐波分量来研究,以获得信号的频率结构以及各谐波和相位信息。 (傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。)

很多情况下的振动是周期的,任何关于时间的周期函数都能展开成傅立叶级数,即无限多个 测试信号的频域分析是把信号的幅值、相位或能量变换以频率坐标轴表示,进而分析其频率特性的一种分析方法,又称为频谱分析。对信号进行频谱分析可以获得更多有用信息,如求得动态信号中的各个频率成分和频率分布范围,求出各个频率成分的幅值分布和能量分布,从而得到主要幅度和能量分布的频率值。 由时间函数求频谱函数的傅里叶变换公式就是将该时间函数乘以以频率为系数的指数函数之后,在从负无限大到正无限大的整个区间内,对时间进行积分,这样就得到了与这个时间函数对应的,以频率为自变量的频谱函数。频谱函数是信号的频域表示方式。根据上述傅里叶变换公式,可以求出常数(直流信号)的频谱函数为频域中位于零频率处的一个冲激函数,表示直流信号就是一个频率等于零的信号。与此相反,冲激函数的频谱函数等于常数,表示冲激函数含有无限多个、频率无限密集的正弦成分。同样的,单个正弦波的频谱函数就是频域中位于该正弦波频率处的一对冲激函数。 利用傅里叶变换的方法对信号进行分解,并按频率展开,使其成为频率的函数,进而在频率域中对信号进行研究和处理的一种过程,称为频谱分析。 对信号进行频谱分析,是对其进行傅里叶变换,得到其振幅谱与相位谱。分析软件主要为Matlab。 对于信号来说,分模拟信号与数字信号。进行频谱分析时,对于模拟信号来说,首先对其进行抽样,使其离散化,然后利用离散傅里叶变换(DFT)或者快速傅里叶变换(FFT),然后对其幅度(ABS)和相位(ANGLE)的图像进行分析,而对于数字信号来说,则可直接进行离散傅里叶变换或快速傅里叶变换。

频谱分析方法

频谱分析方法 频谱分析方法是在设备故障诊断中最常使用的方法。常用的频谱是功率普和幅值谱。 功率谱表示振动功率随振动频率进行分布的情况,物理意义比较清楚; 幅值谱表示对应于各频率的谐波振动分量所具有的振幅,应用时比较直观。幅值谱上谱线高度就是该频率分量的振幅大小。 频谱分析的目的就是将构成信号的各种频率成分都分解开来,以便于识别振源。 1.进行频谱分析首先要了解频谱的构成成分,依据故障的推理方式的不同,对频谱的构成成分的了解可按不同的层次进行。(1). 按高、中、低三个频段进行分析,初步了解主故障发生的部位; (2). 按:工频、超谐波、次谐波、进行分析,用以确定故障的范围:对中、平衡、松动类故障均与工频(也称:基频、 转频)的整数倍或分数倍有着密切的关联; (3). 按频率成分的来源进行分析。如:零部件共振的频率成分、随机噪声干扰成分、非线性调制生成的和差频成分等等; (4). 按特征频率进行分析。振动特征频率是各振动零部件有故障时必定产生的的频率成分。如:不平衡必定产生工频,

气流在叶片间流动必定产生通过频率,齿轮啮合时有啮合 频率,过临界转速时有共振频率,零部件受冲击时会被激 发出固有频率等等。 2. 对主振成分进行频谱分析时,首先要关注幅值较高的谱峰,因为其量值对振动的总水平影响较大。如:工频成分突出,往往是不平衡所致,要加以区别的是轴弯曲、共振、角不对中、基础松动、定/转子同心度不良等故障。2倍频为平行不对中、转轴有横裂纹。(0.42~0.48)倍频过大,为涡动失稳。(0.5~0.8)倍频是流体旋转脱离。特低频是喘振。整数倍频是叶片故障。啮合成分高是齿轮表面接触不良。谐波丰富是松动。边频是调制。分频是流体激振、摩擦等等。 3. 做频谱对比发现异常时、在分析和诊断过程时应注意从它们的发展变化(趋势)中得出准确的结论,单独一次测量往往很难对故障做出准确的判断。 有些振动成分虽然较大,但很平稳、不随时间变化,对机器运行不构成威胁。 一些较小的频率成分,特别是那些增长较快的分量常常预示故障的发展,应于重视。 特别注意的是,不存在的或比较弱的频率分量突然出现并扶摇直上,可能在较短时间内破坏机器的正常工作。

频谱分析仪的使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A 功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

ASK,FSK,PSK频谱特性分析

数字ASK 、FSK 、PSK 调制的频谱分析 摘要:信号频谱是信号区别于其他信号一项非常基本的特征。将信号进行傅里叶变换(能量有限)或者傅里叶级数展开(能量无限),可以得到每一个频率点上信号功率的分布。各类调制的实质是将基带信号的低通频谱搬移到高频载波频率上,使得所发送的频带信号的频谱匹配于频带信道的带通特性。 关键字:ASK FSK PSK 频谱 数字基带信号通过正弦波调制成为带通型的频带信号,即调制器将二进制符号序列映射到与信道匹配的频带上去。数字调制的基本原理是用数字基带信号去控制正弦型载波的某参量,如:控制载波的幅度,称为振幅键控(ASK );控制载波的频率,称为频率键控(FSK );控制载波的相位,称为相位键控(PSK )。带通型数字调制有二进制及M 进制(M>2)之分。二进制数字调制是将每个二进制符号映射为相应的波形之一,如2ASK 。在M 进制数字调制中,将二进制数字序列中每K 个比特构成一组,对应于M 进制符号之一(M=2K ),如MFSK 。 一、二进制启闭键控(OOK ) 1、OOK 信号的产生 二进制启闭键控(OOK :On-Off Keying)又名二进制振幅键控(2ASK),它是以单极性不归零码序列来控制正弦载波的开启与关闭。 上图中,{n a }的取值为1或0,b T 为二进制符号间隔,发送脉冲成形低通滤波器的冲激响应为)(t g T ,)(t g T 可能是升余弦滚降滤波器的冲激响应,现暂设其为矩形不归零脉冲。 二进制序列通过脉冲成形低通滤波器后的限带信号为 )()(b T n n nT t g a t b -= ∑∞ -∞ = 其中)(t b 为单极性不归零脉冲序列。 将此)(t b 与载波相乘,得到2ASK 信号: t nT t g a A t s c b T n n ASK ωcos )]([)(2-=∑∞ -∞ = 若)(t g T 是矩形不归零脉冲,在b T t ≤≤0期间,2ASK 信号也可表示为如下形式

转动设备常见振动故障频谱特征及案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡就是由于转子部件质量偏心或转子部件出现缺损造成的故障,它就是旋转机械最常见的故障。结构设计不合理,制造与安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13、2 mm/s,垂直11、8mm /s,轴向12、0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平与垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2、4 mm/s。 二、不对中 转子不对中包括轴系不对中与轴承不对中两种情况。轴系不对中就是指转子联接后各转子的轴线不在同一条直线上。轴承不对中就是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高; 2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频与多

倍频,但以工频与2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16、0 mm/s,由振动频谱图(图3)可以瞧出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动就是指机器的底座、台板与基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为 1x。第二种类型的松动主要就是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X与3X振动分量。第三种类型的松动就是由于部件间不合适的配合引起的,产生许多振动谐波分量,如1X、2X、??,nX,有时也会产生1/2X、1/3X、??等分数谐波分量。这时的松动通常就是轴承盖里轴瓦的松动、过大的轴承间隙、或者转轴上零部件

几种频谱分析报告细化方法简介

高分辨率频谱分析算法实现 【摘要】随着电子技术的迅速发展,信号处理已经深入到很多的工程领域,信号频域的特征越来越受到重视。在信号通信、雷达对抗、音频分析、机械诊断等领域,频谱分析技术起到很大的作用。基于数字信号处理(DSP)技术的频谱分析,如果采用传统的快速傅里叶(FFT)算法则只能比较粗略的计算频谱,且分辨率不高;但是采用频谱细化技术就能对频域信号中感兴趣的局部频段进行频谱分析,就能得到很高的分辨率。常见的方法有基于复调制的ZoomFFT 法、Chirp-Z 变换、Yip-ZOOM 变换等,但是从分析精度、计算效率、分辨率、灵活性等方面来看,基于复调制的ZoomFFT 方法是一种行之有效的方法。实验结果表明该方案具有分辨率高、速度快的特点,具有较高的工程应用价值。 【关键字】频谱分析;频谱细化;Z变换

【Abstract】With the rapid development of electrical technology, signal processing has been widely used in many engineering fields and special attention has been paid to the characteristic of signal frequency. The spectrum analyzer technology takes a great part in the fields like signal communication, rador countermeasures, audio analysis, mechanism diagnose. Based on digital signal processing (DSP) technology, the spectrum analysis system, while the use of the fast Fu Liye traditional (FFT) algorithm can calculate the frequency spectrum is rough, and the resolution is not high; but using spectrum zoom technique can analyze the frequency spectrum of the local frequency segment interested in frequency domain signal, can get very high resolution. A common method of complex modulation ZoomFFT method, Chirp-Z transform, Yip-ZOOM transform based on, but from the analysis accuracy, computational efficiency, resolution, spirit Active perspective, Zoom-FFT method based on the polyphonic system is a kind of effective method. Simulation results show that this method is featured by high resolution and high speed, and has high application value. 【Key words】signal processing; spectrum analysis; spectrum zooming; Z-transformation

相关文档