文档库 最新最全的文档下载
当前位置:文档库 › 高锰钢材料研究

高锰钢材料研究

高锰钢材料研究
高锰钢材料研究

高锰钢材料研究

(一)化学成分:

高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是0.75%-1.45%。受冲击大,碳含量低。锰含量在11.0%-14.0%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于0.5%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于0.07%。铬是提高抗磨性的,一般在2.0%左右。

(二)高锰钢加工所用刀具:

高锰钢具有较高的塑性和韧性,加工硬化严重,切削温度高,断屑困难,容易造成崩刃,因此要求刀具材料具有红硬性高、耐磨性好,有较高的强度、韧性和导热系数。

切削高锰钢可选用硬质合金、立方氮化硼PCB N刀具材科。目前加工效率比较高的还是立方氮化硼刀具,其中ZB1000系列的立方氮化硼刀具有较高的抗弯强度和冲击韧,可减少切削时的崩刃。同时,ZB1000系列的立方氮化硼刀具的导热性较好,有利于切削热从刀尖散走,降低刀尖温度,避免刀尖过热软化。

如果车削工时短【单件加工工时小于5分钟】,可选用

硬质合金刀具大切深刻考虑YG系列,小切深考虑用YW系列。如果加工工件时间长,表面质量差,粗加工选择整体立方氮化硼刀具,精加工可考虑陶瓷刀具或涂层刀片。

如果工件大或加工余量大,车削硬化会非常严重,如果是批量生产,用加夹车刀最划算。

(三)高锰钢的切削速度选择:

高锰钢的切削加工性很差,为了维持一定的刀具耐用度,切削速度应低些。

1.采用硬合金刀具时,Vc=20~40m/min,其中,较低的速度用于粗车,较高的速度用于半精车和精车。

2.采用立方氮化硼PCBN刀具时,可以选用较高的切削速度,一般Vc=60~100m/min 比用硬质合金刀具加工效率提高1~4倍。

(四)高锰钢切削深度和进给量选择:

采用硬合金刀具时,Vc=20~40m/min,其中较低的速度用于粗车,较高的速度用于精车或半精车。采用陶瓷刀具时,可以选用较高的切削速度,一般Vc=50~80m/min.

高锰钢在切削过程中,由于塑性变形和切削力的影响,切削层及表层下一定深度范围内会产生严重的硬化现象(如浇筑冒口)。为了使刀尖避开毛坯表层和前一次走刀造成的

硬化层,应选择较大的切削深度和进给量。一般小工件粗车时αp=3~6mm,f=0.3~0.8mm/r;大件粗车时可取αp=6~10mm;精车时αp=1~3mm;f=0.2~0.4mm/r;

【立方氮化硼刀具车削加工高锰钢的参数及刀具牌号选

用 1,粗加工用立方氮化硼整体聚晶刀片 BN-S20,吃刀深ap=2-3.5mm(根据实际加工余量,BN-S20 牌号刀具最大吃刀深度可以超过 10mm);走刀量 Fr=0.25-0.8mm/r;线速度v=85m/min 。刀具耐用度:3 小时/刃口!刀片能旋 8 次 -12 次使用,一个刀片可用三个班。可见 BN-S20 牌号刀具使用成本与其他刀具牌号比较有很大的优势。 2,立方氮化硼刀具 BN-S20 牌号精加工高锰钢时,吃刀深 ap=0.5-1mm;走刀量 Fr=0.15mm/r;线速度 v=135m/min 。】

(五)高锰钢的用途:

如果在钢中加入2.5—3.5%的锰,那么所制得的低锰钢简直脆得象玻璃一样,一敲就碎。然而,如果加入13%以上的锰,制成高锰钢,那么就变得既坚硬又富有韧性。高锰钢加热到淡橙色时,变得十分柔软,很易进行各种加工。另外,它没有磁性,不会被磁铁所吸引。现在,人们大量用锰钢制造钢磨、滚珠轴承、推土机与掘土机的铲斗等经常受磨的构件,以及铁轨、桥梁等。

高锰钢分类及简介

高锰钢分类及简介 一、高锰钢分类及简介 、高锰钢的来源1年英国人哈德菲尔德1883 1882年第一次获得奥氏体组织的高锰钢,

取得了高锰钢专利。高锰钢依其用途的不同可分为两大Hadfield)A.(R.类:、耐磨钢2%,大部1.500.90%~10%~15%,碳含量较高,一般为这类钢含锰 )%:.0%以上。其化学成分为(分在10 15.1.50Mn10.0~ C0.90~这类高锰钢的用量最多,常用来制作30~1.0 S ≤0.05 P≤0.10 Si0. 挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组 成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的保温消除铸态组织,~1100℃,即将钢加热到热处理方法是固溶处理,1050得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。%0.2340~470MPa ζ15%~85热处理后力学性能为:σb615~1275MPa σ 225 ~/cm2 HBl80%ψ15%~45 aKl96~294J高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符 合检验标准时,仍可使用。奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变 强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。~,高

冲击载荷时,可以达到HB500低冲击载荷时,可以达到HB300~400。高硬度的 硬化层~20mm800。随冲击载荷的不同,表面硬化层深度可达10可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。%~1(C 1.10中国常用的高锰钢的牌 号及其适用范围是:ZGMn13— 用于普通件,%)%~ZGMn13—2(C1.001.40用于低冲击件,1.50%)用%~1.20)用于复杂件,%~3(C0.901.30%)ZGMn13-4(C0.90%—ZGMn13 14.0%~%。11.04于高冲击件。以上种牌号钢的锰含量均为在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交 割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬 化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易马氏 体的形成和形变孪晶的产生创造了条件。常出现堆垛层错,从而为ε规成分的 高锰钢的形变硬化层中常可以看到高密度位错、位错塞积和缠结。马氏体和形 变孪晶的出现使钢难以变形,尤其是后者的作用更大。上述ε各种因素都使 高锰钢的硬化层得到很高程度的强化,硬度大幅度提高。 高锰钢极易加工硬化,因而很难加工,绝大多数是铸件,极少量用锻 14()()℃),钢的压方法加工。高锰钢的铸造性能较好。钢的熔点低(约为50℃),钢的导热性低,因此钢水流动性约为液、固相线温度间隔较小,(2的5倍,为 碳素钢好,易于浇注成型。高锰钢的线膨胀系数为纯铁的1.倍,故铸造时体

耐磨高锰钢铸件的各类热处理

.耐磨高锰钢铸件的铸态余热热处理 为缩短热处理周期,可利用铸态余热进行高锰钢水韧处理。其工艺为:铸件于ll00~1180。C时自铸型中取出,经除芯清砂后,铸件温度允许冷却到900~1000。C,然后装入加热到l050。1080。C的炉内保温3~5h后水冷。该处理工艺简化了热处理工艺,减少了铸件在型内的冷N啪3,但ue产操作上有一定难度。表11—18为不同热处理工艺的高锰钢试样的力学性能。 2.耐磨高锰钢铸件的沉淀强化热处理 耐瞎高锰钢沉淀强化热处理的目的,是在加入适量碳化物形成元素(如钼、钨、钒、钛、铌和铬)的基础上,通过热处理方法在高锰钢中得到一定数量和大小的弥散分布的碳化物第二相质点,强化奥氏体基体,提高高锰钢的抗磨性能。但这种热处理工艺较复杂,并使生产成本增加。 3.耐磨高锰钢铸件的固溶热处理——水韧处理耐磨高锰钢的铸态组织中有大量析出的碳化物,因而其韧度较低,使用中易断裂。 高锰钢铸件固溶热处理的主要目的,是消除铸态组织中晶内和晶界上的碳化物,得到单相奥氏体组织,提高高锰钢的强度和韧度,扩大其应用范围。 要消除其铸态组织的碳化物,须将钢加热至1040。C以上,并保温适当时间,使其碳化物完全固溶于单相奥氏体中,随后快速冷却得到奥氏体固溶体组织。这种固溶热处理又称为水韧处理。 (1)水韧处理的温度:水韧温度取决于高锰钢成分,通常为1050~1100。含碳量高或者合金含量高的高锰钢应取水韧温度的上限,如ZGMnl3钢和GXl20Mnl7钢。但过高的水韧温度会导致铸件表面严重脱碳,并促使高锰钢的晶粒迅速长大,影响高锰钢的使用性能。图ll-25为高锰钢在1100保温2h后铸件表面碳和锰元素的变化。 (2)加热速率:高锰钢比一般碳钢的导热性差,高锰钢铸件在加热时应力较大而易开裂,因此其加热速率应根据铸件的壁厚和形状而定。一般薄壁简单铸件可采用较快速率加热;厚壁铸件则宜缓慢加热。为减少铸件在加热过程中变形或开裂,生产上常采用预先在650左右保温,使厚壁铸件内外温差减小,炉内温度均匀,之后再快速升到水韧温度的处理工艺。图ll—26为典型高锰钢件的热处理工艺规范。 (3)保温时间:保温时间主要取决于铸件壁厚,以确保铸态组织中的碳化物完全溶解和奥氏体的均匀化。通常保温时间可按铸件壁厚25mm保温lh计算。图ll—27为保温时间对高锰钢表面脱碳层深度的影响。 (4)冷却:冷却过程对铸件的性能指标及组织状态有很大的影响。 水韧处理时铸件入水前的温度在950必上,以免碳化物重新析出。为此,铸件从出炉到A水时间不应超过30s;水温保持在30度以下.淬火后最高水温不超过60度。水温较高时高锰钢的力学性能显著下降。水韧处理时水量须达到铸件和吊栏重量的8倍以上,若用非循环水需定期增加水量.暑好使用水质干净的循环水或采用压缩空气搅动池水。用吊篮吊淬时,可采用摆动吊篮的方式加速铸件的冷却。 高锰钢水韧处理多用台车式.热处理炉。铸件人水常用自动倾翻或吊篮吊淬方式。前者对大件及形状复杂的薄壁件易引起变形,淬火后铸件从水池中取出也较为困难;后者淬火后取出铸件方便,但吊篮消耗大。 4.耐磨中铬钢铸件的热处理耐磨中铬钢铸件热处理的目的,是得到高强韧性和高硬度的马氏体基体组织,以提高钢的强度、韧度及耐磨性。

高锰钢分类及简介

一、高锰钢分类及简介 1、高锰钢的来源 1882年第一次获得奥氏体组织的高锰钢,1883年英国人哈德菲尔德(R.A.Hadfield)取得了高锰钢专利。高锰钢依其用途的不同可分为两大类: 2、耐磨钢 这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%): C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。 上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ0.2340~470MPa ζ15%~85%ψ15%~45% aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。 奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。 中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~ 1.50%)用于低冲击件,ZGMn13—2(C1.00%~1.40%)用于普通件, ZGMn13—3(C0.90%~1.30%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。 在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬

最新各种阀门的堆焊材料

各种阀门的堆焊材料

各种阀门堆焊焊条 D502阀门堆焊焊条符合 GB EDCr-A1-03 说明: D502是钛钙型药皮的1Cr13型阀门堆焊焊条,可交直流两用,焊接工艺良好。堆焊金属为1Cr13半铁素体高铬钢。堆焊层具有空淬特性,一般不须进行热处理,硬度均匀,亦可在750-800℃退火软化,当加热至900-1000℃空冷或油淬后,可重新硬化。 用途:这是一种通用性的表面堆焊用焊条,用于堆焊工作温度在450℃以下的碳钢或合金钢的轴及阀门等。 熔敷金属化学成分(%)化学成分 C S P Cr 其它元素总量 保证值≤0.15 ≤0.030 ≤0.040 10.0~16.0 ≤2.50 堆焊层硬度:(焊后空冷)HRC≥40 参考电流(AC、DC)焊条直径(mm)φ2.5 φ3.2 φ4.0 φ5.0 焊接电流(A) 50~80 80~120 120~160 160~200 注意事项: 1.焊前焊条须经150℃左右烘焙1h。 2.焊前需将工件预热至300℃以上,焊后进行不同热处理可获得相应的硬度。 D507阀门堆焊焊条符合 GB EDCr-A1-15 说明: D507是低氢钠型药皮的1Cr13阀门堆焊焊条,采用直流反接。堆焊金属为1Cr13半铁素体高铬钢。堆焊层具有空淬特性,一般不须进行热处理,硬度均匀,亦可在750-800℃退火软化,当加热至900-1000℃空冷或油淬后,可重新硬化。 用途:这是一种通用性的表面堆焊用焊条,用于堆焊工作温度在450℃以下的碳钢或合金钢的轴及阀门等。 熔敷金属化学成分(%)化学成分 C S P Cr 其它元素总量 保证值≤0.15 ≤0.030 ≤0.040 10.0~16.0 ≤2.50 堆焊层硬度:(焊后空冷)HRC≥40

高锰钢与超高锰钢铸件生产技术要点

高锰钢与超高锰钢铸件生产技术要点在高能量冲击的工作条件下,高锰钢与超高锰钢铸件的应用范围是广阔的。许多铸造厂,对生产此类钢种铸件缺乏必要的认识。现对具体操作做简要的说明,供生产者参考。 1化学成分 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是%-%。受冲击大,碳含量低。锰含量在%-%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于%。铬是提高抗磨性的,一般在%左右。 2炉料 入炉材料是由化学成分决定的。主要炉料是优质碳素钢(或钢锭)、高碳锰铁、中碳锰铁、高碳铬铁及高锰钢回炉料。这里特别提醒的是有人认为只要化学成分合适,就可以多用回炉料。这个认识是有害的。某些厂之所以产品质量不佳,皆出于此。不仅高锰钢、超高锰钢,凡是金属铸件,绝不可以过多的使用回炉料,回炉料不应超过25%。那么,回炉料过剩该如何只要把废品降到最低,回炉料就不会过剩。3熔炼 这里着重讲加料顺序,无论用中频炉,还是电弧炉熔炼,总是先熔炼碳素钢,而各类锰铁和其他贵重合金材料,要分多次,每次少量入炉,贵重元素在最后加入,以减少烧损。料块应尽量小些,以50-80mm

为宜。熔清后,炉温达到1580-1600℃时,要脱氧、脱氢、脱氮,可用铝丝,也可用Si-Ca合金或SiC等材料。将脱氧剂一定压到炉内深处。金属液面此时用覆盖剂盖严,隔断外界空气。还要镇静一段时间,使氧化物、夹杂物有充足时间上浮。然而,不少企业,只将铝丝甚至铝屑,撒在金属液面上,又不加覆盖,岂不白白浪费!在此期间,及时用中碳锰铁来调整锰与碳的含量。 钢液出炉前,将浇包烘烤到400℃以上是十分必要的。在出炉期间用V-Fe、Ti-Fe、稀土等多种微量元素做变质处理,是使一次结晶细化的必要手段,它对产品性能影响是至关重要的。 4炉料与造型材料 要延长炉龄,当分清钢种与炉衬的属性。锰钢属碱性,炉衬当然选用镁质材料。捣打炉衬要轮番周而复始换位操作。添加炉衬材料不可过厚,每次80毫米左右为宜,捣毕要低温长时间烘烤。如提高生产效率,笔者建议采用成型坩埚(沈阳力得厂和恒丰厂均有成品出售),从拆炉到装成,不用1小时,即可投入生产,同时成型坩埚对防穿炉大有裨益。当然,炉龄的长短与操作者大有关系。不少操作者像掷铅球的运动员一样,把炉料从三四米之外投入炉内,既不安全又伤炉龄,应将炉料置于炉口旁预热,然后用夹子慢慢地将炉料顺炉壁放入。 造型材料和涂料也应与金属液属性相一致,或者用中性材料(如铬铁矿砂、棕刚玉等)。若想获得一次结晶细化的基体,采用蓄热量大的铬铁矿砂是正确的,尤其是消失模生产厂,用它将克服散热慢的缺点。5铸造工艺设计

堆焊工艺规程

堆焊工艺规程文件编号: 制定: 日期: 审核: 日期: 批准: 日期: 版次:生效日期: 受控: 堆焊工艺规程 文件编号:ROCWI:A/1

1、目的: 为了更好的指导堆焊生产,使现场生产人员能够规范操作,检验员对堆焊产品进行有效检验,特制定本堆焊焊接工艺规程。 2、适用范围 本规范适用于本公司对钢管、法兰、管件、压力容器元件、阀门部件、采油树部件、热交换器部件及其他需要堆焊的产品进行耐腐蚀合金堆焊,以及平焊、横焊、相贯线、锥形等复杂异形焊接服务。 3、引用标准 API SPEC 5LD-2009 API SPEC 5L-2007 ASME V ASME IX ASTM A370 ASTM A388 ASTM A751 ASTM E10 ASTM E165 4、职责 、质检部 a) 制定产品检验测试计划(ITP), b) 审查并保存焊材和母材的材质证明,并对焊材进行成分复检, 对母材进行成分和性能复验; c) 对焊接过程进行定期抽查以确保焊工按照正确的WPS和WI进行

工作。 d) 对成品进行外观,化学成分,物理性能,耐腐蚀性能进行检验。 、技术部 a) 负责编制焊接工艺指导书(WPS); b) 绘制加工图纸(客户确认后); c) 根据实际生产产品特点针对性的做好工艺细则(WI); d)根据WPS安排制造试件并见证或邀请第三方(如DNV, BV, Moody 等)共同见证工艺评定报告(PQR)。 、生产部 a) 根据焊接工艺指导书制定焊接工艺卡、 b) 编制生产计划单,合理安排进行焊接生产加工。 5、内容 、母材 进入现场的管子、法兰、管件、压力容器元件、阀门部件等母材应符合相应标准和设计文件规定要求,并具有材料质量证明书或材质复验 报告。 、焊接材料(以下简称焊材) 进入现场的焊材应符合相应标准和技术文件规定要求,并具有焊材 质量证明书。施工现场的焊材二级库已建立并正常运行。焊材的管 理按《焊接材料管理规范》规定要求执行。 、主要设备及其工具 堆焊工作站

高锰钢工艺(学术参考)

高锰钢工艺 1.高锰钢有哪几种?其性能如何? 锰含量约为11%~18%的钢称高锰钢。常用的铸造高锰钢ZMn13的化学成分为:Mn含量11%~14%,c含量1.0%~1.4%,Si含量0.3%~1.0%,P 含量<0.03%,S含量<0.05%。 高锰钢是一种耐磨钢,经过水韧处理的高锰钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到1000℃~1100℃,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出,从而保持了单一的均匀的奥氏体组织。经过水韧处理的高锰钢称为高锰奥氏 体钢。其力学性能为:σ b =980 MPa,σs=392 MPa,HB210,δ=80%,α k =2.94 MJ /m2。 高锰钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点σs 较低,只有σb的40%,因此具有较高的塑性和韧性。高锰钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450~550,因此有了较高的耐磨性。 高锰钢可分为高碳高锰耐磨钢、中碳高锰无磁钢、低碳高锰不锈钢和高锰耐热钢。几种高锰钢的牌号和性能见表5-1。

2.高锰钢有哪些切削加工特点? 高锰钢锰含量高达11%~18%,具有较高的塑性和韧性,在切削加工中有以下特点: (1)加工硬化严重:高锰钢在切削过程中,由于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为 HB200~220,加工后表面硬度可达HB450~550,硬化层深度0.1~0.3 mm,其硬化程度和深度要比45号钢高几倍。严重的加工硬化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2)切削温度高:由于切削功率大,产生的热量多,而高锰钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高锰钢的切削温度比45号钢高200℃~250 ℃,因此,刀具磨损严重,耐用度降低。 (3)断屑困难:高锰钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高锰钢的线膨胀系数与黄铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高锰钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3.怎样通过热处理改善高锰钢的切削性能? 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高锰钢的切削性能可以通过高温回火来实现。将高锰钢加热至600℃~650℃,保温两小时后冷却,使高锰钢的奥氏体组织转变为索氏体组织,其加工硬化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4.切削高锰钢时怎样选择刀具材料?

高锰钢简介

锰 锰最重要的用途就是制造合金----锰钢 锰钢的脾气十分古怪而有趣:如果在钢中加入2.5—3.5%的锰,那么所制得的低锰钢简直脆得象玻璃一样,一敲就碎。然而,如果加入13%以上的锰,制成高锰钢,那么就变得既坚硬又富有韧性。高锰钢加热到淡橙色时,变得十分柔软,很易进行各种加工。另外,它没有磁性,不会被磁铁所吸引。现在,人们大量用锰钢制造钢磨、滚珠轴承、推土机与掘土机的铲斗等经常受磨的构件,以及铁锰锰轨、桥梁等。 高锰钢 高锰钢(high manganese steel)是指含锰量在10%以上的合金钢。高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。高锰钢极易加工硬化,因而很难加工,绝大多数是铸件,极少量用锻压方法加工。高锰钢的铸造性能较好。钢的熔点低(约为14()()℃),钢的液、固相线温度间隔较小,(约为50℃),钢的导热性低,因此钢水流动性好,易于浇注成型。高锰钢的线膨胀系数为纯铁的1.5倍,为碳素钢的2倍,故铸造时体积收缩和线收缩率均较大,容易出现应力和裂纹。为提高高锰钢的性能进行过很多合金化、微合金化、碳锰含量调整和沉淀强化处理等方面的研究,并在生产实践中得到应用。介稳奥氏体锰钢的出现则可较局gao大幅度降低钢中碳、锰含量并使钢的形变强化速度提高,可适用于高和中低冲击载荷的工况条件,这是高锰钢的新发展。 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是0.75%-1.45%。受冲击大,碳含量低。锰含量在11.0%-14.0%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于0.5%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于0.07%。铬是提高抗磨性的,一般在2.0%左右。 无磁钢 这类钢含锰大于17%,碳含量一般均在1.0%以下,常在电机工业中用于制作护环等。这类钢的密度为7.87~7.98g/cm3。由于碳、锰含量均高,钢的导热能力差。导热系数为12.979W/(m?℃),约为碳素钢的1/3。由于钢是奥氏体组织,无磁性,其磁导率μ为1.003~1.03(H/m)。 Mn13奥氏体高锰钢是碳含量为0.9%~1.3%、锰含量为11%~14%的高合金钢。奥氏体高锰钢经过热处理后,具有很高的韧性,是一种非常强韧的非磁性合金,在冲击载荷作用下,表面

高锰钢抗磨性提高的方法

高锰钢抗磨性提高的方法 摘要:采用细化晶粒和沉淀硬化的方法来提高高锰钢抗磨性。 关键词:高锰钢抗磨性细化晶粒沉淀硬化 对于承受较大冲击负荷的磨粒磨损条件下,通常采用奥氏体锰钢。因为这种具有高的韧性和高的应变硬化能力,在高冲击载荷下具有高的耐磨性。适宜制作具有抵抗凿削磨损的耐磨件。但在很多磨料磨损的情况下,如高锰钢齿板、碎煤机环锤、衬板未能表现出较高的抗磨粒性能,甚至还出现了早期失效。为此,本工作采用细化晶粒和沉淀硬化的方法来解决这个问题,提高奥氏体锰钢的抗磨性,适应工况条件的要求。 1、实验内容 采用两种实验方案:细化奥氏体晶粒,以提高奥氏体锰钢的强韧性;进行沉淀硬化处理,进一步强化锰钢基体,改善屈服强度,获得弥散分布的碳化物组织,提高抗磨性。 1.1 细化晶粒 ZGMn13钢的化学成分如表1所示。 快速循环热处理工艺:用基尔试块制作金相及夏氏冲击试样,用梅花试样制作拉伸试样。其热处理工艺如下表2所示。 通过快速循环热处理,可使高锰钢奥氏体晶粒获得细化。显微组织的观察表明,阶梯加热,循环加热和交替加热等三种热处理方法,均可获得比普通水韧处理细得多的奥氏体晶粒。图1为循环热处理后的组织,晶粒度为6-8级。图2为普通水韧处理的组织,晶粒度1-3级。 1.2 沉淀硬化处理 在原循环热处理工艺基础上,分别进行低温和中温长时间失效,温度为350℃、450℃和540℃,时间为6小时,8小时和10小时,通过不同工艺处理后,得出下列结果。其工艺方案如表3所列。机械性能如表4所列。(如表3) 高锰钢在细化奥氏体晶粒后,再经过450℃×8小时的失效处理,使其碳化物不论在晶内或晶界都达到了弥散分布,而且呈粒状。而经1080℃×3小时固溶,再经过450℃×8小时失效的高锰钢,则未能得到弥散分布的碳化物,并且碳化物呈块状、针状、且聚集于晶界附近。通过比较可以看出,高锰钢细化晶粒后,进行沉淀硬化处理,可以得到比较满意的奥氏体+弥散分布的细粒状碳化物组织。 当时效温度超过450℃时,碳化物则逐渐由粒状变成针状,而且逐渐粗大。组织变脆,但硬度达到失效峰值为HRC45-47。(如表4) 2、工业实验 工业试验在HSZ300的小型破碎机上进行的。破碎矿物主要是煤矿,其中有部分煤矸石,粒度不规则,硬度为7-8(f),破碎比为1/10。环锤已破碎11000小时矿物,还没有明显磨损,仍在继续使用。原普通水韧处理的锤头,平均破碎8000多小时就磨损得磨损。另外,经过快速循环热处理的齿板,其耐磨性也得到较大的提高。 3、结语 (1)通过快速循环热处理等强韧化方法,明显地细化了高锰钢奥氏体组织,使其晶粒度分别达到5-8级(普通水韧处理可达1-3级)。提高了钢的强韧性。(2)在细化的奥氏体锰钢基体上,进行沉淀硬化处理。既得奥氏体+弥散分布粒状碳化

高锰钢

高锰钢分为两大类,一类是耐磨钢,一类是无磁钢。这里主要涉及耐磨钢。这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%): C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。 上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ 0.2340~470MPa ζ15%~85%ψ15%~45% aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。 奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。 中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~1.50%)用于低冲击件,ZGMn13—2(C1.00%~1.40%)用于普通件,ZGMn13—3(C0.90%~1.30%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。 在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从

各种工具、模具用堆焊材料

各种工具、模具用堆焊材料

牌号 供货 形式 HRC 特性及用途 各种工具、模具用堆焊材料 供货形式:1=焊条; 2=气保护焊丝(2.1=盘状焊丝、2.2=直条焊丝); 3=埋弧焊材; 4=气焊用焊丝; 5=药芯焊丝73G2 A 73G2 UP 73G2 1 2 3 55-58 53-58 48-52 堆焊金属具有高强高韧耐热性能,通过热处理可调整硬度,非常适合堆焊承受强烈摩擦、压力、中等冲击载荷以及高温下(550℃)运行的工件。如夹持钳、滑动和引导面、热冲冷冲工具、阀门、 挤压柱塞、铸造工具、修整工具、热剪切工具等。也可用于制造新的冷作热作工具。 73G2为碱性药皮耐磨堆焊焊条。A 73G2为镀铜焊丝。 埋弧焊丝配UP Flux70-01焊剂,用于堆焊初轧机座、校直辊等。 73G3 A 73G3 UP 73G3 1 2 3 45-50 42-46 38-42 堆焊金属具有高硬高韧耐热性能,通过热处理可调整硬度,非常适合堆焊承受摩擦、压力、冲击载荷以及高温下(550℃)运行的工件。如锻模锻锤、冲模、铸模、热剪刃等。也可在碳钢和低合 金钢上堆焊来制作新的冷作热作工具。 73G3为碱性药皮耐磨堆焊焊条。A 73G3为镀铜焊丝。 埋弧焊丝配UP Flux70-01焊剂。用于堆焊初轧机座、校直辊、热剪刃等。 73G4 A 73G4 UP 73G4 1 2 3 38-42 38-42 32-35 堆焊金属具有高韧耐热性能,非常适合堆焊承受磨损、压力、冲击载荷以及高温下(550℃)运行的热作工具及结构件,如热剪刃、锻座锻锤、锻模、压铸模、滚轮、摆轮等。也可用于制作新的 工具。 73G4为碱性药皮耐磨堆焊焊条。A 73G4为镀铜焊丝。 埋弧焊丝配UP Flux70-01焊剂。用于堆焊各种初轧辊、成形辊等。 UP 73G6 3 32-35 埋弧堆焊焊丝,配焊剂UP Flux70-01。用于堆焊初轧辊、型材辊、连铸辊、起重机支撑轮等。 690 A 696 1 2.2 60-64 堆焊金属具有较高的抗摩擦、压力、冲击及高温(550℃)性能。通过热处理可调整硬度。 用于高速钢切割工具的修复与制造,尤其是剪切刃口和工作面的堆焊。如车削工具、成形刀具、绞刀等。 也可在碳钢和低合金钢母材上堆焊制作新工具。 673 A 673 1 2 ~58 通过热处理可调整堆焊金属的硬度,耐热到550℃。 用于堆焊冷作热作工具、模具,如压铸模、锻造工具、热剪刃、热修整工具和冷切刀。 也可在碳钢和低合金钢母材上堆焊剪切刃口制作新工具。 694 A 694 1 2.1 ~45 通过热处理可调整硬度。 用于堆焊主要承受摩擦和压力载荷的高合金钢制热作工具、模具。如热切割刀具、锻造工具刃口、锻模、压铸模具、注塑模、修整模、轴向辊等。因其良好的金属间滑动性能,也适合堆焊导 向和滑动面,以及在碳钢和低合金钢母材上堆焊高质量的工作面。 702 A 702 1 2 34-37 焊态时易于加工,经480℃/3h时效处理后硬度可达50-54HRC。 用于冷作热作工具钢的修复和制造。如冲压工具、冷热切割刃具、拉拔工具、铸铝和注塑模具等。 665 1 35-40 通过热处理可调整硬度55-57HRC。 用于工具钢和Cr12切割工具的修复。 661 A 661 1 2.2 ~40 特别适合于在碳钢和低合金钢上的耐蚀耐热堆焊,如流体装置紧固面等。工作温度可到500℃。 6805Kb 1 35480℃/4h时效硬化后可达45HRC。 适合于阀门及密封面堆焊以及GX4CrNiCuNb16-4(No. 1.4540)钢的焊接。 A 6824MoLC 2 ~220 用于过渡层及修复热作工具。 653 1 ~240 适合于制造模具。 700/7000 A 776 1 2 ~200 加工硬化可到450HB。 适合于堆焊承受冲击、压力、磨损及高温载荷的热作工具,如锻模、冲模、修整模、热冲压工具。 700为低氢焊条;7000为酸性焊条,熔敷率180%。 7008 1 ~260 加工硬化可到500HB。 用于碳钢合金钢热作工模具的堆焊修复,如压力喷嘴、心轴、修边工具、剪切刀等。 A 5519Co 2 ~250 时效硬化可到40HRC。 用于堆焊受最高热载荷的热作工具,如锻压模。 7010 1 ~230 耐热到700℃。加工硬化可到450HB。 用于承受高热、热冲击、压力、冲击和磨损综合载荷热作工具的修复和制造。如铸锭的热切割刀刃,板坯剪切刃,冲边刀刃,锻模等。 614Kb A 15/ A 18 1 2 Akv≥80J 焊接工艺性能及焊缝金属机械性能良好。 主要用作工模具耐磨堆焊时的隔离层堆焊。 6025 A 6025 1 2 Akv≥ 100J 焊接工艺性能及焊缝金属机械性能良好。 用于含镍低合金塑料模具钢的焊接和堆焊。

材料X120Mn12性能资料

zgmn13 国标的ZGMn13,也就是德标X120Mn12。几年前上海已有人开发生产了Mn13的轧制钢板,各种性能均高于ZGMn13很多。在强冲击、大压力的环境下,Mn13轧制钢板的耐磨性能非常优良。经预加工处理后的Mn13轧制钢板在无冲击或较小压力的环境下,耐磨性能也远高于进口低合金耐磨钢,当然比国产耐磨钢NM420也要强很多。而且切割焊接性能也非常好。目前在抛丸机行业应用非常广泛,价格也比几年前低了很多。 Mn13特性及适用范围: 具有高的抗拉强度、塑性和韧性以及无磁性,即使零件磨损到很薄, 仍能承受较大的冲击载荷而不致破裂,可用于铸造各种耐冲击的磨损件, 如球磨机衬板、挖掘机斗齿、破碎机牙板等。一般用于结构简单, 要求以耐磨为主的低冲击铸件,如衬板、齿板、破碎壁、轧臼壁、辊套和铲齿。 这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%):C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ 0.2340~470MPa ζ15%~85%ψ15%~45%aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~1.50%)用于低冲击件, ZGMn13—2(C1.00%~1.40%)用于普通件,ZGMn13—3(C0.90%~1.30%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从

高锰钢 (2)

高锰钢(high manganese steel)是指含锰量在10%以上的合金钢 一、高锰钢分类及简介 1、高锰钢的来源 1882年第一次获得奥氏体组织的高锰钢,1883年英国人哈德菲尔德(R.A.Hadfield)取得了高锰钢专利。高锰钢依其用途的不同可分为两大类: 2、耐磨钢 这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%): Co:90~1.50Mn:10.0~15.0 Si:0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。 上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ0.2340~470MPaδ15%~85%ψ15%~45% aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。 奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。 常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~1.50%)用于低冲击件,ZGMn13—2(C1.00%~1.40%)用于普通件,ZGMn13—3(C0.90%~1.30%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。 在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从而为马氏体的形成和形变孪晶的产生创造了条件。常规成分的高锰钢的形变硬化层中常可以看到高密

高锰钢件消失模铸态直接水韧处理

高锰钢浇注和水韧工艺参数 一:结晶组织对高锰钢性能的影响 粗大的柱状晶组织必然伴随有枝晶间的显微缺陷,如显微疏松。也会伴随有较高程度的化学偏析,使力学性能和耐磨性降低。再有就是铸态组织中碳化物形貌和分布特征受一次结晶组织粗细的影响,初晶组织细则它也细。碳化物虽然在热处理时可以溶解、但粗大的碳化物往往使热处理后奥氏体晶界的致密度降低,且奥氏体基体内化学成分不均匀,使力学性能降低。固此一次结晶组织对高锰钢的性能影响是很大的! 1)浇铸温度对一次结晶和机械性能的影响: 浇铸温度/℃一次结晶组织特征σb/MPaa K/J。Cm 21460 细等轴晶392.27 166.71 1550 等轴晶372.65 127.49 1620 柱状晶362.84 58.84 2)浇铸温度和载面厚度对晶区比例的影响: 浇铸温度 /℃ 等轴晶区占高度/%柱状晶区占高度/%120mm载面60mm载面120mm载面60mm载面 1550 32~35 14~16 48~50 28~30 1450 38~42 22~24 32~35 10~12 1400 73~75 100 20~22 ——

3)浇铸温度对力学性能的影响: 浇铸温度 /℃ 力学性能 σb/MPaδ/%φ/%aK/J。Cm2 1310~1360 715.88 23.0 22.2 215.75 1360~1410 630.57 17.0 22.5 140.24 由此可知浇铸温度对高锰钢的力学性能有极为明显的影响! 4) 铸型冷却能力对一次结晶特征的影响: 铸型种类 浇铸温度/ ℃ 1380~1420 1420~1430 1450~1460 干砂型等轴晶等轴晶等轴晶 冷金属型边缘少量柱状晶断面大部分柱状晶柱状晶贯穿全断面消失模铸态直接水韧处理 一:工艺要点 (1)消失模样组装要尽量将大小、壁厚相当的模样组装在一起,使铸件的冷却速度基本一致、才能满足铸件同时入水时对水韧温度的要求。(2)型砂的选择:由于铸态水淬没有热处理过程中的再结晶和成分的均匀化,因此为加强铸件在凝固过程中的冷却速度,得到较细的一次结晶组织!宜选用宝珠砂、锆英矿砂、铬铁矿砂和钛铁矿砂等,它们的导热系数为石英砂的2~3倍,可加快铸型的凝固速度。 (3)打箱与入水时间的确定:入水温度直接关系到水韧处理的成败!一般打箱时铸件温度应低于1100 ℃,入水温度应高于950℃。因此应根据铸件的大小、壁厚及室温主高低来确定打箱与入水时间。

影响高锰钢力学性能的几个因素

影响高锰钢力学性能的几个因素 【摘要】论述了影响高锰钢力学性能的因素有碳化物、夹杂物、化学成分、晶粒度。经实践摸索,我们认为碳化物、夹杂物是影响高锰钢力学性能的主要因素,在检验过程中应严格控制。根据我厂实际情况,对成分控制比较严格,一般都能达到成分要求,所以对性能影响也不会太大。当不存在穿晶现象时,晶粒度对高锰钢的力学性能影响较小,在检验过程中可做为一般检验项目。 高锰钢是历史最悠久,也是世界各国通用的一种抗磨钢。这种钢适用于在重力冲击或挤压的工作条件下经受摩擦的零件,这种奥氏体钢具有加工硬化性质,在冲击或重力挤压下,其表层发生加工硬化现象,硬度比原来大幅提高,可达到450~550HBW,而冲击韧度相应有所降低。这种具有高硬度的表层使铸件具有良好的抗磨性,至于铸件的内部则由于没有受到加工硬化,仍旧保持其原有的硬度和良好的韧性。当铸件的工作表面被磨掉一层后,显露出来的新的一层又被加工硬化,而同样获得了高的硬度,由于表层具有高硬度而内部具有良好的韧性这两方面很好的结合,所以铁路道岔中高锰钢辙叉铸件就是利用这一特性制造的。为了保证高锰钢的这种力学性能,必须严格检查其关键项点,使产品保质保量,避免生产过程中出现废品。 一、高锰钢的铸态组织 含Mn=11%~14%、C=0.9%~1.4%的钢,在900℃以上时,具有单一奥氏体组织,当温度降低到约900℃以下时将有碳化物Fe3C析出,

当温度继续下降至620℃左右时,开始共析转化,并一直持续到约300℃时终了,在这样平衡条件下得到的金相组织为铁素体和碳化物。但在铸造条件下,高锰钢结晶过程中的冷却速度大于平衡条件,因此组织转变不能按平衡条件进行,而是共析转化来不及发生,得到的金相组织是由奥氏体和碳化物组成的。 二、对影响高锰钢力学性能的因素探讨 1.碳化物对高锰钢性能的影响:无论是构成网状的析出碳化物还是未熔碳化物,对高锰钢力学性能的影响非常大,使其冲击值及抗拉强度大大降低,远远低于标准规定的数值,Rm≥750MPa,ak≥147j/cm2,所以,碳化物会严重影响高锰钢的力学性能,在检查时应严格控制。 2.非金属夹杂物对高锰钢性能的影响:碳化物不仅影响高锰钢的力学性能,非金属夹杂物的含量对钢的性能也有显著影响。高锰钢由于含大量的锰,因而在钢液中会产生大量的氧化锰(MnO),由于氧化锰在钢液中的溶解度很大,而在固态钢中的溶解度极小,因此在钢液凝固时,大量的氧化锰以非金属夹杂物的形式析出在钢的晶界上,降低钢的冲击韧度,并使铸件的热裂纹倾向增大。因为在冶炼高锰钢时,要求钢液脱氧良好,尽量降低钢液中氧化锰的含量。另外,由于非金属夹杂物的强度和塑性都很低,它们在钢液中的作用有如空洞或裂纹一样,割裂钢的本体,降低钢的性能。非金属夹杂物越多,对钢的本体割裂作用越大,显著降低钢的性能,且随着钢中夹杂物数量的增多,钢的性能大幅降低。

高锰钢工艺

1<高猛钢有哪几种其性能如何 猛含量约为11%?18%的钢称高镒钢。常用的铸造高镭钢ZMnl3的化学成分为:Mn含量11%?14%, C含量%?%,Si含量%?%, P含量<%, S含量<%。 高猛钢是一种耐磨钢,经过水韧处理的高镭钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到IOOO O C?1100°C,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出, 从而保持了 单一的均匀的奥氏体组织。经过水韧处理的高镭钢称为高猛奥氏体钢。其力学性能为:O b=980MPa, σs=392 MPa, HB210, δ =80%, Qk=MJ / 高猛钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点OS较低, 只有Ob的40%,因此具有较高的塑性和韧性。高镭钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450?550,因此有了较高的耐磨性。 高镒钢可分为高碳高猛耐磨钢、中碳高猛无磁钢、低碳高猛不锈钢和高猛耐热钢。儿种高镭钢的牌号和性能见表54。 1 2. 高链钢有哪些切削加工特点 高猛钢猛含量高达11%?18%,具有较高的塑性和韧性,在切削加工中有以下特点:

(1) 加工硬化严重:高猛钢在切削过程中,山于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为HB200?220,加工后表面硬度可达HB450?550,硬化层深度?mm,其硬化程度和深度要比45号钢高儿倍。严重的加工*更化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2) 切削温度高:山于切削功率大,产生的热量多,而高镒钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高镭钢的切削温度比45号钢拓200。C?250 °C,因此,刀具磨损严重,耐用度降低。 ⑶断屑困难:高猛钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高镒钢的线膨胀系数与黃铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高猛钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3. 怎样通过热处理改善高锈钢的切削性能 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高猛钢的切削性能可以通过高温回火来实现。将高镭钢加热至600°C?650o C,保温两小时后冷却,使高镭钢的奥氏体组织转变为索氏体组织,其加工硕化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4. 切削高猛钢时怎样选择刀具材料 高猛钢属难加工材料,对刀具材料要求较高。一般来说,要求刀具材料红硬性高、耐磨性好,有较高的强度、韧性和导热系数。切削高镭钢可选用硬质合金、金属陶瓷做刀具材科,也可以用CN25涂层刀片或CBN(立方氮化硼)刀具。□前应用最普遍的还是硬质合金,其中YG类硬质合金具有较高的抗弯强度和冲击韧性(与YT类硬质合金比较),可减少切削时的崩刃。同时,YG类硬质合金的导热性较好,有利于切削热从刀尖散走,降低刀尖温度,避免刀尖过热软化。YG类硬质合金的磨加工性较好,可以磨出锐利的刃口。一般情况下,刀具的耐用度取决于刀具材料的红硬性、耐磨性和冲击韧性。YG类硬质合金中含钻量较多时,抗弯强度和冲击韧性好,特别是提高了疲劳强度,因此适于在受冲击和震动的条件下作粗加工用;含钻量较少时,其硬度、耐磨性和耐热性较高,适合作连续切削的精加工。 YT类硬质合金具有较高的硬度和较高的耐热性,但与YG类硬质合金相比,其强

相关文档