文档库 最新最全的文档下载
当前位置:文档库 › 最新实验四Linux内核编译阅读Linux内核b源码b

最新实验四Linux内核编译阅读Linux内核b源码b

最新实验四Linux内核编译阅读Linux内核b源码b
最新实验四Linux内核编译阅读Linux内核b源码b

实验四L i n u x内核编译阅读L i n u x内核b

源码b

实验四Linux内核编译、阅读Linux内核源码一.实验目的

1.了解Linux内核的版本和组成

2.掌握Linux系统内核的编译操作方法

3.了解Linux系统内核的配置方法

4.通过阅读Linux的内核源码,学习系统调用的执行流程,为深入学习内核原理打下牢固基础

二.实验工具与设备

1.准备最新的Linux操作系统内核,或装有Linux操作系统的计算机并能直接连入Internet

2.实验设备:计算机

三.实验内容

1.实验预备知识

内核是一个操作系统的核心,负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。

Linux的一个重要特点是其源代码的公开性,所有的内核源程序都可以在/usr/src/linux下找到,大部分应用软件也遵循GPL而设计,任何人都可以获取相应的源程序代码。全世界任何一个软件工程师都可以将自己认为优秀的代码加入到其中,由此带来的一个明显好处,是修补漏洞的快速以及对最新软件技术的利用。Linux的内核是这些特点最直接的代表。

Linux作为一个自由软件,在广大爱好者的支持下,内核版本不断更新。新的内核修订了旧内核的bug,并增加了许多新的特性。如果用户想要使用这些

新特性,或想根据自己的系统度身定制一个更高效、更稳定的内核,就需要重新编译内核。

通常,更新的内核支持更多的硬件,具备更好的进程管理能力,运行速度更快、更稳定,并且会修复老版本中发现的许多漏洞等。经常选择升级更新的系统内核,是Linux用户的必要操作内容。

为了正确合理地设置内核编译配置选项,只编译系统需要功能的代码,原因如下。

(1)自己定制编译的内核运行更快(具有更少的代码)。

(2)系统将拥有更多的内存(内核部分将不会被交换到虚拟内存中)。

(3)不需要的功能编译进入内核,可能会增加被系统攻击者利用的漏洞。

(4)将某种功能编译为模块方式比编译到内核的方式速度要慢一些。

内核编译模式可以分为编译到内核和编译成模块两种模式。要增加对某部分功能的支持,例如网络等,可以把相应部分编译到内核中(build-in),也可以把该部分编译成模块(module)动态调用。如果编译到内核中,在内核启动时就可以自动支持相应部分的功能,其优点是方便、速度快,机器启动即可使用这部分功能。其缺点是使内核变得庞大起来,无论是否需要这部分功能,它都会存在。建议将经常使用的部分直接编译到内核中,如网卡;如果编译成模块,则生成对应的.o文件,使用时可以动态加载,优点是不会使内核过分庞大,缺点是必须得由用户自己来调用这些模块。

2.下载新内核

在https://www.wendangku.net/doc/ca18645669.html,/pub/linux/kernel可以下载Linux的最新内核代码。内核的源代码按内核版本(v2.4、v2.5等)组织到多个不同的目录中。在

每个目录中,文件被冠以“linux-x.y.z.tar.gz”和“linux-x.y.z.tar.bz2”等,这些就是Linux内核的源代码。同时存在一些类似“patch-x.y.z.gz”和“patch-x.y.z.bz2”的文件,这是用来更新前面完整的内核源代码的补丁包。

本实验从https://www.wendangku.net/doc/ca18645669.html,/pub/linux/kernel/v2.4/linux-2.4.20.tar.gz下载linux-2.4.20.tar.gz内核,并将下载的内核linux-2.4.20.tar.gz保存在“/usr/src”目录下。

3.内核解包

编译内核前,应对下载的内核文件进行解包,操作方法如下。

(1)用以下命令将当前目录改到/usr/src下: cd /usr/src

(2)如果/usr/src目录下存在一个“linux”的目录,应将其改名为“linux.old”;

如果不存在,则直接执行以下命令:

tar xzvf ./linux-2.4.20.tar.gz

(3)执行该命令后,内核源代码被释放到一个新的“linux-2.4.20”目录下。

注意:目录名可能因版本的不同而有所区别。为方便起见,将该目录名字改为“linux”,操作命令如下: mv linux-2.4.20 linux

4.配置内核

Linux提供多种配置内核的方法,可以根据需要与爱好使用下面命令中的一个。

make config命令:基于文本配置界面的配置命令。

make menuconfig命令:基于文本菜单配置界面的配置命令。

make xconfig命令:基于图形窗口模式配置界面的配置命令。

本实验以基于图形窗口模式配置界面的配置命令为例配置内核,具体操作步骤如下。

(1)用以下命令将当前目录改到解包文件目录“/usr/src/linux”下:cd

/usr/src/linux

(2)点选菜单进行配置(可和下面的(3)结合进行配置)

KDE -> 选项 -> 系统 -> Linux内核配置程序

进入配置窗口后,在Path to Kernel Source下对于Architecture选i386。对于每一选项,在“ ”左击可改变设置

(3)也可用以下配置命令打开配置对话框: make xconfig

执行命令后,弹出配置对话框,如图4-1所示。配置内核的选项很多。选择每一项配置时,可以有三个选择按钮,如图4-2所示。

图4-1 Linux内核配置对话框

每个按钮的意义如下。

y:将该功能编译进内核。

n:不将该功能编译进内核。

m:将该功能编译成可以在需要时动态插入到内核中的模块。

单击“Main Menu”按钮,返回主配置窗口;单击“Next”按钮,配置下一个配置项;单击“Prev”按钮,配置上一个配置项。

在编译内核的过程中,大部分选项可以使用缺省值,只有部分要根据用户的需要进行更改。修改的原则是将与内核其他部分关系较远且不经常使用的部分功能代码编译成为可加载模块,有利于减小内核的长度,减小内核消耗内存,简化该功能相应的环境改变时对内核的影响;不需要的功能不选;与内核关系紧密而且经常使用的部分功能代码则直接编译到内核中。

图4-2 配置内核的选择按钮

几个主要的配置项如下:

① Loadable module support:设置对可加载模块的支持,有以下三个选项:

–Enable loadable module support:除非准备把所有需要的内容都编译到

内核里面,否则该项应该是必选的(y)。

–Set version information on all module symbols:有关版本信息加载项,可

以不选它(n)。

–Kernel module loader:让内核在启动时有自己装入必需模块的能力,建

议选上(y)。

② Processor type and features:设置CPU的类型,有关的几个选项如下:

–Processor family:根据所使用的计算机选择CPU类型。

–High Memory Support:设置大容量内存的支持,可以支持到64GB,一

般可以不选。

–Math emulation:协处理器仿真,如果CPU中没有数字协处理器则应选

中,不过从486以后一般的CPU都有数字协处理器了,所以一般不选

(n)。

–MTTR support:MTTR支持,可不选(n)。

–Symmetric multi-processing support:对称多处理支持,如果计算机上有

多于一个CPU就一定要选,若是单CPU,则不选(n)。

③ General setup:对普通的一些属性进行设置。一般使用缺省设置,经常使用的一些选项:

–Networking support:网络支持,必选,没有网卡也建议选上(y)。

–PCI support:PCI卡的支持,如果使用了PCI接口卡,则必选(y)。

–PCI access mode:PCI卡的存取模式,可供选择的有BIOS、Direct和Any,一般可选Any。

–Support for hot-pluggabel devices:热插拔设备支持,支持的不是太好,可不选。

–PCMCIA/CardBus support:PCMCIA/CardBus支持,有PCMCIA 就必选了(y)。

④ Parallel port support:并口的支持,一般应选上(y)。

Linux内核修改与编译图文教程

Linux 内核修改与编译图文教程 1

1、实验目的 针对Ubuntu10.04中,通过下载新的内核版本,并且修改新版本内核中的系统调用看,然后,在其系统中编译,加载新内核。 2、任务概述 2.1 下载新内核 https://www.wendangku.net/doc/ca18645669.html,/ 2.2 修改新内核系统调用 添加新的系统调用函数,用来判断输入数据的奇偶性。 2.3 进行新内核编译 通过修改新版内核后,进行加载编译。最后通过编写测试程序进行测试 3、实验步骤 3.1 准备工作 查看系统先前内核版本: (终端下)使用命令:uname -r 2

3.2 下载最新内核 我这里使用的内核版本是 3.3 解压新版内核 将新版内核复制到“/usr/src”目录下 在终端下用命令:cd /usr/src进入到该文件目录 解压内核:linux-2.6.36.tar.bz2,在终端进入cd /usr/src目录输入一下命令: bzip2 -d linux-2.6.36.tar.bz2 tar -xvf linux-2.6.36.tar 文件将解压到/usr/src/linux目录中 3

使用命令: ln -s linux-2.6.36 linux 在终端下输入一下命令: sudo apt-get install build-essential kernel-package libncurses5-dev fakeroot sudo aptitude install libqt3-headers libqt3-mt-dev libqt3-compat-headers libqt3-mt 4

如何自行编译一个Linux内核的详细资料概述

如何自行编译一个Linux内核的详细资料概述 曾经有一段时间,升级Linux 内核让很多用户打心里有所畏惧。在那个时候,升级内核包含了很多步骤,也需要很多时间。现在,内核的安装可以轻易地通过像 apt 这样的包管理器来处理。通过添加特定的仓库,你能很轻易地安装实验版本的或者指定版本的内核(比如针对音频产品的实时内核)。 考虑一下,既然升级内核如此容易,为什么你不愿意自行编译一个呢?这里列举一些可能的原因: 你想要简单了解编译内核的过程 你需要启用或者禁用内核中特定的选项,因为它们没有出现在标准选项里 你想要启用标准内核中可能没有添加的硬件支持 你使用的发行版需要你编译内核 你是一个学生,而编译内核是你的任务 不管出于什么原因,懂得如何编译内核是非常有用的,而且可以被视作一个通行权。当我第一次编译一个新的Linux 内核(那是很久以前了),然后尝试从它启动,我从中(系统马上就崩溃了,然后不断地尝试和失败)感受到一种特定的兴奋。 既然这样,让我们来实验一下编译内核的过程。我将使用Ubuntu 16.04 Server 来进行演示。在运行了一次常规的 sudo apt upgrade 之后,当前安装的内核版本是 4.4.0-121。我想要升级内核版本到 4.17,让我们小心地开始吧。 有一个警告:强烈建议你在虚拟机里实验这个过程。基于虚拟机,你总能创建一个快照,然后轻松地从任何问题中回退出来。不要在产品机器上使用这种方式升级内核,除非你知道你在做什么。 下载内核 我们要做的第一件事是下载内核源码。在 Kernel 找到你要下载的所需内核的URL。找到URL 之后,使用如下命令(我以 4.17 RC2 内核为例)来下载源码文件: wget https://git.kernel/torvalds/t/linux-4.17-rc2.tar.gz

如何安装Linux内核源代码

如何获取Linux内核源代码 下载Linux内核当然要去官方网站了,网站提供了两种文件下载,一种是完整的Linux 内核,另一种是内核增量补丁,它们都是tar归档压缩包。除非你有特别的原因需要使用旧版本的Linux内核,否则你应该总是升级到最新版本。 使用Git 由Linus领头的内核开发队伍从几年前就开始使用Git版本控制系统管理Linux内核了(参考阅读:什么是Git?),而Git项目本身也是由Linus创建的,它和传统的CVS不一样,Git是分布式的,因此它的用法和工作流程很多开发人员可能会感到很陌生,但我强烈建议使用Git下载和管理Linux内核源代码。 你可以使用下面的Git命令获取Linus内核代码树的最新“推送”版本: $ git clone git://https://www.wendangku.net/doc/ca18645669.html,/pub/scm/linux/kernel/git/torvalds/linux-2.6.git 然后使用下面的命令将你的代码树与Linus的代码树最新状态同步: $ git pull 安装内核源代码 内核包有GNU zip(gzip)和bzip2格式。Bzip2是默认和首选格式,因为它的压缩比通常比gzip更好,bzip2格式的Linux内核包一般采用linux-x.y.z.tar.bz2形式的文件名,这里的x.y.z是内核源代码的具体版本号,下载到源代码包后,解压和抽取就很简单了,如果你下载的是bzip2包,运行: $ tar xvjf linux-x.y.z.tar.bz2 如果你下载的是gzip包,则运行: $ tar xvzf linux-x.y.z.tar.gz 无论执行上面哪一个命令,最后都会将源代码解压和抽取到linux-x.y.z目录下,如果你使用Git下载和管理内核源代码,你不需要下载tar包,只需要运行git clone命令,它就会自动下载和解压。 内核源代码通常都会安装到/usr/src/linux下,但在开发的时候最好不要使用这个源代码树,因为针对你的C库编译的内核版本通常也链接到这里的。 应用补丁

Linux操作系统源代码详细分析

linux源代码分析:Linux操作系统源代码详细分析 疯狂代码 https://www.wendangku.net/doc/ca18645669.html,/ ?:http:/https://www.wendangku.net/doc/ca18645669.html,/Linux/Article28378.html 内容介绍: Linux 拥有现代操作系统所有功能如真正抢先式多任务处理、支持多用户内存保护虚拟内存支持SMP、UP符合POSIX标准联网、图形用户接口和桌面环境具有快速性、稳定性等特点本书通过分析Linux内核源代码充分揭示了Linux作为操作系统内核是如何完成保证系统正常运行、协调多个并发进程、管理内存等工作现实中能让人自由获取系统源代码并不多通过本书学习将大大有助于读者编写自己新 第部分 Linux 内核源代码 arch/i386/kernel/entry.S 2 arch/i386/kernel/init_task.c 8 arch/i386/kernel/irq.c 8 arch/i386/kernel/irq.h 19 arch/i386/kernel/process.c 22 arch/i386/kernel/signal.c 30 arch/i386/kernel/smp.c 38 arch/i386/kernel/time.c 58 arch/i386/kernel/traps.c 65 arch/i386/lib/delay.c 73 arch/i386/mm/fault.c 74 arch/i386/mm/init.c 76 fs/binfmt-elf.c 82 fs/binfmt_java.c 96 fs/exec.c 98 /asm-generic/smplock.h 107 /asm-i386/atomic.h 108 /asm- i386/current.h 109 /asm-i386/dma.h 109 /asm-i386/elf.h 113 /asm-i386/hardirq.h 114 /asm- i386/page.h 114 /asm-i386/pgtable.h 115 /asm-i386/ptrace.h 122 /asm-i386/semaphore.h 123 /asm-i386/shmparam.h 124 /asm-i386/sigcontext.h 125 /asm-i386/siginfo.h 125 /asm-i386/signal.h 127 /asm-i386/smp.h 130 /asm-i386/softirq.h 132 /asm-i386/spinlock.h 133 /asm-i386/system.h 137 /asm-i386/uaccess.h 139 //binfmts.h 146 //capability.h 147 /linux/elf.h 150 /linux/elfcore.h 156 /linux/errupt.h 157 /linux/kernel.h 158 /linux/kernel_stat.h 159 /linux/limits.h 160 /linux/mm.h 160 /linux/module.h 164 /linux/msg.h 168 /linux/personality.h 169 /linux/reboot.h 169 /linux/resource.h 170 /linux/sched.h 171 /linux/sem.h 179 /linux/shm.h 180 /linux/signal.h 181 /linux/slab.h 184 /linux/smp.h 184 /linux/smp_lock.h 185 /linux/swap.h 185 /linux/swapctl.h 187 /linux/sysctl.h 188 /linux/tasks.h 194 /linux/time.h 194 /linux/timer.h 195 /linux/times.h 196 /linux/tqueue.h 196 /linux/wait.h 198 init/.c 198 init/version.c 212 ipc/msg.c 213 ipc/sem.c 218 ipc/shm.c 227 ipc/util.c 236 kernel/capability.c 237 kernel/dma.c 240 kernel/exec_do.c 241 kernel/exit.c 242 kernel/fork.c 248 kernel/info.c 255 kernel/itimer.c 255 kernel/kmod.c 257 kernel/module.c 259 kernel/panic.c 270 kernel/prk.c 271 kernel/sched.c 275 kernel/signal.c 295 kernel/softirq.c 307 kernel/sys.c 307 kernel/sysctl.c 318 kernel/time.c 330 mm/memory.c 335 mm/mlock.c 345 mm/mmap.c 348 mm/mprotect.c 358 mm/mremap.c 361 mm/page_alloc.c 363 mm/page_io.c 368 mm/slab.c 372 mm/swap.c 394 mm/swap_state.c 395 mm/swapfile.c 398 mm/vmalloc.c 406 mm/vmscan.c 409

嵌入式Linux系统内核的配置、编译和烧写

实验二 嵌入式Linux系统内核的配置、编译和烧写 1.实验目的 1)掌握交叉编译的基本概念; 2)掌握配置和编译嵌入式Linux操作系统内核的方法; 3)掌握嵌入式系统的基本架构。 2.实验环境 1)装有Windows系统的计算机; 2)计算机上装有Linux虚拟机软件; 3)嵌入式系统实验箱及相关软硬件(各种线缆、交叉编译工具链等等)。 3.预备知识 1)嵌入式Linux内核的配置和裁剪方法; 2)交叉编译的基本概念及编译嵌入式Linux内核的方法; 3)嵌入式系统的基本架构。 4.实验内容和步骤 4.1 内核的配置和编译——配置内核的MMC支持 1)由于建立交叉编译器的过程很复杂,且涉及汇编等复杂的指令,在这里 我们提供一个制作好的编译器。建立好交叉编译器之后,我们需要完成 内核的编译,首先我们要有一个完整的Linux内核源文件包,目前流行 的源代码版本有Linux 2.4和Linux 2.6内核,我们使用的是Linux 2.6内核; 2)实验步骤: [1]以root用户登录Linux虚拟机,建立一个自己的工作路径(如用命令 “mkdir ‐p /home/user/build”建立工作路径,以下均采用工作路径 /home/user/build),然后将“cross‐3.3.2.tar.bz2、dma‐linux‐2.6.9.tar.gz、 dma‐rootfs.tar.gz”拷贝到工作路径中(利用Windows与虚拟机Linux 之间的共享目录作为中转),并进入工作目录; [2]解压cross‐3.3.2.tar.bz2到当前路径:“tar ‐jxvf cross‐3.3.2.tar.bz2”; [3]解压完成后,把刚刚解压后在当前路径下生成的“3.3.2”文件夹移 动到“/usr/local/arm/”路径下,如果在“/usr/local/”目录下没有“arm” 文件夹,用户创建即可; [4]解压“dma‐linux‐2.6.9.tar.gz”到当前路径下:

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.wendangku.net/doc/ca18645669.html, 来源: https://www.wendangku.net/doc/ca18645669.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

linux内核配置模块编译安装

Linux内核配置编译和加载 Linux内核模块 Linux内核结构非常庞大,包含的组件也非常多,想要把我们需要的部分添加到内核中,有两个方法:直接编译进内核和模块机制 由于直接编译进内核有两个缺点,一是生成的内核过大,二是每次修改内核中功能,就必须重新编译内核,浪费时间。因此我们一般采用模块机制,模块本身不被编译进内核映像,只有在加载之后才会成为内核的一部分,方便了修改调试,节省了编译时间。 配置内核 (1)在drivers目录下创建hello目录存放hello.c源文件 (2)在hello目录下新建Makefile文件和Kconfig文件 Makefile文件内容: obj-y += hello.o //要将hello.c编译得到的hello.o连接进内核 Kconfig文件内容: 允许编译成模块,因此使用了tristate (3)在hello目录的上级目录的Kconfig文件中增加关于新源代码对应项目的编译配置选项 修改即driver目录下的Kconfig文件,添加

source "drivers/hello/Kconfig" //使hello目录下的Kconfig起作用 (4)在hello目录的上级目录的Makefile文件中增加对新源代码的编译条目 修改driver目录下的Makefile文件,添加 obj-$(CONFIG_HELLO_FOR_TEST) += hello/ //使能够被编译命令作用到 (5)命令行输入“make menuconfig”,找到driver device,选择select,发现test menu 已经在配置菜单界面显示出来 (6)选择test menu进入具体的配置,可以选择Y/N/M,这里我选择编译为M,即模块化 (7)保存退出后出现 (8)进入kernels目录中使用“ls -a”查看隐藏文件,发现多出.config隐藏文件,查看.config 文件

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转) linux是如何组成的? 答:linux是由用户空间和内核空间组成的 为什么要划分用户空间和内核空间? 答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的 安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间 linux内核是如何组成的? 答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、 VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动 linux 内核源代码 linux内核源代码是如何组成或目录结构? 答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录 block目录部分块设备驱动代码 crypto目录加密、压缩、CRC校验算法 documentation 内核文档 drivers 设备驱动 fs 存放各种文件系统的实现代码 include 内核所需要的头文件。与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中 init 内核初始化代码 ipc 进程间通信的实现代码 kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化) lib 库文件代码 mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动 samples 内核编程的范例 scripts 配置内核的脚本 security SElinux的模块 sound 音频设备的驱动程序 usr cpip命令实现程序 virt 内核虚拟机 内核配置与编译 一、清除 make clean 删除编译文件但保留配置文件

linux 内核编译编译选项

1.Code maturity level options 代码成熟等级。此处只有一项:prompt for development and/or incomplete code/drivers,如果你要试验现在仍处于实验阶段的功能,就必须把该项选择为Y了;否则可以把它选择为N。 2. Loadable module support 对模块的支持。这里面有三项: Enable loadable module support:除非你准备把所有需要的内容都编译到内核里面,否则该项应该是必选的。 Set version inFORMation on all module symbols:可以不选它。 Kernel module loader:让内核在启动时有自己装入必需模块的能力,建议选上。 3. Processor type and features CPU类型。有关的几个如下: Processor family:根据你自己的情况选择CPU类型。 High Memory Support:大容量内存的支持。可以支持到4G、64G,一般可以不选。 Math emulation:协处理器仿真。协处理器是在386时代的宠儿,现在早已不用了。 MTTR support:MTTR支持。可不选。 Symmetric multi-processing support:对称多处理支持。除非你富到有多个CPU,否则就不用选了。 4. General setup 这里是对最普通的一些属性进行设置。这部分内容非常多,一般使用缺省设置就可以了。下面介绍一下经常使用的一些选项: Networking support:网络支持。必须,没有网卡也建议你选上。 PCI support:PCI支持。如果使用了PCI的卡,当然必选。 PCI access mode:PCI存取模式。可供选择的有BIOS、Direct和Any,选Any 吧。 Support for hot-pluggabel devices:热插拔设备支持。支持的不是太好,可不选。 PCMCIA/CardBus support:PCMCIA/CardBus支持。有PCMCIA就必选了。System V IPC BSD Process Accounting Sysctl support:以上三项是有关进程处理/IPC调用的,主要就是System V 和BSD两种风格。如果你不是使用BSD,就按照缺省吧。 Power Management support:电源管理支持。 Advanced Power Management BIOS support:高级电源管理BIOS支持。

读Linux内核源代码

Linux内核分析方法 Linux的最大的好处之一就是它的源码公开。同时,公开的核心源码也吸引着无数的电脑爱好者和程序员;他们把解读和分析Linux的核心源码作为自己的最大兴趣,把修改Linux源码和改造Linux系统作为自己对计算机技术追求的最大目标。 Linux内核源码是很具吸引力的,特别是当你弄懂了一个分析了好久都没搞懂的问题;或者是被你修改过了的内核,顺利通过编译,一切运行正常的时候。那种成就感真是油然而生!而且,对内核的分析,除了出自对技术的狂热追求之外,这种令人生畏的劳动所带来的回报也是非常令人着迷的,这也正是它拥有众多追随者的主要原因: ?首先,你可以从中学到很多的计算机的底层知识,如后面将讲到的系统的引导和硬件提供的中断机制等;其它,象虚拟存储的实现机制,多任务机制,系统保护机制等等,这些都是非都源码不能体会的。 ?同时,你还将从操作系统的整体结构中,体会整体设计在软件设计中的份量和作用,以及一些宏观设计的方法和技巧:Linux的内核为上层应用提供一个与具体硬件不相关的平台; 同时在内核内部,它又把代码分为与体系结构和硬件相关的部分,和可移植的部分;再例如,Linux虽然不是微内核的,但他把大部分的设备驱动处理成相对独立的内核模块,这样减小了内核运行的开销,增强了内核代码的模块独立性。 ?而且你还能从对内核源码的分析中,体会到它在解决某个具体细节问题时,方法的巧妙:如后面将分析到了的Linux通过Botoom_half机制来加快系统对中断的处理。 ?最重要的是:在源码的分析过程中,你将会被一点一点地、潜移默化地专业化。一个专业的程序员,总是把代码的清晰性,兼容性,可移植性放在很重要的位置。他们总是通过定义大量的宏,来增强代码的清晰度和可读性,而又不增加编译后的代码长度和代码的运行效率; 他们总是在编码的同时,就考虑到了以后的代码维护和升级。甚至,只要分析百分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。而这一点是任何没有真正分析过标准代码的人都无法体会到的。 然而,由于内核代码的冗长,和内核体系结构的庞杂,所以分析内核也是一个很艰难,很需要毅力的事;在缺乏指导和交流的情况下,尤其如此。只有方法正确,才能事半功倍。正是基于这种考虑,作者希望通过此文能给大家一些借鉴和启迪。 由于本人所进行的分析都是基于2.2.5版本的内核;所以,如果没有特别说明,以下分析都是基于i386单处理器的2.2.5版本的Linux内核。所有源文件均是相对于目录/usr/src/linux的。 方法之一:从何入手 要分析Linux内核源码,首先必须找到各个模块的位置,也即要弄懂源码的文件组织形式。虽然对于有经验的高手而言,这个不是很难;但对于很多初级的Linux爱好者,和那些对源码分析很

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

配置和编译Linux内核

配置和编译Linux内核 对内核进行正确配置后,才能进行编译。配置不当的内核,很有可能编译出错,或者不能正确运行。 1.1.1 快速配置内核 进入Linux内核源码数顶层目录,输入make menuconfig命令,可进入如图0.1所示的基于Ncurses的Linux内核配置主界面(注意:主机须安装ncurses相关库才能正确运行该命令并出现配置界面)。如果没有在Makefile中指定ARCH,则须在命令行中指定: $ make ARCH=arm menuconfig 图0.1基于Ncurses的Linux内核配置主界面 基于Ncurses的Linux内核配置界面不支持鼠标操作,必须用键盘操作。基本操作方法: ?通过键盘的方向键移动光标,选中的子菜单或者菜单项高亮; ?按TAB键实现光标在菜单区和功能区切换; ?子菜单或者选项高亮,将光标移功能区选中