文档库 最新最全的文档下载
当前位置:文档库 › 13种煤气化工艺的优缺点及比较解析

13种煤气化工艺的优缺点及比较解析

13种煤气化工艺的优缺点及比较解析
13种煤气化工艺的优缺点及比较解析

13种煤气化工艺的优缺点及比较

有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤气化技术作评述,供大家参考。

1、常压固定层间歇式无烟煤(或焦炭)气化技术

这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。

2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术

这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。

3、鲁奇固定层煤加压气化技术

主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。

4、灰熔聚流化床粉煤气化技术

中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性

宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%),环境污染及飞灰综合利用问题有待进一步解决。此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。

5、恩德粉煤气化技术

恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求原料为不粘结或弱粘结性、灰分小于25%-30%,灰熔点高(ST大于1250℃)、低温化学活性好的煤。至今在国内已建和在建的装置共有9套,14台气化炉。属流化床气化炉,床层温度在1000℃左右。目前最大的气化炉,用富氧气化,最大产气量为40000m3/h半水煤气。缺点是气化压力为常压,单炉气化能力还比较低,产品气中CH4含量高达1.5%-2.5%,飞灰量大、对环境的污染及飞灰综合利用问题有待解决。

6、GE德士古(Texaco)水煤浆加压气化技术

GE德士古(Texaco)水煤浆加压气化技术,属气流床加压气化技术,原料煤经磨制成水煤浆后用泵送进气化炉顶部单烧嘴下行制气,原料煤运输、制浆、泵送入系统比Shell和GSP等干粉煤加压气化要简单得多,安全可靠、投资省。单炉生产能力大,目前国际上最大的

气化炉日投煤量为2000t,国内已投产的最大气化炉日投煤量为1000t。国内设计中的气化炉能力最大为1600t/d。该技术对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能作气化原料。但要求原料煤含灰量较低,煤中含灰量由20%降至6%,可节省煤耗5%左右,氧耗10%左右。另外,要求煤的灰熔点低。由于耐火砖衬里受高温抗渣的限制,一般要求煤的灰熔点在还原性气氛下的T4<1300 ℃,对于灰熔点稍高的煤,可以添加石灰石作助熔剂,降低灰熔点。还要求灰渣粘温特性好,粘温变化平稳,煤的成浆性能要好。气化压力从2.7、4.0、6.5到8.5 MPa皆有工业性生产装置在稳定长周期运行,装置建成投产后即可正常稳定生产。气化系统的热利用有两种形式,一种是废热锅炉型,可回收煤气中的显热,副产高压蒸汽,适用于联合循环发电;另一种是水冷激型,制得的合成气水气比高达1.3~1.4,能满足后续CO变换工序的需要,变换工序不需要外供蒸汽同,适用于制氢、制合成氨、制甲醇等化工产品。气化系统不需要外供蒸汽、高压氮气及输送气化用原料煤的N2和CO2。气化系统总热效率高达94%-96%,高于Shell干粉煤气化(为91%-93%)和GSP干粉煤气化(为88%-92%)。气化炉结构简单,为耐火砖衬里。气化炉无转动装置或复杂的膜式水冷壁内件,所以制造方便、造价低,同时由于采用热壁炉,炉内热容量比较大,气化炉升温至1000℃以上后,即可直接喷水煤浆投料,生产安全可靠。在开停车和正常生产时无需连续燃烧一部分液化气或燃料气(合成气)。煤气除尘也比较简单,可以了只需要一个文丘里洗涤器和一

台洗涤塔就可以了,无需价格昂贵的高温高压飞灰过滤器,投资省。单炉年运转时间为270~300天,碳转化率达96%-98%,有效气成分(CO+H2)为80%-83%;有效气(CO+H2)比氧耗为336-410m3/km3,有效气(CO+H2)比煤耗为550-620kg/km3。国外已建成投产的装置有6套,15台气化炉;国内已建成投产的装置有8套,24台气化炉,正在建设、设计的装置还有4套,13台气化炉。已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、一氧化碳、燃料气、联合循环发电。各装置建成投产后,一直连续稳定、长周期运行。装备国产化率已达90%以上,由于国产化率高,装置投资较其它加压气化装置都低。水煤浆加压气化与其它加压气化装置建设费用的比例为Shell法:GSP法:多喷嘴水煤浆加压气化:水煤浆法=(2-2.5):(1.4-1.6):(1.2-1.3):1。对于水煤浆加压气化技术国内已掌握了丰富的工程技术经验,已培养出一大批掌握该技术的设计、设备制造、建筑安装、煤种评价、试烧和工程总承包的单位及工程技术人员,所以从建设、投产到正常连续运行的周期比较短,这是业主所期望的。缺点是气化用原料煤受气化炉耐火衬里的限制,适宜于气化低灰熔点的煤。碳转化率较低,比氧耗和比煤耗较高。气化炉耐火砖使用寿命较短,一般为1-2年,国产砖寿命为一年左右,1台投煤量为1000t/d 的气化炉耐火砖约需500万元左右,有待改进。气化烧嘴寿命较短,一般使用2个月后,需停车进行检查、维修或更换喷嘴头部,有待改进和提高。

我国自鲁南化肥厂第一套水煤浆加压气化装置(2台气化炉)1993年建成投产以来,相继建成了上海焦化厂气化装置(4.0 MPa气化,4台气化炉,于1995年建成投产),渭河化肥厂气化装置(6.5 MPa 气化,3台气化炉,于1996年建成投产),淮南化肥厂气化装置(4.0 MPa气化,3台气化炉,于2000年建成投产),金陵石化公司化肥厂气化装置(4.0 MPa气化,3, , , ,台气化炉,于2005年建成投产),浩良河化肥厂气化装置(3.0~4.0 MPa气化,3台气化炉,于2005年建成投产),南化公司气化装置(8.5 MPa气化,2006年建成投产),南京惠生气化装置(6.5 MPa气化,2007年建成投产)等装置。由于我国有关生产厂的精心消化吸收,已掌握了丰富的连续稳定运转经验,新装置一般都能顺利投产,短期内便能连续稳定、高产、长周期运行。并且掌握了以石油焦为原料的气化工艺技术。

还有一点需要提一下的是煤耗和氧耗问题,它与原料煤质的关系比较大。无论是Shell法或GSP法,在用干粉煤气化时,需向气化炉内输入过热蒸汽,其用量以有效气(CO+H2)计为120~150 kg/km3,过热蒸汽与粉煤的比例为(0.22~0.25)∶1,相当于水煤浆中含水20%。干粉煤气化宣传资料上介绍的煤耗和氧耗,实际上是忽略了生产过热蒸汽所用的煤耗。在正常生产时,如需燃烧一部分然料气,必将增加氧耗及燃料气耗(折煤耗),备煤时煤干燥需要增加煤耗。宣传资料介绍,这两种方法的煤耗和氧耗比较低,有效气(CO+H2)煤耗为550~600 kg/km3,氧耗为330~360m3/km3,加上以上这些煤耗和氧耗,实际上有效气(CO+H2)总煤耗将为590~670 kg/km3,总

氧耗将为380~410 m3/km3。煤耗和氧耗不仅不低,而且比水煤浆气化法高或相仿。另外还要考虑制备干煤粉及输送干煤粉增加的电耗和激冷用返回气循环压缩机增加的电耗。

鉴于以上几点,水煤浆加压气化工艺技术是一项成熟、国产化率高、投资省、建成后就能顺利投产,长周期稳产高产的工艺技术。存在的缺点有待在生产实践中改进提高。

7、多元料浆加压气化技术

多元料浆加压气化技术是西北化工研究院提出的,具有自主知识产权。其基本生产装置与水煤浆加压气化技术相仿,属气流床单烧嘴下行制气。典型的多元化料浆组成为煤60%-65%、油料10%-15%,水20%-30%,粘度不大于2500cP。但在制备多元化料浆时掺入油类的办法与当前我国氮肥工业以煤代油改变原料路线的方针不符合,是不可取的,有待改进。

8、多喷嘴(四烧嘴)水煤浆加压气化技术

“九五”期间,华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司承担了国家重点科技攻关课题“新型(多喷嘴对置)水煤浆气化炉开发”。该技术为气流床多烧嘴下行制气,气化炉内用耐火砖衬里。开发成功后,相继在山东德州华鲁恒升化工有限公司建设了一套气化压力为6.5MPa、日处理煤750t的气化炉系统,于2005年6月正式投入运行,至今运转良好。在山东滕州兖矿国泰化工有限公司建设了两套气化压力为4.0MPa、气化温度约为1300℃、日处理煤1150t的气化炉系统,配套生产240kt/a甲醇,联产IGCC联合循环

发电,发电能力为71.8MW,现在实际发电能力已达到80MW。于2005年7月21日一次投料成功,运行至今。经考核验收,同样以北宿洗煤为原料气化,多喷嘴水煤浆加压气化与单烧嘴加压气化相比,气化技术指标见表1,气化用煤种分析见表2。

表1:多喷嘴气化与单烧嘴气化结果对比表

多喷嘴气化炉与单烧嘴气化炉相比,有效气成分提高2~3个百分点,CO2含量降低2~3个百分点,碳转化率提高2~3个百分点,比煤耗可降低约2.2%,吨甲醇煤耗减少100~150kg,比氧耗可降低6.6~8%,这是很有吸引力的。同时调节负荷比单烧嘴气化炉灵活。适宜于气化低灰熔点的煤。

已建成及在建项目共12家,31台气化炉。已顺利投产的有3家,5台气化炉。在建的最大气化炉投煤量为2000t/d,6.5MPa。值得一提的是该技术现已跨出国门,美国Valero能源公司最近已决定采用

多喷嘴水煤浆加压气化技术,采用石油焦为原料加压气化。目前已与华东理工大学签订了许可证授权合同,与中国天辰工程公司签订了基础设计合同。该技术暴露出来的问题是烧嘴使用寿命与GEGP法一样较短;气化炉顶部耐火砖磨蚀较快,以及同样直径同生产能力的气化炉,其高度比GEGP德士古单烧嘴气化炉高,又多了三套烧嘴和相应的高压煤浆泵、煤浆阀、氧气阀、止回阀、切断阀及连锁控制仪表,一套投煤量1000 t/d的气化炉投资比单烧嘴气化炉系统多2000~3000万元。与一个有3套投煤量为1000t/d的气化炉、日处理原料煤2000 t的煤气化装置比较,增加投资6000~9000万元,每年要多增加维护检修费用,且增加了单位产品的固定成本。但该技术属我国独有的自主知识产权技术,在技术转让费方面比引进GEGP德士古水煤浆气化技术要少得多,还是很有竞争力的。该技术有待在生产实践中进一步改进提高。

9、壳牌(Shell)干粉煤加压气化技术

壳牌(Shell)干粉煤加压气化技术,属于气流床加压气化技术。可气化褐煤、烟煤、无烟煤、石油焦及高灰熔点的煤。入炉原料煤为经过干燥、磨细后的干煤粉。如需添加助熔剂,原料煤可以与助熔剂在磨煤机中混磨。干燥后的粉煤用氮气气力送至料斗中,再用高压氮气输送到气化炉,从气化炉下部的喷嘴进入气化炉。属多烧嘴上行制气。目前最大的气化炉是日处理2000t煤,气化压力为3.0MPa,国外只有一套用于商业化联合循环发电的业绩,尚无更高气化压力的业绩。这种气化炉采用水冷壁,无耐火砖衬里。熔融灰渣沿水冷壁南而

下,排入炉底水槽。水冷壁内壁涂有一层SiC耐火材料,熔渣在水冷壁上结成固体熔渣层,达到以渣抗渣的目的。为便于检修,水冷壁与气化炉壳体间留有800mm环隙。环隙间充有250-300℃的有压合成气。为调节炉温,需向气化炉内输入中压过热蒸汽。采用废热锅炉冷却回收煤气的显热,副产蒸汽,气化温度可以达到1400-1600℃,气化压力可达3.0-4.0MPa,可以气化高熔点的煤,但为了操作稳定,仍需在原料煤中添加石灰石作助熔剂。该种炉型原设计是用于联合循环发电的,国内在本世纪初至今开始有13家已签订技术引进合同16套20台气化炉,其最终产品有合成氨、甲醇、氢气、气化压力

3.0-

4.0MPa。其特点是干煤粉进料,用高压氮气气动输送入炉,对输煤粉系统的防爆要求严格;气化炉烧嘴为多喷嘴,有4个(也可用6个)对称式布置,调节负荷比较灵活;为了防止高温气体排出时夹带的熔融态和粘结性飞灰在气化炉后的输气导管换热器、废热锅炉管壁粘结,采用将高温除灰后的部分330-350℃、含尘量2mg/m3左右的气体与部分水洗后的160-165℃、含尘量1mg/m3左右的气体混合,混合后的气体温度约200℃,用返回气循环压缩机加压送到气化炉顶部,将气化炉排出的高温合成气激冷至900℃后,再进入废热锅炉热量回收系统,返回气的量很大,相当于气化装置产气量的80%~85%,因返回气温度高达200℃、含尘、CO含量高达65%左右、又含有H2S,对返回气循环压缩机的密封性能和操作条件要求十分苛刻,不但投资高,多耗动力,而且出故障的环节也多;出废热锅炉后的合成气,采用高温中压陶瓷过滤器,在高温下除去夹带的飞灰,陶瓷过滤器不但

投资高,而且维修工作量大,每年需要更换一次过热元件,以投煤量1000 t/d的气化装置为例,每年需500万元,维修费用也高。废热锅炉维修工作量也大,故障也多,维修费用也高。据介绍碳转化率可达98-99%;可气化褐煤、烟煤、无烟煤、石油焦;冷煤气效率高达80-83%;合成气有效气(CO+H2)含量高达90%左右,有效气(CO+H2)比煤耗为550-600kg/km3,比氧耗为330-360m3/km3(用河南新密煤时,比煤耗为709 kg/km3,比氧耗为367.2 m3/km3。所以在这里要说明一点,无论哪一种煤气化技术,资料上介绍的比煤耗和比氧耗都是在特定条件下的数据,某一煤种确切的数据,应该在煤试烧后方能获得,在做方案比较的时候可以用气化工艺计算的方法求得,要用同一个煤种数据作为评价的依据。);比蒸汽(过热蒸汽)耗为

120-150kg/km3,可副产蒸汽880-900kg/km3。其存在的问题是气化装置的氮气(或CO2)消耗量相当大,还需配套超高压氮压机、高压氮压机、低压氮压机,以及激冷气压缩机,不但投资高,而且能耗也高。生产上,煤的干燥、磨粉增加的动力能耗,输入中压过热蒸汽[水蒸汽与煤比为(0.22~0.25)∶1,相当于水煤浆中含水20%]等所增加的煤耗、动力能耗,相应抵消了干法进料的煤耗和氧耗低的优点。另一点是专利商只有一套用于发电的装置,缺乏用于煤化工生产的业绩。荷兰怒恩电力公司布根努姆电厂的(Demkolec)煤气联合循环发电装置为调峰电厂。据中国氮肥工业协会赴欧洲技术考察报告介绍,该发电装置设计气化炉投煤量为2000 t/d,设计发电能力284 MW,外送电253 MW(外送电应为2216.28 GWh/a),自用电31 MW,全部

总投资(按1989年物价指数)为850×106荷兰盾,折350×106欧元(3.5亿欧元)其中:

气化装置占27%折94.5×106欧元

空分装置占9%折31.5×106欧元

燃气循环(IGCC)占31%折108.5×106欧元

发电机系统占5%折17.5×106欧元

自控系统占10%折35×106欧元

供配电系统占8%折28×106欧元

专利费及界区内设计费占10%折35×106欧元

设计的发电能量利用率为43%~44%,折单位发电投资额为1400美元/kW。建设期6年,1993年底建成,1994~1997年试运转,1998年1月开始进入商业运行。自1999年至2003年的5年商业性运行中,煤制气发电平均年运行时间为268 d(6432 h),占全年运行时间的73.4%。煤制气发电外送电量平均为906 GW·h,为设计年外供电量(2216.26 GW·h)的40.88%。煤制气实际发电量(包括自用电199.4 GW·h)为1105.4GW·h,为设计年实际发电量的44.43%。按年平均运行时间268天计,实际发电量应为1826.7 GW·h,设计日投煤量为2000 t,实际平均日投煤量为1210 t,生产负荷率只有60.5%。从以上分析看,这套煤制气发电装置平均年运行时间为268 d(6432 h),与水煤浆气化装置的气化炉平均年运行时间(每台270~300 d/a)相仿,但是生产负荷率只有60.5%,长期是低负荷,低运行率。专利商明明知道这套示范发电装置长期低负荷、低运行率的实际情况,还

推荐在中国建的煤化工生产装置,只建一台气化炉系统,不设备用炉,是有其难言的苦衷的。因为该煤气化系统设备庞大、结构复杂、维修困难、系统控制要求高、投资高、建设周期长,建备用气化炉系统,显然投资太大、无竞争力。但是煤化工生产要求全装置常年连续稳定高效生产,远比一座调峰电厂的生产要求严,调峰电厂除煤制气发电系统外,还另有燃油或天然气发电系统可作为备用。而我国引进的Shell煤气化装置只设一台气化炉,单系列生产,没有备用炉,在煤化工生产中能否常年连续稳定生产是没有保证的。煤化工生产系统若因此而经常开开停停,工厂年运行率低、生产负荷低,工厂的经济损失将是很大的。一套不设备用炉的装置投资相当于设备用炉的GEGP 德士古气化装置或多喷嘴水煤浆气化装置投资的2~2.5倍,排出气化炉的高温煤气用庞大的、投资高的废热回收锅炉回收显热副产蒸汽后,如用于煤化工,尚需将蒸汽返回后续一氧化碳变换系统,如用于制合成氨和氢气,副产的蒸汽量还不够用。同时另外还需要另设中压过热蒸汽系统,供应气化所需的过热蒸汽。本人认为目前Shell带废热锅炉的干粉煤加压气化技术并不适用于煤化工生产的,有待改进。所以业主和工程公司在做煤气化方案选择时,不能只听专利商的一面之词,被专利商牵着鼻子走,要将工程项目的全流程做技术经济评价,要把空分系统的投资和电耗差别,磨煤系统的电耗差别,原料煤干燥系统的煤耗差别,输煤系统的电耗差别,备煤及输煤系统的投资差别,输入气化炉的过热蒸汽的煤耗及投资差别,一氧化碳变换工序投资及能耗差别等都考虑进去,才能得出正确的结论。

我国采用Shell干煤粉加压气化工艺的装置自2006年开始,陆续投料试生产的,已有好几家,但是至今尚无一家达到长周期稳定满负荷正常生产。主要的原因是系统流程长,设备结构复杂。无论是采用高灰分、高灰熔点的煤还是低灰分、低灰熔点的煤进行气化,都会出现水冷壁能否均匀挂渣的问题、气化炉顶输气管换热器和废热锅炉积灰问题、高温中压干法飞灰过滤器除尘效率和能力问题、每天产生的大量飞灰的出路问题、激冷气压缩机故障多的问题、水洗冷却除尘的黑水系统故障问题。该工艺第一次用于煤化工(尤其是制合成氨、制甲醇、制氢),煤化工对除尘净化、长周期稳定正常生产的要求程度,远高于发电。一套新装置投入生产到正常稳定生产,当然需要有一个磨合期,但是不能太长,否则企业很难承受。本人认为可以首先在原料煤上作改进,改进多出故障的源头,先采用低灰分、低灰熔点的煤为原料,摸索出长周期稳产高产的经验。第二是增设采用激冷流程的备用气化炉,在现有Shell炉的基础上改激冷流程是很难的,应该采用多喷嘴下行制气的气化炉,这比较容易实现。Shell干煤粉加压气化工艺,在环保问题上,对飞灰的出路和综合利用应给予高度重视。根据荷兰示范电厂的操作数据,飞灰和粗渣排出量见表3。

表3飞灰和粗渣逐年排出量统计

粗渣含碳约为0.5%(质量分率),飞灰含碳约为40%(质量分率),原料煤含灰量平均约为13%(质量分率),按实际发电量折算,实际平均日投煤量为1210 t。5年内煤气化操作1340天,排出飞灰量为54902t,平均日排飞灰量为41 t。如投煤量按2000 t/d计,每天从高温中压飞灰过滤器排出飞灰达68 t,如原料煤中含灰量为20%,每天排出飞灰达105 t。飞灰如何综合利用,或回气化炉、或找固定用户是值得企业关注的大问题,如找不到固定用户而随意堆放,将对周围环境产生污染。

现在问题已充分暴露出来,Shell干煤粉加压气化废热锅炉流程是为联合循环发电而设计的,不适应于煤化工生产。同时,装置本身还存在不少缺点和问题,有待解决。有些人士至今还不愿意承认当初选用Shell干煤粉加压气化工艺废热锅炉流程,用于煤化工的决策和盲目推广是错误的,我认为应当引起用户、有关领导、规划部门和工程公司的重视和深思。

所以我国引进的Shell煤气化装置只设一台气化炉单系列生产,没有备用炉,在煤化工生产中能否常年连续稳定生产应予高度重视。一套不设备用炉的Shell煤气化装置投资相当于设备用炉的Texaco 气化装置投资的2-2.5倍,排出气化炉的高温煤气用庞大的、投资高的废热锅炉回收显热副产蒸汽后,如用于煤化工,尚需将蒸汽返回后续一氧化碳变换系统,如用于制合成氨和氢气,副产的蒸汽还不够用。

同时另外还需要另设中压过热蒸汽系统用于气化。目前Shell带锅炉的干煤粉加压气化技术并不适用于煤化工生产,有待改进。

10、西门子GSP干煤粉加压气化技术

GSP干煤粉加压气化技术,属于气流床加压气化技术,是在1979年发展起来的。1979年前德国燃料研究所在弗来堡建立了一套热负荷为3 MW的煤气化中试装置,气化炉内有耐火材料衬里。1996年又建了一套热负荷为5 MW的煤气化中试装置,气化炉为水冷壁结构,曾试烧过各种不同原料和煤种。1984年在黑水泵市建立了一套热负荷为130 MW的气化装置,气化炉内有水冷壁內件,日投煤量为720 t 褐煤,产气量为50000 m3/h,是一套商业性示范装置,用以生产燃料气,气化操作压力为2.8 MPa,操作温度为1400 ℃。1984~1990年采用褐煤为原料气化,有约6年气化褐煤的经验。后来又气化过城市垃圾、工业废物、焦油等物料,主要是气化焦油。从1998年开始气化焦油,生产出来的煤气与固定层气化炉生产的煤气联网,用以生产甲醇和联合循环发电(IGCC)。这套装置至今尚在正常运行。2000年在英国巴斯夫工厂建成了一套GSP气化装置,用以处理化工厂排出含氯废水,气化炉热负荷为30 MW,气化压力为2.9 MPa,气化温度为1400 ℃,激冷型流程。2004年在捷克Vresova工厂又建成了一套GSP气化装置,原料为焦油,气化炉热负荷为175 MW,气化操作压力为2.8 MPa,操作温度为1400 ℃,用于联合循环发电。GSP气化炉当气化煤炭时,原料煤需经过干燥、磨细的干煤粉由气化炉顶部进入,属单烧嘴下行制气,底部排渣。气化炉内有水冷壁内件,目前最大的

GSP气化炉是每天投煤量720t褐煤,操作压力2.8MPa,操作温度1400-1500℃,为调节炉温需向气化炉内输入过热蒸汽,因此需另设供应4.5~5 MPa过热蒸汽的系统。有6年采用褐煤为原料进行气化的经验。气化高灰熔点的煤时,可以在原料中添加石灰石作助熔剂,因采用水冷激流程,所以投资比Shell炉要省得多,两者投资是Shell 炉:GSP炉=(1.34-1.67):1(另外其它资料有1.43~1.56:1),适用于煤化工生产,据专利商介绍,喷嘴寿命长,可用1年以上,但实际生产每隔1个半月左右需要停炉检查一次和维修。碳转化率可达到98%-99%,可气化褐煤、烟煤、次烟煤、无烟煤、石油焦及焦油,冷煤气效率高达80%-83%,合成气有效气(CO+H2)含量高达90%以上,有效气(CO+H2)比煤耗为550-600kg/km3,比氧耗为330-360m3/km3,比蒸汽(过热蒸汽)耗为120-150kg/km3。基本上与Shell法相似。正常时要燃烧液化气或其他可燃气体,以便于点火,防止熄火和确保安全生产。有文献介绍,如烧液化气,以一套日处理720 t褐煤的气化装置为例,每小时要消耗777.7 kg液化气,即每天消耗19 t液化气,以每吨液化气5000元计价,每天要烧掉9.5万元,一年2850万元。如只在开工时用液化气,正常生产时烧自产煤气,按热值折算,每小时要消耗自产煤气约3500 m3,以煤价450元/t计,自产煤气成本价0.45~0.5元/m3,每天要耗掉3.8~4.2万元,一年就是1140~1260万元,这笔费用很可观。该气化炉水冷壁的盘管内用压力为

4.0MPa(应高于气化炉压力)、温度达250℃的水冷却,在盘管内不产生蒸汽,只在器外冷却水循环系统中副产0.5MPa的低压蒸汽。气

化炉外壳还设计有水夹套,用冷却水进行冷却,外壳温度低于60℃,所以热损失比较大。世界上目前采用GSP气化技术的有3家,但是现在都没有用来气化煤炭,其中黑水泵气化厂的那一套装置,只有6年气化褐煤的业绩,没有长期气化高灰分、高灰熔点煤的业绩,有待建立示范装置作长期运行考验。在气化用煤种选择上还是应该首选低灰分、低灰熔点的煤。目前国外在建的有加拿大能源公司的IGCC项目,投煤量为2000 t/d,及美国安全能源公司合成天然气项目,投煤量为2×2000 t/d。国内神华宁夏煤业集团有限责任公司已决定采用GSP 干煤粉加压气化技术建设1670 kt/a甲醇制烯烃项目,投煤量为5×2000 t/d。此外还有山西兰花煤化工有限公司300 kt/a合成氨及100 kt/a甲醇项目,投煤量为2×2000 t/d,以无烟煤为原料。作为商业性示范装置,希望此两项目早日建成,顺利投产。

11、两段式干煤粉加压气化技术

TPRI两段式干煤粉加压气化技术是西安热工研究院有限公司开

发成功的,具有自主知识产权,1997年建成一套0.7t/d的试验装置,完成了14种典型动力煤种的加压气化试验研究,2004年建成了处理煤量为36-40t/h的中试装置,完成了4种煤粉的气化试验,通过了168h连续运行考核,累计运行达2200h以上,达到了以下技术指标:碳转化率≥98.3%,有效气(CO+H2)比煤耗为520kg/km3,比氧耗为300~310m3/km3,有效气(CO+H2)含量89~93%,冷煤气效率81~84%,热效率90~95%,可气化煤种为褐煤、烟煤、贫煤、无烟煤、以及高灰分、高灰熔点煤,可气化煤种的水分范围4%-35%,可气化

煤种灰分范围5%-31%,可气化煤种灰熔点范围1200-1500℃。气化压力3.0-4.0MPa,气化温度范围1300-1700℃,不产生焦油、酚等,其典型合成气成分为CO 62.38%,H229.36%,CO222.76%,CH40.26%-0.5%,N24.87%,H2S等0.37%。

其特点是采用两段气化,以四个对称的烧嘴向气化炉底部喷入干煤粉(占总煤量的80%-85%)、过热蒸汽和氧气,进行一段气化,熔融排渣。中部喷入占总煤量15-20%的煤粉和过热蒸汽,利用下部上来的煤气显热进行二段气化,同时将下部上来的1400~1500℃高温煤气急冷至900-1000℃,替代了Shell煤气化技术中的循环合成气激冷流程,可以节省投资,提高冷煤气效率和热效率;气化炉采用水冷壁结构,其缺点是合成气中CH4含量较高,对制合成氨、甲醇、氢气不利。废热锅炉型气化装置适用于联合循环发电。

其示范装置投煤量2000 t/d级两段式干煤粉加压气化炉(全废热锅炉流程)已决定用于华能集团“绿色煤电”项目,设计气化压力3.0~3.5 MPa,气化操作温度1400~1500 ℃,产气量165000 m3/h,有效气(CO+H2)比氧耗310 m3/1000m3,冷煤气效率83%,有效气(CO +H2)含量91%,发电量250 MW。另一套示范装置为两段式干煤粉加压气化炉(激冷流程),已决定用于内蒙古世林化工有限公司300 kt/a 甲醇项目,设计气化压力为4.0 MPa,气化操作温度1400~1500 ℃,输送干煤粉的气体为CO2,单台气化炉设计投煤量为1000 t/d(激冷流程),有效气产量71500 m3/h,有效气(CO+H2)比氧耗310 m3/1000 m3。冷煤气效率83%,有效气(CO+H2)含量91%。第三套示范装置

用于山西华鹿200 kt/a甲醇项目,设计气化压力4.0 MPa,采用高灰熔点(FT>1500 ℃)煤,气化操作温度1500℃,输送干煤粉的气体为CO2,单台气化炉设计投煤量为1000t/d(激冷流程),煤气产量79700 m3/h,有效气流量71500m3/h,有效气(CO+H2)比氧耗330 m3/1000 m3,冷煤气效率81%,有效气(CO+H2)含量>89%。希望这三套示范装置能预期顺利投产。

两段式干煤粉加压气化技术与Shell干煤粉加压气化技术的不同之处,在于两段式干煤粉加压气化技术采用两段气化,将气化炉出口的煤气温度从1400~1500 ℃降至900 ℃,而Shell干煤粉加压气化技术是采用循环返回气将气化炉出口煤气温度激冷至900 ℃,虽然都达到了将气化炉出口煤气降至900 ℃的目的,但两段式气化存在以下几个问题。

(1)因为从气化炉中部喷入干煤粉和过热蒸汽后,利用下部上来的1400~1500 ℃高温煤气使中部喷入的干煤粉干馏热解和气化,存在气化炉出口煤气含CH4量较高的问题,不利于制氨、制甲醇和制氢。

(2)中部喷入的干煤粉产生的灰由于环境温度低于灰熔点,不可能呈熔融态排出炉外。同时,由于二段气化后产生的煤气总量加大,二段气化过程产生的灰渣和飞灰必将大量被煤气从气化炉顶部带出。在二段气化中部喷入的干煤粉量占总煤量的15%~20%,带出的灰渣和飞灰量也就会相应增加,这部分飞灰的量(包括带出的灰渣)必将大于Shell加压气化。再加上Shell炉的循环返回气量为气化装置实

际煤气产量的80%~85%,总气量达气化装置实际煤气产量(或煤气流速)的180%~185%,而改为两段气化后,出气化炉的煤气量只相当于Shell炉出口总气量的55%,即煤气流量减少到只有55%,相应煤气流速降低到55%,这是一个很不利的操作条件。气流速度低,在换热器和废热锅炉处容易积灰、堵灰,再加上随煤气带出的飞灰和灰渣含量增多,系统积灰和堵灰现象将更为严重,这是废热锅炉型流程装置设计时要加以重视的问题。

(3)由于从气化炉带出的飞灰和灰渣量较大,在水激冷型流程装置设计时也同样必须加以重视。

(4)受两段气化的制约,必然是一段气化的干煤粉、过热蒸汽和氧气从炉子下部进入,二段气化的干煤粉和过热蒸汽从炉子中部进入,产生的煤气从气化炉顶部出去,所以水激冷型流程和装置比从气化炉顶部进料、底部出煤气的熔渣型气化炉难处理,不但系统复杂,并且投资高。

总之,两段式干煤粉加压气化技术是一项新生事物,从中间试验到放大为示范装置,再进入到商业化运行,必然会碰到许多难题,会有一个在运行中摸索、磨合和解决难题的过程。为了吸取同时大量推广Shell干煤粉加压气化技术的教训,建议在已决定先建3套示范装置的基础上,暂停再建示范装置或商业化运行装置,待这3套示范装置取得顺利投产和长周期稳产高产的经验后,再改进提高,推广应用。

12、四喷嘴对置式干煤粉加压气化技术

50万吨年煤气化生产工艺

咸阳职业技术学院生化工程系毕业论文(设计) 50wt/年煤气化工艺设计 1.引言 煤是由古代植物转变而来的大分子有机化合物。我国煤炭储量丰富,分布面广,品种齐全。据中国第二次煤田预测资料,埋深在1000m以浅的煤炭总资源量为2.6万亿t。其中大别山—秦岭—昆仑山一线以北地区资源量约2.45万亿t,占全国总资源量的94%;其余的广大地区仅占6%左右。其中新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占 1.6%,华东七省占2.8%,江南九省占1.6%。 煤气化是煤炭的一个热化学加工过程,它是以煤或煤焦原料,以氧气(空气或富氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为可燃性的气体的过程。气化时所得的可燃性气体称为煤气,所用的设备称为煤气发生炉。 煤气化技术开发较早,在20世纪20年代,世界上就有了常压固定层煤气发生炉。20世纪30年代至50年代,用于煤气化的加压固定床鲁奇炉、常压温克勒沸腾炉和常压气流床K-T炉先后实现了工业化,这批煤气化炉型一般称为第一代煤气化技术。第二代煤气化技术开发始于20世纪60年代,由于当时国际上石油和天然气资源开采及利用于制取合成气技术进步很快,大大降低了制造合成

气的投资和生产成本,导致世界上制取合成气的原料转向了天然气和石油为主,使煤气化新技术开发的进程受阻,20世纪70年代全球出现石油危机后,又促进了煤气化新技术开发工作的进程,到20世纪80年代,开发的煤气化新技术,有的实现了工业化,有的完成了示范厂的试验,具有代表性的炉型有德士古加压水煤浆气化炉、熔渣鲁奇炉、高温温克勒炉(ETIW)及干粉煤加压气化炉等。 近年来国外煤气化技术的开发和发展,有倾向于以煤粉和水煤浆为原料、以高温高压操作的气流床和流化床炉型为主的趋势。 2.煤气化过程 2.1煤气化的定义 煤与氧气或(富氧空气)发生不完全燃烧反应,生成一氧化碳和氢气的过程称为煤气化。煤气化按气化剂可分为水蒸气气化、空气(富氧空气)气化、空气—水蒸气气化和氢气气化;按操作压力分为:常压气化和加压气化。由于加压气化具有生产强度高,对燃气输配和后续化学加工具有明显的经济性等优点。所以近代气化技术十分注重加压气化技术的开发。目前,将气化压力在P>2MPa 情况下的气化,统称为加压气化技术;按残渣排出形式可分为固态排渣和液态排渣。气化残渣以固体形态排出气化炉外的称固态排渣。气化残渣以液态方式排出经急冷后变成熔渣排出气化炉外的称液态排渣;按加热方式、原料粒度、汽化程度等还有多种分类方法。常用的是按气化炉内煤料与气化剂的接触方式区分,主要有固定床气化、流化床气化、气流床气化和熔浴床床气化。 2.2 主要反应 煤的气化包括煤的热解和煤的气化反应两部分。煤在加热时会发生一系列的物理变化和化学变化。气化炉中的气化反应,是一个十分复杂的体系,这里所讨论的气化反应主要是指煤中的碳与气化剂中的氧气、水蒸汽和氢气的反应,也包括碳与反应产物之间进行的反应。 习惯上将气化反应分为三种类型:碳—氧之间的反应、水蒸汽分解反应和甲烷生产反应。 2.2.1碳—氧间的反应 碳与氧之间的反应有: C+O2=CO2(1)

煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm 粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常

国内外煤炭资源现状及煤化工技术进展和前景解析

国内外煤炭资源现状及煤化工技术进展和前景 摘要:本文就中国能源建设面临着结构的优化与调整,结合中国能源结构以煤为主、石油及相关产品供需矛盾日益突出的现实,对国内外煤炭储量、产量及市场现状进行了较详尽的调研,对煤化工技术进展及前景进行了客观的分析,为我公司未来发展提前寻找了石油和天然气的最佳替代产品,指出了煤化工产业将是今后20年的重要发展方向,这对于我国减轻燃煤造成的环境污染、降低我国对进口石油的依赖,保障能源安全,促进经济的可持续发展,均有着重大意义。可以预见,煤炭的清洁转化和高效利用,将是未来能源结构调整和保证经济高速发展对能源需求的必由之路,现代煤化工在中国正面临新的发展机遇和长远的发展前景。 1 世界煤炭资源概况 据《BP世界能源统计2007》数据统计,2006年年底探明的煤炭可采储量全球总计9090.64亿吨,可采年限为147年。总体上看,世界煤炭资源的分布,北半球多于南半球,煤炭主要集中在北半球。北半球北纬30°- 70°之间是世界上最主要的聚煤带,占世界煤炭储量的70%以上。其中,以亚洲和北美洲最为丰富,分别占全球地质储量的58%和30%,欧洲仅占8%;南极洲数量很少。拥有煤炭资源的国家大约70个,其中储量较多的国家有中国、俄罗斯、美国、德国、英国、澳大利亚、加拿大、印度、波兰和南非地区,它们的储量总和占世界的88%。世界煤炭可采储量的60%集中在美国(25%)、前苏联(23%)和中国(12%),此外,澳大利亚、印度、德国和南非4个国家共占29%。根据2006年全球煤炭探明储量,美国以2446亿吨储量稳坐头把席位,俄罗斯以1570亿吨储量排第二位,中国和印度分别为1145和924亿吨排第三、四位。澳大利亚、南非、乌克兰、哈萨克斯坦、波兰和巴西占据第五到第十位。

煤气化工艺流程

煤气化工艺流程 1、主要产品生产工艺煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之有效的方法之一,同时也方便群众生活,节约时间,提高整个城市的社会效率和经济效益。作为一项环保工程,(其一期工程)每年还可减少向大气排放烟尘万吨、二氧化硫万吨、一氧化碳万吨,对改善河南西部地区城市大气质量将起到重要作用。 甲醇是一种重要的基本有机化工原料,除用作溶剂外,还可用于制造甲醛、醋酸、氯甲烷、甲胺、硫酸二甲酯、对苯二甲酸二甲酯、丙烯酸甲酯等一系列有机化工产品,此外,还可掺入汽油或代替汽油作为动力燃料,或进一步合成汽油,在燃料方面的应用,甲醇是一种易燃液体,燃烧性能良好,抗爆性能好,被称为新一代燃料。甲醇掺烧汽油,在国外一般向汽油中掺混甲醇5?15勉高汽油的辛烷值,避免了添加四乙基酮对大气的污染。 河南省煤气(集团)有限责任公司义马气化厂围绕义马至洛阳、洛阳至郑州煤气管线及豫西地区工业及居民用气需求输出清洁能源,对循环经济建设,把煤化工打造成河南省支柱产业起到重要作用。 2、工艺总流程简介: 原煤经破碎、筛分后,将其中5?50mm级块煤送入鲁奇加压气化炉,在炉内与氧气和水蒸气反应生成粗煤气,粗煤气经冷却后,进入低温甲醇洗净化装置,除去煤气中的CO2和H2S净化后的煤气分为两大部分,一部分去甲醇合成系统,合成气再经压缩机加压至,进入甲醇反应器生成粗甲醇,粗甲醇再送入甲醇精馏系统,制得精甲醇产品存入贮罐;另一部分去净煤气变换装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25 C后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分

适合于炼厂制氢的煤气化技术选择

收稿日期:2013-04-23;收到修改稿日期:2013-06-18。作者简介:罗志荣,男,1975年出生,2002年毕业于石油大学计算机与科学专业,现任中国石化茂名分公司煤制氢车间主任。联系电话:0668-2241992;E-mail :luozr.mmsh@sinopec.com 。 随着国内成品油需求量的增长,国内炼油能力正快速增长,而随着环保要求的逐年提高,全加氢型的炼厂也越来越被认可。氢气使用量的增加使炼油企业更加关注氢气成本的下降,而原油价格的提高和煤化工技术在国内的发展,使成本相对较低的煤成为制氢原料的首选。当前,可用的煤气化技术比较多,也各有优缺点,用于炼厂制氢的煤气化技术应根据炼厂的特点进行选择。 1一般炼厂氢气的特点1.1稳定性 对于炼厂来说,氢气的稳定性是最重要的,尤其是全加氢型炼厂,由于其产品和装置的原料均需要加氢,氢气的中断可能导致全厂停产。 1.2压能的匹配要求灵活 炼厂的氢气多用于其加氢装置,根据用氢装 置工艺的需要,一般是通过氢压机将压力提高到某个压力,如炼厂加氢裂化装置,氢压机出口压力一般在17MPa 左右。因此,如果是新建炼厂,提高氢气压力有利于进一步降低炼厂的能耗。如果是旧炼厂改造则需要匹配其原有的压力等级,而且尽量不要采用降压方式,避免压能的损失。 1.3对氢气纯度要求较高 炼厂的加氢装置对于氢气纯度的要求较高, 特别是渣油加氢,由于溶解甲烷的能力较差,一般要求新氢纯度要大于99%,且由于加氢装置催化剂普遍含有钴、钼、镍等元素,一氧化碳和二氧化 碳会在反应器内发生甲烷化反应,造成床层温度的波动,因此,一般加氢装置对于一氧化碳和二氧化碳的含量有严格的限制。 2炼厂煤气化技术的适应性分析 煤气化是煤制氢的核心部分,炼厂选择煤作 为氢气的原料一定要结合自身的特点,选择合适的煤气化技术。 2.1 可选择的煤气化技术 目前,国内外主要有代表性的先进煤气化技 术有:①湿法水煤浆进料的代表:美国GE 单喷嘴水煤浆气化技术,国内四喷嘴对置气化、分级气流床气化、多元料浆气化等。②干法粉煤进料的代表:壳牌SCGP 、西门子GSP 气化工艺,国内两段干煤粉气化、SE-东方炉粉煤气化、航天炉、科林炉等。③块(碎)煤进料的代表:德国Lurgi 固态排渣工艺、英国BGC 公司的BGL 液态排渣气化工艺。3种煤气化技术对比见表1。 煤气化技术多数已投入工业运行。根据已经投产的煤气化装置运行情况,气流床气化技术的工业化发展速度最快,其中以湿法进料气化技术更为成熟。湿法进料、热壁炉气化技术,经多年工业化运行考验,国内外技术均已成熟,工程建设和 适合于炼厂制氢的煤气化技术选择 罗志荣 (中国石化茂名分公司,广东茂名525011) 摘要:阐述炼厂煤/焦制氢的必要性以及煤气化技术在制氢项目中的重要性,介绍国内外主要煤气化技术,并从气化压力、原料的适应性、产品的适应性、投资和操作费用等不同方面对粉煤气化技术和水煤浆气化技术进行了分析。重点分析了不同水煤浆气化技术对炼厂制氢项目的影响,分析认为单喷嘴水煤浆气化技术具有自己独特的优势,是炼厂制氢项目较为适合的技术。 关键词:炼厂氢气 煤气化技术 选择 适应性 2013年8月第36卷第4期 Large Scale Nitrogenous Fertilizer Industry Aug.2013Vol.36No.4

现代煤化工产业发展现状分析

现状分析、政策走向及前景预测 一、现代煤化工产业概述 煤化工是以煤为原料,经过化学加工使煤转化为气体、液体、固体燃料及化学品,生产出各种化工产品地工业,是相对于石油化工、天然气化工而言地.从理论上来说,以原油和天然气为原料通过石油化工工艺生产出来地产品也都可以以煤为原料通过煤化工工艺生产出来.煤化工主要分为传统煤化工和现代煤化工两类,其中煤焦化、煤合成氨、电石属于传统煤化工,而目前所热议地煤化工实际上是现代煤化工,主要是指煤制甲醇、煤制乙二醇、煤制天然气、煤制油、煤制二甲醚及煤制烯烃等项目.目前煤化工热地背景源于石油、天然气价格地不断上涨,使得以煤为原料地煤化工产品在生产上具备了巨大地成本优势,从而成为相对石化产品地最具竞争力地替代产品.从煤化工基地建设而言,煤化工产业涉及煤炭、电力、石化等领域,是技术、资金、资源密集型产业,对能源、水资源地消耗大,对资源、生态、安全、环境和社会配套条件要求较高.煤化工地工艺路线主要有三条,即焦化、气化和液化,在煤地各种化学加工过程中,焦化是应用最早且至今仍然是最重要地方法,其主要目地是制取冶金用焦炭,同时副产煤气和苯、甲苯、二甲苯、萘等芳烃;煤气化在煤化工中也占有很重要地地位,用于生产城市煤气及各种燃料气,也用于生产合成气(作为氢气、合成氨、合成甲醇等地原料);煤低温干馏、煤直接液化及煤间接液化等过程主要生产液体燃料(石脑油、汽油、柴油);煤地其他直接化学加工,则生产褐煤蜡、磺化煤、腐植酸及活性炭等,仍有小规模地应用.个人收集整理勿做商业用途 国内外现代煤化工产业发展现状 从全球煤化工发展状况来看,主要集中在南非(公司是世界唯一拥有煤制液化工厂地公司,该公司地个煤基液化厂保证了南非地汽油、柴油供给量)、美国(太平原合成燃料厂是世界上目前唯一运行地大规模煤制天然气商业化工厂地公司,年产亿方天然气和万吨合成氨)和中国,除中国外其他国家并无大规模地发展,国内以煤炭为原料地化工产品在国际上大多是以石油和天然气为原料地,高高在上地国际原油价格是促使煤化工再次得到重视地直接动因.以原油和煤炭地单位热值来衡量,目前煤炭地价格只有原油价格地左右,以煤炭来代替石油作为化工产品地原料具有很好地经济意义.个人收集整理勿做商业用途 “富煤、贫油、少气”是我国能源发展面临地现状,我国能源资源中,煤资源相对丰富,石油资源相对少,而且石油往往受制于国际市场.因此,通过把煤液化替代石油成为我国能源发展地一个明智选择.而且煤液化之后,相对于石油更加环保,符合国家节能环保地要求.未来随着我国经济发展,能源需求将日益扩大,对于煤液化地需求也就越大.这也就是意味着,对于煤化工需求也就越来越大.个人收集整理勿做商业用途 我国是世界上最大地煤化工生产国,煤化工产品多、生产规模较大,当前我国正处于传统煤化工向现代煤化工转型时期,以石油替代为目标地现代煤化工产业刚刚起步.由于国际市场油价高起,我国现代煤化工项目已呈现遍地开花之势,激发了富煤地区发展煤化工产业地积极性.据了解,在煤炭资源丰富地鄂尔多斯、通辽、赤峰、阿拉善盟等地,煤化工产业开始“井喷”.神华集团煤直接液化项目、伊泰集团间接法煤制油项目、神华包头煤制烯烃项目、大唐多伦煤制烯烃项目、通辽乙二醇项目等煤化工重点项目相继建成并投产.目前,全国煤制烯烃地在建及拟建产能达万吨,煤制油在建及拟建产能达万吨,煤制天然气在建及拟建产能接近亿立方米,煤制乙二醇在建及拟建产能超过万吨.这些项目全部建成之后,我国将是世界上产能最大地现代煤化工国家.近五年我国焦炭、电石、煤制化肥和煤制甲醇产量均位居世界首位,成为煤化工产品生产大国.年是现代煤化工爆发地启动之年,预计投资额应该在亿元左右,之后四年投资额将逐增加,年将达到奇峰,预计在亿,五年累计超过万亿,是十一五期间地倍.个人收集整理勿做商业用途 三、国家现代煤化工产业政策

煤气化工艺流程

精心整理 煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之 化碳 15%提 作用。 2 。净化 装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽

,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 缓 可 能周期性地加至气化炉中。 当煤锁法兰温度超过350℃时,气化炉将联锁停车,这种情况仅发生在供煤短缺时。在供煤短缺时,气化炉应在煤锁法兰温度到停车温度之前手动停车。 气化炉:鲁奇加压气化炉可归入移动床气化炉,并配有旋转炉篦排灰装置。气化炉为双层压力容器,内表层为水夹套,外表面为承压壁,在正常情况下,外表面设计压力为3600KPa(g),内夹套与气化炉之间压差只有50KPa(g)。 在正常操作下,中压锅炉给水冷却气化炉壁,并产生中压饱和蒸汽经夹套蒸汽气液分离器1

国内外煤化工产业技术进展情况

国内外煤化工产业发展情况 刘纳新

目录 1 国际煤气化技术 (2) 1.1 煤炭气化技术 (2) 1.2 煤炭液化技术 (6) 1.3 整体煤气化联合循环(IGCC) (7) 2 国际煤化工产品开发进展情况 (8) 2.1 大型煤气化成为煤炭利用的技术热点 (8) 2.2 车用替代燃料成为煤基替代能源产品开发的重点 (9) 2.3 碳一化学品及其衍生物行业发展势头强劲 (10) 2.4 煤基多联产成为煤炭综合利用的重要方式 (11) 2.5 南非煤化工发展情况 (13) 2.6 美国煤化工发展情况 (14) 2.7 日本煤化工发展情况 (15) 2.8 欧盟煤化工发展情况 (16) 3 国内煤气化技术应用情况 (17) 3.1 多种煤气化技术并存 (17) 3.2 煤炭气化多联产技术 (18) 3.3 山西天脊煤化工集团有限公司煤气化技术的应用与发展 (18) 4 国内煤化工产品开发及项目建设情况 (19) 4.1 国内煤化工产品开发和建设 (19) 4.2 煤制甲醇项目 (20) 4.3 煤制二甲醚项目 (20) 4.4 煤制合成氨项目 (21) 4.5 煤制天然气和煤制烯烃 (21) 5 国内煤化工产业发展趋势 (23)

1 国际煤气化技术 国际煤气化技术主要包括:煤气化、煤液化和整体煤气化联合循环(IGCC)技术。目前新一代煤气化技术的开发和工业化进程中,总的方向是气化压力由常压向中高压(8.5 MPa)提高,温度向高温(1500-1600℃)发展,气化原料多样化,固态排渣向液态排渣发展。 1.1 煤炭气化技术 煤炭气化是在适宜的条件下将煤炭转化为气体燃(原)料的技术,旨在生产民用、工业用燃料气和合成气,并使煤中的硫、灰分等在气化过程中或之后得到脱除,使污染物排放得到控制。煤炭气化近年来在国外得到较大发展,目的是为煤的液化、煤气化联合循环及多联产提供理想的气源,扩大气化煤种,提高处理能力和转换效率,减少污染物排放。在100多年的研究开发于商业化应用中,相继开发出多种气化技术和工艺,按技术特点可粗略地划分为固定床、流化床和气流床气化技术。 1.1.1固定床 1.1.1.1固定床间歇式气化炉(UGI)。以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。该技术目前已属落后的技术,气化率低,原料单一、能耗高,环境污染严重。随着能源政策和对环境要求的提高,该技术正在逐步被新的煤气化技术所取代。 1.1.1.2鲁奇气化炉。20世纪30年代德国鲁奇公司开发成功了固

煤化工工艺流程

煤化工工艺流程 典型的焦化厂一般有备煤车间、炼焦车间、回收车间、焦油加工车间、苯加工车间、脱硫车间和废水处理车间等。 焦化厂生产工艺流程 1.备煤与洗煤 原煤一般含有较高的灰分和硫分,洗选加工的目的是降低煤的灰分,使混杂在煤中的矸石、煤矸共生的夹矸煤与煤炭按照其相对密度、外形及物理性状方面的差异加以分离,同时,降低原煤中的无机硫含量,以满足不同用户对煤炭质量的指标要求。 由于洗煤厂动力设备繁多,控制过程复杂,用分散型控制系统DCS改造传统洗煤工艺,这对于提高洗煤过程的自动化,减轻工人的劳动强度,提高产品产量和质量以及安全生产都具有重要意义。

洗煤厂工艺流程图 控制方案 洗煤厂电机顺序启动/停止控制流程框图 联锁/解锁方案:在运行解锁状态下,允许对每台设备进行单独启动或停止;当设置为联锁状态时,按下启动按纽,设备顺序启动,后一设备的启动以前一设备的启动为条件(设备间的延时启动时间可设置),如果前一设备未启动成功,后一设备不能启动,按停止键,则设备顺序停止,在运行过程中,如果其中一台设备故障停止,例如设备2停止,则系统会把设备3和设备4停止,但设备1保持运行。

2.焦炉与冷鼓 以100万吨/年-144孔-双炉-4集气管-1个大回流炼焦装置为例,其工艺流程简介如下:

100万吨/年焦炉_冷鼓工艺流程图 控制方案 典型的炼焦过程可分为焦炉和冷鼓两个工段。这两个工段既有分工又相互联系,两者在地理位置上也距离较远,为了避免仪表的长距离走线,设置一个冷鼓远程站及给水远程站,以使仪表线能现场就近进入DCS控制柜,更重要的是,在集气管压力调节中,两个站之间有着重要的联锁及其排队关系,这样的网络结构形式便于可以实现复杂的控制算法。

各种煤气化工艺的优缺点

各种煤气化工艺的优缺点 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001 年单炉配套20kt/a 合成氨工业性示范装置成功运 行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉, 床层温度达1100C左右,中心局部高温区达到1200-1300C,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200C,所以可以气化褐煤、低化 学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%,环境污染及飞灰综合利用问题有待进 一步解决。此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。 5、恩德粉煤气化技术 恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求

煤气化工艺流程

煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之有效的方法之一,同时也方便群众生活,节约时间,提高整个城市的社会效率和经济效益。作为一项环保工程,(其一期工程)每年还可减少向大气排放烟尘1.86万吨、二氧化硫3.05万吨、一氧化碳0.46万吨,对改善河南西部地区城市大气质量将起到重要作用。 甲醇是一种重要的基本有机化工原料,除用作溶剂外,还可用于制造甲醛、醋酸、氯甲烷、甲胺、硫酸二甲酯、对苯二甲酸二甲酯、丙烯酸甲酯等一系列有机化工产品,此外,还可掺入汽油或代替汽油作为动力燃料,或进一步合成汽油,在燃料方面的应用,甲醇是一种易燃液体,燃烧性能良好,抗爆性能好,被称为新一代燃料。甲醇掺烧汽油,在国外一般向汽油中掺混甲醇5~15%提高汽油的辛烷值,避免了添加四乙基酮对大气的污染。 河南省煤气(集团)有限责任公司义马气化厂围绕义马至洛阳、洛阳至郑州煤气管线及豫西地区工业及居民用气需求输出清洁能源,对循环经济建设,把煤化工打造成河南省支柱产业起到重要作用。 2、工艺总流程简介: 原煤经破碎、筛分后,将其中5~50mm级块煤送入鲁奇加压气化炉,在炉内与氧气和水蒸气反应生成粗煤气,粗煤气经冷却后,进入低温甲醇洗净化装置

,除去煤气中的CO2和H2S。净化后的煤气分为两大部分,一部分去甲醇合成系统,合成气再经压缩机加压至5.3MPa,进入甲醇反应器生成粗甲醇,粗甲醇再送入甲醇精馏系统,制得精甲醇产品存入贮罐;另一部分去净煤气变换装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 (2)最终筛分系统:块煤仓内块煤经8#、9#皮带运至最终筛分楼驰张筛进行检查性筛分。大于6mm块煤经10#皮带送至200#煤斗,筛下小于6mm末煤经14#皮带送至缓冲仓。 (3)电厂上煤系统:末煤仓内末煤经12#、13#皮带转至5#点后经16#皮

煤气化工艺方案的选择

初探煤气化工艺方案的选择 1 几种煤气化工艺及特点介绍 煤气化是煤化工的龙头技术,是煤洁净利用技术的重要环节,C1化学的基础。煤气化技术是发展煤基化学品、煤基液体燃料、联合循环发电、多联产系统、制氢、燃料电池等过程工业的基础,是这些行业的共性技术、关键技术和龙头技术,对我国经济和保障国家安全具有重要的战略意义。 煤气化过程采用的气化炉炉型,目前主要有以下3种: 固定床﹙UGI、鲁奇﹚; 流化床﹙灰熔聚、UGAS、鲁奇CFB、温克勒、KBR、恩德等﹚; 气流床﹙Texaco、Shell、GSP、PRENFLOW、国产新型水煤浆、二段干煤粉、航天炉等﹚。 1.1固定床制气工艺 1.1.1常压固定床间歇制气工艺 工艺特点是:常压气化,固体加料10-50mm,固体排渣,间歇气化,空气和蒸汽作气化剂,吹风和制气阶段交替进行,适用原料白煤和焦碳,气化温度800~1000℃。代表炉型有美国的U.G.I型和前苏联的U.G.Ⅱ型。工艺过程都比较熟悉,这里从略。 技术优点:历史悠久,技术成熟,设备简单,投资省,生产经验丰富。

技术缺点:技术落后,原料动力消耗高,炭转化率低70~75%,产品成本高,生产强度低,程控阀门多,维修工作量大,废气、废水排放多,污染严重,面临淘汰。 1.1.2常压固定床连续制气 常压固定床连续制气工艺的技术特点:常压气化,固体加料,床体排渣,连续制气,富氧空气﹙氧占50%﹚或氧气加蒸汽做气化剂,无废气排放,适用煤种白煤和焦碳。 技术优点是:连续制气,炉床温度稳定,约为900~1150℃,操作简单,程控阀门少,维修费用低,生产强度大,碳转化率高,约80~84% 。 技术缺点:需要空分装置,投资比较大。 固定床连续制气工艺的技术突破在于以氧气或富氧空气加蒸汽做气化剂,由于气化剂中氧含量的增加,气化反应过程中,燃烧产生的热量与煤的气化和蒸汽分解所需要的热量能够实现平衡,可以得到稳定的反应温度和固定的反应床层,可以实现连续制气,不用专门吹风,无废气排放,生产强度和能源利用率都有了很大的提高。 1.1.3 固定床加压气化工艺:前西德鲁奇公司(Lurgi)开发。 工艺特点:加压气化,固体加料,固体排渣,连续气化,氧气和蒸汽作气化剂,设有加压的煤锁斗和灰储斗,适用煤种:褐煤、次烟煤、活性好的弱粘结煤。 技术优点:加压气化3.1 MPa,生产强度大,碳转化率高约90%。 技术缺点:反应温度略低700~1100 ℃,甲烷含量较高,煤气当中含有焦油和酚类物质,气体净化和废水处理复杂,流程较长,投资比较大。 1.2 流化床工化工艺 流化床气化工艺的总体特点是:以粉煤或小颗粒的碎煤为原料气化,气化剂以一定的速度通过物料层,物料颗粒在气化剂的带动下悬浮起来,形成流化床,由于物料层处于流化状态,煤粉和气化剂之间混合更允分,接触面积更大,煤粉和气化剂迅速地进行气化反应,反应产生的煤气出气化炉后去废热回收和除尘洗涤系统,反应产生的灰渣由炉底排出。气流床反应物料之间的传热和传质速率更快,过程更容易控制,生产能力也有了较大的提高。下面就流化床气化工艺发展过程中的几种工艺的技术特点分别作一下介绍。

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

国内外煤气化技术新进展

国内外煤气化技术新进展 华陆工程科技有限责任公司刘艳军 一、煤炭的综合利用 我国具有丰富的煤炭资源,煤炭保有储量高达1万亿吨以上,全国煤炭产量2002年近14亿吨,2003年为16亿吨,2009年为亿吨,平均每年以大于5%的速度递增。目前,我国已经成为世界上最大的煤炭生产国和消费国。我国是富煤少油国家,当前每年进口的原油和石油制品已达到国内需求的30%以上,全球范围内新一轮的石油竞争将会愈演愈烈,大力发展煤化工作为保证国家能源安全的战略已凸显重要而紧迫。未来,我国能源以煤为主的状况,在相当长的一段时间内不会有大的改变,预测2010年将占60%左右,2050年不会低于50%,煤炭在我国的能源消费中仍然占有基础性地位。 随着科学技术的发展和人民生活水平的提高,对煤和以煤为原料的相关产品的技术要求也越来越高。然而,由于煤的结构和组成的复杂性,给人们利用煤带来诸多环境问题。例如,煤中含有硫、氯、氮、灰等有害物质在煤炭直接燃烧后被排放到环境中,引起严重的环境污染问题。有关调查统计结果表明:目前我国能源消费总量中约68%为煤炭,其中有85%采用效率低、污染严重的直接燃烧技术。燃煤产生的二氧化硫排放量占全国总排放量的74%,氮氧化物排放量占总排放量的60%,总悬浮颗粒(TSP)排放量占总排放量的70%,二氧化碳排放量占总排放量的85%。目前,我国已成为世界上环境污染严重的国家之一,这不仅严重地威胁到生态环境和人类健康,而且每年由于燃煤而引发的SO2污染和酸雨造成的经济损失已超过1000亿元。因此大量直接燃烧煤炭将受到国家政策限制。 从发展的长远观点来看,我国以煤为主的能源消费结构正面临着严峻挑战,如何解决燃煤引起的环境污染问题已迫在眉睫。我国政府对此高度重视,对环境保护的政策越来越严格,并把煤炭的清洁转化和高效利用列入《中国21世纪议程》,实行“节能优先、结构优化、环境友好”的可持续能源发展战略。 二、煤气化技术 煤气化技术是煤利用技术中的关键技术,而气化炉又是煤气化技术的核心。世界上许多国家对开发新型气化炉都投入了大量的人力和财力,并已经取得了可喜的成果,各种形式的气化炉也陆续投入了工业化生产,这些设备广泛应用于煤

煤气化工艺资料

煤化工是以煤为原料,经过化学加工使煤转化为气体,液体,固体燃料以及化学品的过程,生产出各种化工产品的工业。 煤化工包括煤的一次化学加工、二次化学加工和深度化学加工。煤的气化、液化、焦化,煤的合成气化工、焦油化工和电石乙炔化工等,都属于煤化工的范围。而煤的气化、液化、焦化(干馏)又是煤化工中非常重要的三种加工方式。 煤的气化、液化和焦化概要流程图 一.煤炭气化

煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。 煤的气化的一般流程图 煤炭气化包含一系列物理、化学变化。而化学变化是煤炭气化的主要方式,主要的化学反应有: 1、水蒸气转化反应C+H2O=CO+H2 2、水煤气变换反应CO+ H2O =CO2+H2 3、部分氧化反应C+0.5 O2=CO 4、完全氧化(燃烧)反应C+O2=CO2 5、甲烷化反应CO+2H2=CH4 6、Boudouard反应C+CO2=2CO 其中1、6为放热反应,2、3、4、5为吸热反应。 煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。 煤炭气化按气化炉内煤料与气化剂的接触方式区分,主要有: 1) 固定床气化:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤料在气化过程中是以很慢的速度向下移动的,比

较准确的称其为移动床气化。 2) 流化床气化:它是以粒度为0-10mm的小颗粒煤为气化原料,在气化炉内使其悬浮分散在垂直上升的气流中,煤粒在沸腾状态进行气化反应,从而使得煤料层内温度均一,易于控制,提高气化效率。 3) 气流床气化。它是一种并流气化,用气化剂将粒度为100um以下的煤粉带入气化炉内,也可将煤粉先制成水煤浆,然后用泵打入气化炉内。煤料在高于其灰熔点的温度下与气化剂发生燃烧反应和气化反应,灰渣以液态形式排出气化炉。 4) 熔浴床气化。它是将粉煤和气化剂以切线方向高速喷入一温度较高且高度稳定的熔池内,把一部分动能传给熔渣,使池内熔融物做螺旋状的旋转运动并气化。目前此气化工艺已不再发展。 以上均为地面气化,还有地下气化工艺。 根据采用的气化剂和煤气成分的不同,可以把煤气分为四类:1.以空气作为气化剂的空气煤气;2.以空气及蒸汽作为气化剂的混合煤气,也被称为发生炉煤气;3.以水蒸气和氧气作为气化剂的水煤气;4.以蒸汽及空气作为气化剂的半水煤气,也可是空气煤气和水煤气的混合气。 几种重要的煤气化技术及其技术性能比较 1.Lurgi炉固定床加压气化法对煤质要求较高,只能用弱粘结块煤,冷煤气效率最高,气化强度高,粗煤气中甲烷含量较高,但净化系统复杂,焦油、污水等处理困难。 鲁奇煤气化工艺流程图

相关文档