文档库 最新最全的文档下载
当前位置:文档库 › X射线光电子能谱分析分析

X射线光电子能谱分析分析

X射线光电子能谱分析分析
X射线光电子能谱分析分析

一、X射线光电子能谱的测量原理

X射线光电子能谱(X-ray photoelectron Spectroscopy,简称XPS)也就是化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis,简称ESCA),它是目前最广泛应用的表面分析方法之一,主要用于成分和化学态的分析。

用单色的X射线照射样品,具有一定能量的入射光子同样品原子相互作用,光致电离产生了光电子,这些光电子从产生之处输运到表面,然后克服逸出功而发射,这就是X射线光电子发射的三步过程。用能量分析器分析光电子的动能,得到的就是x射线光电子能谱。

根据测得的光电子动能可以确定表面存在什么元素以及该元素原子所处的化学状态,这就是x射线光电子谱的定性分析。根据具有某种能量的光电子数量,便可知道某种元素在表面的含量,这就是x射线光电子谱的定量分析。为什么得到的是表面信息呢?这是因为:光电子发射过程的后两步,与俄歇电子从产生处输运到表面然后克服逸出功而发射出去的过程是完全一样的,只有深度极浅范围内产生的光电子,才能够能量无损地输运到表面,用来进行分析的光电子能量范围与俄歇电子能量范围大致相同。所以和俄歇谱一样,从X射线光电子谱得到的也是表面的信息,信息深度与俄歇谱相同。

如果用离子束溅射剥蚀表面,用X射线光电子谱进行分析,两者交替进行,还可得到元素及其化学状态的深度分布,这就是深度剖面分析。

X射线电子能谱仪、俄歇谱仪和二次离子谱仪是三种最重要的表面成分分析仪器。X射线光电子能谱仪的最大特色是可以获得丰富的化学信息,三者相比,它对样品的损伤是最轻微的,定量也是最好的。它的缺点是由于X射线不易聚焦,因而照射面积大,不适于微区分析。不过近年来这方面已取得一定进展,分析者已可用约100 μm直径的小面积进行分析。最近英国VG公司制成可成像的X射线光电子谱仪,称为“ESCASCOPE”,除了可以得到ES-CA谱外,还可得到ESCA像,其空间分辨率可达到10μm,被认为是表面分析技术的一项重要突破。X射线光电子能谱仪的检测极限与俄歇谱仪相近,这一性能不如二次离子谱仪。

X射线光电子能谱的测量原理很简单,它是建立在Einstein光电发射定律基础之上的,对孤立原子,光电子动能E k为:

E K =hv-E b. (12. 18)

这里hv是入射光子的能量,E b是电子的结合能。hv是已知的,E K可以用能量分析器测出,于是E b就知道了。同一种元素的原子,不同能级上的电子E b不同,所以在相同的hv 下,同一元素会有不同能量的光电子,在能谱图上,就表现为不止一个谱峰。其中最强而又最易识别的,就是主峰,一般用主峰来进行分析。不同元素的主峰,E b和E K不同,所以用能量分析器分析光电子动能,便能进行表面成分分析。

对于从固体样品发射的光电子,如果光电子出自内层,不涉及价带,由于逸出表面要克服逸出功φ,所以光电子动能为:

E K=hv-Eb-φs (12. 19)

这里E b是从费密能级算起的。

实际用能量分析器分析光电子动能时,分析器与样品相连,存在着接触电位差(φA-φs),于是进入分析器光电子动能为:

E K= hV-E b-φs-(φA-φs)=hV-E b-φA(12. 20)

式中φA是分析器材料的逸出功。

这些能量关系可以很清楚地从图12. 25看出。在x射线光电子谱中,电子能级符号以nl j表示,例如,n=2、l=1(即p电子)、j= 3/2的能级,就以2p3/2表示。1s1/2一般就写成1s。图12. 25表示2p3/2光电子能量,为清楚起见,其他内层电子能级及能带均未画出。

图12. 25从固体发射的2p3/2二光电子能量,E F是费密能级

在式( 12. 20)中,如hv和φA已知,测E K可知E b,便可进行表面分析了。X射线光电子谱仪最适于研究内层电子的光电子谱,如果要研究固体的能带结构,则利用紫外光电子能谱仪(Ultraviolet Photoelectron Spectroscopy,简称UPS)更为合适。

根据如上所述的基本工作原理,可以得出X射线光电子能谱仪最基本的原理方框图如图12. 26所示。

图12. 26 X射线光电子能谱仪原理方框图

常用的X射线源有两种,一是利用Mg的Kα线,另一是Al的Kα线。它们的Kα双线之间的能量间隔很近,因此Kα双线可认为是一条线。Mg Kα线能量为1254eV,线宽0.7eV;Al Kα线能量为1486eV,线宽0.9eV。Mg的Kα线稍窄一些,但由于Mg的蒸汽压较高,用它作阳极时能承受的功率密度比Al阳极低。这两种X射线源所得射线线宽还不够理想,而且除主射线Kα线外,还产生其他能量的伴线,它们也会产生相应的光电子谱峰,干扰光电

子谱的正确测量。此外,由于X射线源的韧致辐射还会产生连续的背底。用单色器可以使线宽变得更窄,且可除去X射线伴线引起的光电子谱峰,以及除去因韧致辐射造成的背底。不过,采用单色器会使X射线强度大大削弱。不用单色器,在数据处理时用卷积也能消除X射线线宽造成的谱峰重叠现象。测量小的化学位移,可采用以上两种方法的一种。

X射线光电子谱仪所采用的能量分析器,主要是带预减速透镜的半球或接近半球的球偏转分析器SDA,其次是具有减速栅网的双通筒子镜分析器CMA,因源面积较大而且能量分辨要求高,用前者比较合适。能量分析器的作用是把从样品发射出来的、具有某种能量的光电子选择出来,而把其他能量的电子滤除。对于以上两种能量分析器,选取的能量与加到分析器的某个电压成正比,控制电压就能控制选择的能量。如果加的是扫描电压,便可依次选取不同能量的光电子,从而得到光电子的能量分布,也就是X射线光电子能谱。采用预减速时,有两种扫描方式。一种是固定分析器通过(透射)能量方式(CAT方式),不管光电子能量是多少,都被减到一个固定的能量再进入分析部分;另一种是同定减速比方式( CRR),光电子能量按一固定比例减小,然后进入分析部分。

X射线光电子谱的背底不像俄歇谱那样强大,因此不用微分法,而是直接测出能谱曲线,由于信号电流非常微弱,大约在1~ 105 cps范围内,因此用脉冲记数法测量。与俄歇谱相比,分析速度较慢。电子倍增器一般采用通道电子倍增器,大体上能较好地满足要求。近年来各厂家在新的X射线光电子能谱仪中采用了位置灵敏度检测器( PSD),明显地提高了信号强度。

X射线光电子能谱的检测极限受限于背底和噪声。X射线照射样品产生的光电子在输运到表面的过程中受到非弹性散射损失部分能量后,就不再是信号而成为背底。对于性能良好的X射线光电子谱仪,噪声主要是信号与背底的散粒噪声。所以,X射线光电子谱的背底和噪声与被测样品有关。一般说来,检测极限大约为0.1%。采用位置灵敏检测器能检测含量更微的元素,但设备较复杂,价格较高。

二、化学位移

因原子所处的化学环境不同,使内层电子结合能发生微小变化,表现在X射线光电子谱上谱峰位置发生微小的移动,这就是X射线光电子谱的化学位移。这里所指的化学环境,一是指所考虑的原子的价态;二是指在形成化合物时,与所考虑原子相结合的其他原子的情况。

1.实验结果所反映出来的化学位移规律

(1)氧化价态越高,结合能越大。例如,金属Be在1.33×10-3 Pa下蒸发到基片上,Al Kα线照射下Be的1s光电子谱如图12. 27(a)所示。如将样品在空气中加热,使金属Be完全氧化,所得谱图如图12. 27(b)所示。如在蒸发Be样品的同时用锆作还原剂阻止氧化,则所得光电子谱图如图12. 27(c)所示。对比这三张Be的1s光电子谱,很容易看出,BeO中Be的

1s电子结合能比纯Be中Be的1s电子结合能要高大约2.9eV。

(2)与所考虑原子相结合的原子,其元素电负性越高,结合能也越大。电负性反映原子在结合时吸引电子能力的相对强弱。仍以Be的1s光电子谱为例。图12. 28给出了BeO和BeF2中Be的1s光电子谱峰的相对位置。尽管在这两种化合物中,铍都是正二价的,但是由于氟的电负性比氧的电负性高,在BeF2中的Be的1s电子结合能就要大一些。

图12. 28 Be、BeO和BeF,中Be的1s光电子谱峰位移

另一个典型的例子是三氟醋酸乙酯,它有4个碳原子,与每个碳原子结合的原子不同,所以出现4个C的1s光电子谱峰,如图12. 29所示。每个谱峰面积相同,根据电负性由大到小的次序F、0、C、H,可以判断每个谱峰对应着结构式中哪一个碳原子。

图12. 29在Al Kα照射下三氟醋酸乙酯的C 1s光电子谱(从左到右四个谱峰对应着结构式中从左到右4个碳原子)

在不同的化合物中,化学位移究竟是多少?这个问题目前是靠实验解决的。已有大量实验数据,收集在Perkin-Elmer公司的X射线光电子谱手册中,可供查用。从Li以上各种元素都有这样一张“化学位移表”。

2.化学位移的理论计算

至于化学位移的理论计算,也取得很大进展。一种方法是假设某种模型进行计算,有几种不同的模型,每种模型都能解释一些现象,符合一部分实验结果,但又不符合另一些实验结果。主要有古典模型和分子电位模型。另一方法是严格的理论计算,只能算一些简单的分子。

三、定性分析与俄歇峰的利用

根据测量所得光电子谱峰位置,可以确定表面存在哪些元素以及这些元素存在于什么化合物中,这就是定性分析。定性分析可借助于手册进行,最常用的手册就是Perkin-Elmer 公司的X射线光电子谱手册。在此手册中有在Mg Kα和Al Kα照射下从Li开始各种元素的标准谱图,谱图上有光电子谱峰和俄歇峰的位置,还附有化学位移的数据。图12. 30(a)、(b)就是Cu的标准谱图。对照实测谱图与标准谱图,不难确定表面存在的元素及其化学状态。

定性分析所利用的谱峰,当然应该是元素的主峰(也就是该元素最强最尖锐的峰)。有时会遇到含量少的某元素主峰与含量多的另一元素的非主峰相重叠的情况,造成识谱的困难。这时可利用“自旋—轨道耦合双线”,也就是不仅看一个主峰,还看与其n、l相同但j不同的另一峰,这两峰之间的距离及其强度比是与元素有关的,并且对于同一元素,两峰的化学位移又是非常一致的,所以可根据两个峰(双线)的情况来识别谱图。

伴峰的存在与谱峰的分裂会造成识谱的困难,因此要进行正确的定性分析,必须正确鉴别各种伴峰及正确判定谱峰分裂现象。

一般进行定性分析首先进行全扫描(整个X射线光电子能量范围扫描),以鉴定存在的元素,然后再对所选择的谱峰进行窄扫描,以鉴定化学状态。在XPS谱图里,C 1s、O 1s、C(KLL)、O(KLL)的谱峰通常比较明显,应首先鉴别出来,并鉴别其伴线。然后由强到弱逐步确定测得的光电子谱峰,最后用“自旋一轨道耦合双线”核对所得结论。

在XPS中,除光电子谱峰外,还存在X射线产生的俄歇峰。对某些元素,俄歇主峰相当强也比较尖锐。俄歇峰也携带着化学信息,如何合理利用它是一重要问题。

C.D.Wagner联合利用光电子谱峰和俄歇峰,对一部分元素进行化学位移的测量,简单介绍如下:

C.D.Wagner引进了一个新的参数——俄歇参数理,定义为:

α=E A-E P(12. 21)

此处Ep是光电子主峰的能量,而E A则是一个最强最窄的俄歇峰的能量。

因为:

Ep =hv-E b (12.22)

所以:α= E A +E b-hv (12.23)

hv+α= E A+E b

图l2. 30 Cu的X射线光电子谱主峰及化学位移表(a)和Cu的俄歇谱(b)

由于结合能定标的误差和荷电效应,结合能的测定是有一定误差的。当光电子谱峰的化学位移很小时,测量化学位移有困难,测得的结果是不可靠的。然而俄歇参数α却不受定标误差和荷电效应的影响,这种误差对于俄歇电子能量的影响和对于光电子能量的影响是完全一样的,因而互相抵消。如果把hv+α定义为改进的俄歇参数α’,则α’不仅不受定标误差和荷电效应的影响,而且也与X射线光子能量hv无关,并且总是一个正数。不同的化学环境,造成光电子谱峰和俄歇峰的微小位移,因而也造成α或α’的微小变化,所以α或α’又是反映化学位移的一个量。

C.D.Wagner用化学状态区域图来表示α或α’与化学环境的关系。图12. 31是Cu的化学状态区域图。图中横坐标是Cu的2P3/2结合能,纵坐标是Cu的L3VV俄歇电子动能。等α’线(α’=α+hv)是与坐标轴成45°角的一系列斜线。由于光电子能量与俄歇电子能量测量有误差,因此对各种化合物都有一定的误差范围,在图上用矩形方框表示。

图12.31 Cu的化学状态区域图

由图12. 31可见,对于Cu仅利用光电子谱线是难以区别化学环境的。例如,Cu、Cu2S、Cu2O和CuCl的Cu,仅根据2P3/2光电子结合能是难以区分的。但是如果再利用俄歇线,根据α的不同,是可以清楚地分开的。对于光电子谱峰化学位移比较小而俄歇峰化学位移比较显著的元素,利用化学状态区域图是很有利的,在X射线光电子谱手册中,有9种元素(F、Na、Cu、Zn、As、Cd、In和Te)的标准谱图上附有化学状态区域图。

四、定量分析

X射线光电子谱与俄歇谱的定量分析有不少共同之处,故在这里简单讨论。XPS定量分析主要采用灵敏度因子法,本节只讨论这种方法。

定量分析的任务是根据光电子谱峰强度,确定样品表面元素的相对含量。光电子谱峰强度可以是峰的面积,也可以是峰的高度,一般用峰的面积,可以更精确些。计算峰的面积要正确扣除背底。元素的相对含量可以是试样表面区域单位体积原子数之比ni

,也可以是某种

nj

(j包括i)

元素在表面区域的原子浓度Ci=ni

∑nj

j

首先求光电子谱峰所包含的电流I。设在“表面区域”内(大约3λcosθ深度范围内)各元素密度均匀,即各n不变,并设在此深度范围内X射线强度保持不变,则I的一般表示式

为:

I =eAfnσyλθT (12. 24)

式中:e——电子电荷;

A——被检测光电子的发射面积;

f——X射线的通量,单位是每秒单位面积多少光子;

n——原子密度,即单位体积原子数;

σ——一个原子特定能级的光电离截面,这个能级上的一个电子光致电离发射出去;

λ——平均自由程;

θ——角度因子,它与X射线入射方向及接收光电子的方向有关;

y——产生额定能量光电子的光电过程的效率,如果某能级的一个电子光电离成为光电子,因某种原因(如振激、振离等)光电子能量受到损失,它就不是额定能量的光电子,而额定能量的光电子占全部从此能级电离出去的电子百分之多少,就是效率y;

T——谱仪检测出自样品的光电子的检测效率,它与光电子能量有关。

下面具体介绍灵敏度因子法。我们定义灵敏度因子:

S = eAfσyλθT (12. 25)

某元素光电子谱峰强度(I)与其(S)之关系为:

I=nS (12. 26)

对被测样品进行测量,可以测得各元素的光电子谱峰强度,i元素强度以I i表示,j元素强度以I j表示。对样品中任意二元素i与j,有:

ni nj =(Ii

Ij

)(Sj

Si

)( 12. 27)

而i元素的原子浓度Ci为:

Ci=ni

∑nj

j =

Ii

Si

?

∑Ii Sj

?

j

=1

∑(Ij

Ii

)(Si

Sj

)

j

Ii/Ij是可以测得的,只要求得Si/Sj,那么ni/nj及Ci就可求得。不考虑yi/yj,则:

Si Sj =(σi

σj

)[λ(Ei)

λ(Ej)

][T(Ei)

T(Ej)

](12.29)

其中λ和T是光电子动能的函数,在此特别标明。由于(yi/yj)项未考虑,对过渡金属会因此造成误差。

在式( 12. 29)中,σi和σj内一般采用J.H.Scofield发表在Joural of Electron Spectroscopy and Related Phenomena 1976年第8卷第129~137页上的数据。关于平均自由程,

最简单用λ(Ei)

λ(Ej)=√Ei

Ej

或λ(Ei)

λ(Ej)

=(Ei

Ej

)

0.75

计算,也可用更准确的公式算。T(Ei)T(Ej)决定于仪器,

理论计算误差大,最好自己实测。这样,Si/Sj便可确定了。通常把F 1s的灵敏度因子取作

1,其他元素灵敏度因子是与F 1s的灵敏度因子相比较的相对值。有的X射线光电子谱仪,其灵敏度因子(相对于F 1s)已经算好,可供查用。

与俄歇定量相比,X射线光电子谱没有背散射增强因子这个复杂因素,也没有微分谱造成的峰形误差问题,因此定量结果的准确性比俄歇好,一般认为,对于不是太重要的样品,误差可以不超过20%。

图12. 32为TiAIN镀层的XPS图谱。

曹春娥,顾幸勇,王艳香,陈云霞编著,无机材料测试技术,江西高校出版社,2011.06

(完整版)X射线光电子能谱分析(XPS)

第18章X射线光电子能谱分析 18.1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES 分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6μm大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS 方法可广泛应用于化学化工,材料,机械,电子材料等领域。 18.2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示: E k = hν- E b - φs (18.1)

材料分析方法实验报告

篇一:材料分析方法实验报告 篇二:材料分析方法课程设计报告 材料分析测试方法 课程设计(论文) 题目:磁控溅射c/w多层膜成分及微观分析 学院材料科学与工程 专业材料化学 班级材化082 学生王维娜 学号 3080101296 指导教师陈迪春 起止时间 2010.12.27-2011.1.1 年 材料分析测试方法课程设计任务书 课程设计内容要求: 掌握高分辨透射电子显微镜样品制备方法,学习并了解真空镀膜 技术-磁控溅射技术,多层膜制备过程,以及其微观结构分析,成分 分析所用仪器和原理。 学生(签名) 月日 材料分析测试方法课程设计评语 指导教师(签名) 年日 目录 材料分析测试方法 ............................................................................. .. (1) 1.1 磁控溅射 ............................................................................. (5) 1.2 x射线衍射仪 ............................................................................. . (5) 1.3 透射电子显微镜 ............................................................................. (6) 1.4 x射线光电子能谱仪(xps) ........................................................................ (7) 第二章实验方法 ............................................................................. .. (9) 2.1 tem样品的制备方法 .............................................................................

X射线光电子能谱仪

X射线光电子能谱分析 1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 m 大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。 2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成

光电子能谱分析法基本原理

第十四章 X-射线光电子能谱法 14.1 引言 X-射线光电子谱仪(X-ray Photoelectron Spectroscopy,简称为XPS),经常又被称为化学分析用电子谱(Electron Spectroscopy for Chemical Analysis,简称为ESCA),是一种最主要的表面分析工具。自19世纪60年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS发展到今天,除了常规XPS外,还出现了包含有Mono XPS (Monochromated XPS, 单色化XPS,X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源), SAXPS ( Small Area XPS or Selected Area XPS, 小面积或选区XPS,X射线的束斑直径微型化到6μm) 和iXPS(imaging XPS, 成像XPS)的现代XPS。目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨率低于1毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS拓展了XPS的内容和应用。 XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点和特点可以总结如下: ⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析 ⑵表面灵敏度高,一般信息采样深度小于10nm ⑶分析速度快,可多元素同时测定 ⑷可以给出原子序数3-92的元素信息,以获得元素成分分析 ⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团 ⑹样品不受导体、半导体、绝缘体的限制等 ⑺是非破坏性分析方法。结合离子溅射,可作深度剖析 目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材料表面污染物分析等。 14.2 基本原理 XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。 该过程可用下式表示: hγ=E k+E b+E r(14.1) 式中: hγ:X光子的能量(h为普朗克常数,γ为光的频率);

实验1紫外可见吸收光谱实验报告

实验一:紫外—可见吸收光谱 一、实验目的 1.熟悉和掌握紫外—可见吸收光谱的使用方法 2.用紫外—可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L;b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中外 层价电子跃迁的结果,其中 包括有形成单键的σ电 子、有形成双键的π电子、 有未成键的孤对n电子。外 层电子吸收紫外或者可见 辐射后,就从基态向激发态 (反键轨道)跃迁。主要有 四种跃迁,所需能量ΔE 大小顺序为σ→σ*> n→σ*>π→π>n→π* 吸收带特征典型基团 σ→σ*主要发生在远紫外区C-C、C-H(在紫外光区观测不到) 跃迁一般发生在150~250nm,因此在紫 n→σ* -OH、-NH 2 、—X、-S 外区不易观察到 跃迁吸收带波长较长,孤立跃迁一般发 π→π* 芳香环 生在200nm左右 跃迁一般发生在近紫外区(200~400n n→π* C=O、C=S、—N=O、-N=N-、C=N ; m) 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围 700-365nm 扫描速度高速;采样间隔: 0.5nm 2、甲基紫的测定

(1)校准基线 将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准(2)标准曲线的测定 分别将5ug/ml、 10ug/ml 、15ug/ml、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始"键,进行扫描,保存 3、甲基红的测定 (1)校准基线 将空白样品(乙醇)放到比色槽中,点击“基线"键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始" 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表: 浓度/μg*ml—1吸光度 50。665 10 1.274 152.048

半导体a谱仪实验报告

实验6:半导体α谱仪 实验目的 1.了解α谱仪的工作原理及其特性。 2.掌握应用谱仪测量α粒子能谱的方法。 3.测定241Am核素的α衰变的相对强度。 内容 1.调整谱仪参量,测量不同偏压下的α粒子能量,并确定探测器的工作偏压。 2.测定谱仪的能量分辨率,并进行能量刻度。 3.测量未知α源的能谱,并确定α粒子能量。 原理 半导体α谱仪的组成如图1所示。 金硅面垒探测器是用一片N型硅,蒸上一薄层金(100-2000 A),接近金膜的那一 层硅具有P型硅的特性,这种方式形成的PN结靠近表面层,结区即为探测粒子的灵敏区。探测器工作加反向偏压。α粒子在灵敏区内损失能量转变为与其能量成正比的电脉冲信号,经放大并由多道分析器测出幅度的分布,从而给出带电粒子的能谱。偏置放大器的作用是当多道分析器的道数不够用时,利用它切割、展宽脉冲幅度,以利于脉冲幅度的精确分析。为了提高谱仪的能量分辨率,探测器要放在真空室中。另外金硅面垒探测器一般具有光敏的特性,在使用过程中,应有光屏蔽措施。 金硅面垒型半导体α谱仪具有能量分辨率高、能量线性范围宽、脉冲上升时间快、体积小和价格便宜等优点,在α粒子及其它重带电粒子能谱测量中有着广泛的应用。 带电粒子进入灵敏区,损失能量产生电子空穴对。形成一对电子空穴所需的能量w,与半导体材料有关,与入射粒子的类型和能量无关。对于硅,在300K时,w为3.62eV,77K时为3.76eV。对于锗,在77K时w为2.96eV。若灵敏区的厚度大于入射

粒子在硅中的射程,则带电粒子的能量E 全部损失在其中,产生的总电荷量Q 等于 e w E )/(。w E /为产生的电子空穴对数,e 为电子电量。由于外加偏压,灵敏区的电 场强度很大,产生的电子空穴对全部被收集,最后在两极形成电荷脉冲。通常在半导体探测器设备中使用电荷灵敏前置放大器。它的输出信号与输入到放大器的电荷量成正比。 探测器的结电容d C 是探测器偏压的函数,如果核辐射在探测器中产生电荷量为Q ,那么探测器输出脉冲幅度是d C Q /。因此,由于探测器偏压的微小变化所造成的d C 变化将影响输出脉冲的幅度。事实上,电源电压的变化就可以产生偏压近种微小变化。此外,根据被测粒子的射程调节探测器的灵敏区厚度时,也往往需要改变探测器的偏压。要减少这些变化对输出脉冲幅度的影响,前级放大器对半导体探测器系统的性能越着重要的作用。图2表示典型探测器的等效电路和前置放大器的第一级。其中一K 是放大器的开环增益,f C 是反馈电容,1C 是放大器的总输入电容,它等于 '',C C C d +是放大器插件电缆等寄生电容。前置放大器的输入信号是d C Q /,它的等 到效输入电容近似等于f KC ,只要1C KC f >>,那么前置放大器的输出电压为 f f C Q C K C KQ V - =++- =)1(10 ( 1 ) 这样一来,由于选用了电荷灵敏放大器作为前级放大器,它的输出信号与输入电荷Q 成正比,而与探测器的结电容d C 无关。 1. 确定半导体探测器偏压

透射电镜实验报告

透射电镜实验报告 实验报告 课程名称电镜技术成绩姓名学号实验日期 2013.3.27 实验名称透射电子显微镜原理、结构、性能及成像方指导教师 式 一、实验目的与任务 1. 初步了解透射电镜操作过程 2. 初步掌握样品的制样方法(主要是装样过程) 3.拍摄多晶金晶体的低分辨率照片(<300000倍)和高分辨率照片(>300000 倍),并对相关几何参数、形态给予描述。用能谱分析仪对样品的成分进行分析。 二、实验基本原理 1.仪器原理 透射电子显微镜是以图像方式提供样品的检测结果,其成像的决定因素是样品对入射电子的散射,包括弹性散射和非弹性散射两个过程。样品成像时,未经散射的电子构成背景,而像的衬底取决于样品各部分对电子的不同散射特性。采用不同的实验条件可以得到不同的衬底像,透射电子显微镜不仅能显示样品显微组织的形貌,而且可以利用电子衍射效应同样获得样品晶体学信息。本次实验将演示透射电镜的透射成像方式和衍射成像方式。 (1)成像方式 电子束通过样品进入物镜,在其像面形成第一电子像,中间镜将该像放大,成像在自己的像面上,投影镜再将中间镜的像放大,在荧光屏上形成最终像。 (2)衍射方式

如果样品是晶体,它的电子衍射花样呈现在物镜后焦面上,改变中间镜电流,使其对物镜后焦面成像,该面上的电子衍射花样经中间镜和投影镜放大,在荧光屏上获得电子衍射花样的放大像。 2.仪器结构 主机主要由:照明系统、样品室、放大系统、记录系统四大部分构成。 3.透射电子显微镜的样品制备技术 4.图像观察拍照技术 透射电镜以图像提供实验结果。在观察样品之前对电子光学系统进行调查,包括电子枪及象散的消除。使仪器处于良好状态。观察过程中选合适的加速电压和电流。明场、暗场像及选区电子衍射的观察和操作方法不同,应按况选择。三、实验方法与步骤 1( 登陆计算机 2( 打开操作软件 3( 检查电镜状态 4( 装载样品 5( 插入样品杆 6( 加灯丝电流 7( 开始操作 8( 结束操作 9( 取出样品杆 10( 卸载样品 11( 刻录数据 12( 关闭操作软件 13( 退出计算机

材料现代分析与测试 第五章 光电子能谱分析

第五章光电子能谱分析 一、教学目的 理解掌握光电子能谱分析的基本原理,掌握光电子能谱实验技术,了解光电子能谱仪,了解俄歇电子能谱分析。 二、重点、难点 重点:光电子能谱分析原理、光电子能谱实验技术及应用。 难点:光电子能谱分析原理。 第一节概述 电子能谱是近十多年才发展起来的一种研究物质表面的性质和状态的新型物理方法。这里所谓的表面是指固体最外层的l~10个原子的表面层和吸附在它上面的原子、分子、离子或其他覆盖层,它的深度从小于1到几个nm,或者包括采取剥离技术将表面层沿纵向深度暴露出新的表面。用特殊的手段对这类表面进行分析已形成一门新兴的测试方法,即表面分析法,它在理论上和实际应用上都有广泛的研究领域。表面分析方法在无机非金属材料学科中的应用,例如:研究玻璃表面的刻蚀作用、水泥矿物硅酸钙的水化作用、陶瓷表面和界面、高温超导材料表面的作用等均有重要意义。 一、表面分析可以得到的信息 表面分析是借助于各种表面分析仪,对物体10 nrn以内的表面层进行分析,可得到的信息有: (1)物质表面层(包括吸附层)的化学成分,除氢元素以外的元素都可以从表面分析法获得定性和定量的结果,而X射线能谱分析一般只能分析到原子序数为11以上的元素(最好的仪器可以分析原子序数为4的Be元素)。定量分析也只能达到半定量程度。 (2)物质表面层元素所处的状态或与其他元素间的结合状态和结构,即元素所处的原子状态、价态、分子结构等信息。 (3)表面层物质的状态,如表面层的分子和吸附层分子状态、氧化态、腐蚀状态、表面反应生成物等。 (4)物质表面层的物理性质,这在一般表面分析中虽不是研究的主要内容,但可以得到与表面的元素、价态、结构等信息的关系。 在做表面分析工作时,不仅在制备样品时要求在高真空和超净条件下进行,而且在测试过程中也要注意仪器中的条件,以防止因污染而引起测试误差。 二、表面分析法的特点

同步辐射原理与应用简介

第十五章 同步辐射原理与应用简介§ 周映雪 张新夷 目 录 1. 前言 2.同步辐射原理 2.1 同步辐射基本原理 2.2 同步辐射装置:电子储存环 2.3 同步辐射装置:光束线、实验站 2.4 第四代同步辐射光源 2.4.1自由电子激光(FEL) 2.4.2能量回收直线加速器(ERL)同步光源 3. 同步辐射应用研究 3.1 概述 3.2 真空紫外(VUV)光谱 3.3 X射线吸收精细结构(XAFS) 3.4 在生命科学中的应用 3.5 同步辐射的工业应用 3.6 第四代同步辐射光源的应用 4.结束语 参考文献 §《发光学与发光材料》(主编:徐叙瑢、苏勉曾)中的第15章:”同步辐射原理与应用 简介”,作者:周映雪、张新夷,出版社:化学工业出版社 材料科学与工程出版中心;出版日期:2004年10月。

1. 前言 同步辐射因具有高亮度、光谱连续、频谱范围宽、高度偏振性、准直性好、有时间结构等一系列优异特性,已成为自X光和激光诞生以来的又一种对科学技术发展和人类社会进步带来革命性影响的重要光源,它的应用可追溯到上世纪六十年代。1947年,美国通用电器公司的一个研究小组在70MeV的同步加速器上做实验时,在环形加速管的管壁,首次迎着电流方向,用一片镜子观测到在电子束轨道面上的亮点,而且发现,随加速管中电子能量的变化,该亮点的发光颜色也不同。后来知道这就是高能电子以接近光速在作弯曲轨道运动时,在电子运动轨道的切线方向产生的一种电磁辐射。图1是当时看到亮点的电子同步加速器的照片,图中的箭头指出亮点所在位置。那时,科学家还没有意识到这种同步辐射其实是一种性能无比优越的光源,高能物理学家抱怨,因为存在电磁辐射,同步加速器中电子能量的增加受到了限制。大约过了二十年的漫长时间,科学家(非高能物理学家)才真正认识到它的用处,但当时还只是少数科学家利用同步辐射光子能量在很大范围内可调,且亮度极高等特性,对固体材料的表面开展光电子能谱的研究。随着同步辐射光源和实验技术的不断发展,越来越多的科学家加入到同步辐射应用研究的行列中来,同步辐射的优异特性得到了充分的展示,尤其是在红外、真空紫外和X射线波段的性能,非其他光源可比,很多以往用普通X光、激光、红外光源等常规光源不能开展的研究工作,有了同步辐射光源后才得以实现。到上世纪九十年代,同步辐射已经在物理学、化学、生命科学、医学、药学、材料科学、信息科学和环境科学等领域,当然也包括发光学的基础和应用基础研究,得到了极为广泛的应用。目前,无论在世界各国的哪一个同步辐射装置上,对生命科学和材料科学的研究都具

电子能谱XPS实验报告

实验报告 电子能谱实验

实验报告 一、 实验名称 电子能谱实验 二、 实验目的 (1) 了解X 光电子能谱(XPS )测量原理、仪器工作结构及应用; (2) 通过对选定的样品实验,初步掌握XPS 实验方法及谱图分析。 三、 实验原理 在现代材料分析中,表面问题是材料研究中很重要的部分。尤其是在微型材料、超薄 材料、薄膜材料和材料的表面处理等,都离不开表面科学。而X 光电子能谱(简称XPS )则是一项重要的表面分析方法。一定能量的X 光作用到样品上,将样品表面原子中的不同能级的电子激发成为自由电子,这些电子带有样品表面信息,具有特征能量,研究这类电子的能量分布,即为X 光电子能谱分析。 (1)光电发射 在具体介绍XPS 原理时,先介绍光电发射效应。光电发射是指,在轨道上运动的电子收到入射的光子的激发而由发射出去成为自由电子的过程。对于固体样品光电发射的能量关系如下: 'b k sa E h E νφ=--(固体)(1) 其中b E 为相对于费米能级的结合能,h ν为光子的能量,'k E 为光电子的动能,sa φ为样品的功函数。 光电发射示意图如下: 原子能级结合能b E 对于原子来说是特征的,具有特异性,可以用它来标识原子及原子能级。 由样品发射的光电子最终将会被探测器俘获,对于探测器有如下能量关系:

b k sp E h E νφ=--(探测器)(2) 式中,sp φ为探测器的功函数。如下图所示: (二)化学位移 XPS 在进行定量分析的时候,有一项很重要的应用就是化学态分析,其中包括化学位移和化学能移。 化学位移是指由于原子处于不同的化学环境而引起的结合能的位移(b E ?)。如化合过程+X+Y=X Y -,X 、Y 因电子的转移引起结合能的变化。相应的电子能谱也会发生改变,通过这种方法,还可以区别同一类原子处于何种能态,这为表面分析提供了很大的便利。 (三)X 光电子能谱仪原理示意图 如下图所示,由X 射线源发出的X 射线入射到样品表面,激发出自由光电子。光电子经过半球形能量分析器后被探测器吸收。探测器将光电子的所携带的信息转化为电信号,由示波器收集并在电脑中显示出来。 XPS 测量原理示意图 X 光电子能谱仪结构示意图

同步辐射光源简介

第20卷第2期2006年3月 常熟理工学院学报 Journal of Changshu Institute of Technology Vol.20No.2 Mar.2006同步辐射光源简介 谭伟石1,蔡宏灵2,吴小山2 (1.南京理工大学理学院应用物理系,江苏南京 210094; 2.南京大学固体微结构实验室,江苏南京 210093) 摘 要:简要介绍了同步辐射概念、同步辐射光源的特点及我国同步辐射光源发展的现状。 关键词:同步辐射光源;同步辐射特点;发展现状 中图分类号:TL8O43 文献标识码:A 文章编号:1008-2794(2006)02-0097-05 著名的物理学家杨福家先生概括了人类文明史上影响人类生活的光源的进展,分为四类[1]:第一类光源是1879年美国发明家爱迪生发明的电光源。不言而喻,人类现在的生活与文明离不开电光源,它使人类战胜了黑暗。 第二类光源是1895年德国科学家伦琴发现的X射线源。“X”是“未知”的符号,但是这种神秘莫测的、肉眼看不见的X光从被发现的时候就展现了它的魅力和对人类的巨大影响。 第三类光源是20世纪60年代美国与前苏联一批科学家创造的激光光源。目前激光的应用已经进入千家万户。如我们家庭中的激光唱片,超市的收款机所用的激光扫描器等,当然也有用于激光核聚变的大功率激光设备等,对人类的生活带来了巨大变化。 第四类光源就是同步辐射光源。1947年在美国纽约州Schenectady市通用电气公司实验室的一台能量为70Me V的同步加速器上,首次观察到一种强烈的辐射,这种辐射便被称为“同步辐射”。同步辐射是速度接近光速的带电粒子在磁场中沿弧形轨道运动时放出的电磁辐射。由于同步辐射消耗了能量,妨碍了高能粒子能量的提高,所以当时一直被认为是个祸害,没有得到重视。但是,人们很快便了解到同步辐射是具有从远红外到X光范围内的连续光谱、高强度、高度准直、高度极化、特性可精确控制等优异性能的脉冲光源,可用于其它光源无法实现的许多前沿科学技术研究。而现在同步辐射已经成为一个重要的科学研究平台,它的应用领域已经覆盖了物理、化学、生物、材料、医药、地质等众多领域,已经成为衡量一个国家科研水平的重要标准。 1 同步辐射特点 同步辐射的主要设备,包括储存环、光束线和实验站。储存环使高能电子在其中持续运转,是产生同步辐射的光源;光束线利用各种光学元件将同步辐射引出到实验大厅,并“裁剪”成所需的状态,如单色、聚焦,等;实验站则是各种同步辐射实验开展的场所。同步辐射光源是人类发现的第四代光源。与前三种光源相比,它具有诸多优点: 1.1 频谱分布宽广  收稿日期:2005-10-15 作者简介:谭伟石(1970—),男,湖南安化人,副教授。 DOI:10.16101/https://www.wendangku.net/doc/cb11840231.html, https://www.wendangku.net/doc/cb11840231.html,32-1749/z.2006.02.020

AES实验报告-材料分析与表征

《材料分析与表征》 俄歇电子能谱(AES)实验报告 学院:材料学院班级:xxx 姓名:xx 学号:xxxxxxxx 一.实验目的 1. 了解俄歇电子能谱的背景知识和基本原理; 2. 了解俄歇电子能谱的基本实验技术及其主要特点; 3. 了解俄歇谱仪的基本结构和操作方法; 4. 了解俄歇电子能谱在材料表面分析中的应用。 二.实验原理 1. AES简介 俄歇电子能谱,英文全称为Auger Electron Spectroscopy,简称为AES,是材料表面化学成分分析、表面元素定性和半定量分析、元素深度分布分析及微区分析的一种有效的手段。俄歇电子能谱仪具有很高表面灵敏度,通过正确测定和解释AES 的特征能量、强度、峰位移、谱线形状和宽度等信息,能直接或间接地获得固体表面的组成、浓度、化学状态等信息。 当原子的内层电子被激发形成空穴后,原子处于较高能量的激发态。这一状态是不稳定的,它将自发跃迁到能量较低的状态——退激发过程,存在两种退激发过程:一种是以特征X射线形式向外辐射能量——辐射退激发;另一种通过原子内部的转换过程把能量交给较外层的另一电子,使它克服结合能而向外发射——非辐射退激发过程(Auger过程)。向外辐射的电子称为俄歇电子。其能量仅由相关能级决定,与原子激发状态的形成原因无关,因而它具有“指纹”特征,可用来鉴定元素种类。 2. 俄歇效应 处于基态的原子若用光子或电子冲击激发使内层电子电离后,就在原子的芯能级上产生一个空穴。这一芯空穴导致外壳层收缩。这种情形从能量上看是不稳定的,并发生弛豫,K空穴被高能态L1的一个电子填充,剩余的能量(E K-E L1)用于释放一个电子,即俄歇电子。如图1所示。

同步辐射光电子能谱对的研究

第20卷第7期半 导 体 学 报V o l.20,N o.7  1999年7月CH I N ESE JOU RNAL O F SE M I CONDU CTOR S Ju ly,1999 同步辐射光电子能谱对 IT O表面的研究3 来 冰 丁训民 袁泽亮 周 翔 廖良生 张胜坤 袁 帅 侯晓远 (复旦大学应用表面物理国家重点实验室 上海 200433) 陆尔东 徐彭寿 张新夷 (中国科学技术大学同步辐射实验室 合肥 230019) 摘要 首次利用同步辐射光电子能谱(SR PES)研究了铟锡氧化物(ITO)薄膜表面的化学状态. 发现ITO表面的铟和锡分别具有多种价态.对比真空退火前后ITO样品的电阻率与透射率,结 合对ITO导电机理的分析讨论,可以认为In2O3-x与Sn3O4的含量变化是影响ITO的导电与透 光性能的主要原因. PACC:7960,7360F,7865 1 引言 铟锡氧化物(ITO)薄膜是一种具有较高电导率并且在可见光范围透明的材料,它可用真空淀积等方法涂覆于玻璃表面.这种既透光又导电的特殊性能使ITO被广泛用作多种光电子器件的电极材料,包括有机电致发光器件[1,2],太阳能电池(so lar cell)[3,4],液晶显示器等.仅以有机电致发光器件为例,人们在镀有ITO薄膜的玻璃上淀积有机发光层或空穴传输层,利用ITO作阳极为复合发光提供空穴,发光层产生的光从ITO玻璃一侧透射出来.不同的ITO表面处理会对器件的发光效率和寿命产生影响.对此类器件的失效研究发现,热效应带来的ITO 有机物界面受损和有机电致发光器件的失效有密切的关系[5].ITO膜的性质往往直接影响着上述器件的工作性能. 对ITO的研究早期工作的重点主要在膜的制备上.近年来,随着有机发光器件逐渐成为研究的热点,人们开始关注ITO衬底的特性与器件性能间的关系.一些研究人员发现,对ITO表面进行适当处理能有效地改善有机发光器件的性能[6~8].但ITO表面的性质究竟如何影响它在器件中的应用仍是一个不十分清楚的问题. 迄今为止,对ITO表面化学成分的研究多用常规X射线光电子能谱(XPS)[9]或俄歇电  3国家自然科学基金资助课题(69776034) 来 冰 女,1973年出生,硕士研究生,从事凝聚态表面物理研究 丁训民 男,副教授,长期从事光电子能谱研究 1998208211收到,1999202203定稿

实验1紫外-可见吸收光谱实验报告

实验一:紫外-可见吸收光谱 一、实验目的 1.熟悉和掌握紫外-可见吸收光谱的使用方法 2.用紫外-可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L; b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中外 层价电子跃迁的结果,其中 包括有形成单键的σ电子、 有形成双键的π电子、有未 成键的孤对n电子。外层 电子吸收紫外或者可见辐 射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁,所需能量ΔE 大小顺序为σ→σ*>n→σ*>π→π>n→π*

三、实验步骤 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围700-365nm 扫描速度高速;采样间隔:0.5nm 2、甲基紫的测定 (1)校准基线 将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准 (2)标准曲线的测定 分别将5ug/ml、10ug/ml 、15ug/ml 、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 3、甲基红的测定 (1)校准基线

将空白样品(乙醇)放到比色槽中,点击“基线”键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表: 浓度/μg*ml-1吸光度 50.665 10 1.274 15 2.048 20 2.659

X射线光电子能谱(XPS)谱图分析

一、X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质 发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用 下式表示: hn=Ek+Eb+Er (1) 其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的 反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米 能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真 空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为: hn=Ek+Eb+Φ(2) Eb=hn-Ek-Φ(3)仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样, 如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的 轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以 了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小 可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析 元素的化合价和存在形式。 二、电子能谱法的特点 (1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电 发射电子的能量分布,且直接得到电子能级结构的信息。(2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称 作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层 电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定 性的标识性强。 (3)是一种无损分析。 (4)是一种高灵敏超微量表面分析技术,分析所需试样约10-8g即可,绝对灵敏

案例解析X射线光电子能谱(XPS)八大应用!

【干货】玩转XPS丨案例解析X射线光电子能谱(XPS)八大应用! 表面分析技术 (Surface Analysis)是对材料外层(the Outer-Most Layers of Materials (<100nm))的研究的技术。 X射线光电子能谱简单介绍 XPS是由瑞典Uppsala大学的K. Siegbahn及其同事历经近20年的潜心研究于60年代中期研制开发出的一种新型表面分析仪器和方法。鉴于K. Siegbahn教授对发展XPS领域做出的重大贡献,他被授予1981年诺贝尔物理学奖。 X射线激发光电子的原理 XPS现象基于爱因斯坦于1905年揭示的光电效应,爱因斯坦由于这方面的工作被授予1921年诺贝尔物理学奖; X射线是由德国物理学家伦琴(Wilhelm Conrad R?ntgen,l845-1923)于1895年发现的,他由此获得了1901年首届诺贝尔物理学奖。

X射线光电子能谱(XPS ,全称为X-ray Photoelectron Spectroscopy)是一种基于光电效应的电子能谱,它是利用X射线光子激发出物质表面原子的内层电子,通过对这些电子进行能量分析而获得的一种能谱。 这种能谱最初是被用来进行化学分析,因此它还有一个名称,即化学分析电子能谱(ESCA,全称为Electron Spectroscopy for Chemical Analysis)。XPS谱图分析中原子能级表示方法 XPS谱图分析中原子能级的表示用两个数字和一个小字母表示。例如:3d5/2(1)第一个数字3代表主量子数(n); (2)小写字母代表角量子数; (3)右下角的分数代表内量子数j

XPS实验报告-参考

电子能谱实验 实验日期:2009-11-30 报告人:张丽颖(200921220007) 组员:邓春凤、代庆娥、刘丽娜 实验内容: 一、实验目的 (1) 了解X光电子能谱(XPS)测量原理、仪器工作结构及应用; (2) 通过对选定的样品实验,初步掌握XPS实验方法及谱图分析。 二、实验原理 1、光电发射过程 光子照射到样品上,被样品表面原子的电子吸收,逸出样品表面。 2、光电子能谱 一定能量的电子、X光、UV等入射到(作用到)样品上,将样品表面原子中的不同能级的电子激发成自由电子,这些电子带有样品表面信息,具有特征能量,研究这类电子的能量分布,即为电子能谱分析。而以光子激发出自由电子得到的电子能谱称为光电子能谱,用X光激发得到的光电子能谱就叫做XPS。 3、能量关系 光电发射有:hν+M →M++e(Ek),其中,hν是入射光子,M是样品原子,Ek是光电子动能。 得到能量关系(Einstein 关系):Ek = hν- Eb →Eb= hν-Ek-φsa(固体),其中,hν是光子能量,Eb是结合能(相对于费米能级E F),Ek是光电子动能,φsa 是固体样品功函数。 实际实验中是将样品与分析器相连接地,二者处于相同电位上,能量关系如图1所示,光电子结合能又可表示为: Eb=hv-Ek’-φsa ........ 样品 =hv-Ek-φsp .........仪器 其中φsp是仪器功函数。

图1.固体样品的光电子发射能量关系图 4、化学态分析 物理位移:由于物理因素而引起的结合能位移为物理位移,如相变,固体热效应,荷电效应等。其中荷电效应是由于样品光电子的逸出使样品电位升高,对后续实验产生的光电子有吸引作用,导致测量得到的结合能高于实际值。 化学位移:由于原子处于不同的化学环境而引起的结合能的位移(ΔEb)为化学位移。结合能化学位移变化规律: (a) 同一元素中,1s, 2s, 2p1/2, 2p3/2, 3s, 3p1/2, 3p3/2, 3d5/2, 3d3/2, ....结合能变小。 (b) 同一周期内主族元素结合能ΔEb 位移随化合价的升高线性增加;而过渡元素的ΔEb 随化合价变化相反,如图为元素氧化物的结合能位移ΔEb 与原子序数Z 间的关系。 (c) 分子M 中某原子A 的内层电子结合能位移ΔEb A同它周围的结合的原子电负性之和ΣX有一定的关系。 (d) NMR, Mossbauer 谱,IR 关系;在分子(化合物)分析中,(少数化合物)XPS 的ΔEb与NMR, Mossbauer 谱的ΔEb 成正比。 (e) 反应热 6、俄歇效应

材料现代分析方法实验报告

力学与材料学院 材料现代分析方法实验报告二 XRD图谱分析 专业年级:1 姓名:1 指导老师:1 学号:1 2016年12月 中国南京 目录 实验名称:XRD图谱分析…………………………………………… 一、实验目的……………………………………………………

二、实验要求…………………………………………………… 三、操作过程…………………………………………………… 四、结果分析与讨论……………………………………………… 实验名称:XRD图谱分析 一、实验目的 了解XRD基本原理及其应用,不同物相晶体结构XRD图谱的区别,熟练掌握如何来分析利用X射线测试得到的XRD图谱。 二、实验要求

1、熟练掌握如何来利用软件打开、分析XRD图谱,以及输出分析结果。 2、明确不同物质的XRD图谱,掌握XRD图谱包含的晶体结构的关系,通过自己分析、数据查找和鉴别的全过程,了解如何利用软件正确分析和确定不同物相的XRD图谱,并输出分析结果。 3、实验报告的编写,要求报告能准确的反映实验目的、方法、过程及结论。 三、操作过程 1、启动Jade 6.0,并打开实验数据。 2、点击图标使图谱平滑后,再连续两次点击图标扣除背景影响。 3、右击工具栏中的图标,全选左侧的项目,取消选择右侧中的Use Chemistry Filter,最后在下方选择S/M Focus on Major Phases(如图一),并点击OK。 图一

4、得到物相分析,根据FOM值(越小,匹配性越高)可推断出该物相为以ZnO为主,可能含有CaF2、Al2O3、Mg(OH)2混合组成的物质(如图二),双击第一种物质可以得到主晶相的PDF卡片(如图三),点击图三版面中的Lines可以观察到不同角度处的衍射强度(如图四)。 图二

XPS实验报告

X射线光电子能谱分析实验报告 一实验目的 1 了解X射线光电子能谱的产生原理; 2 掌握X射线光电子能谱的定性分析和定量分析依据; 3 了解X射线光电子能谱仪的基本结构; 4 掌握X射线光电子能谱的谱图处理和分析过程。 二实验原理 1 X射线光电子能谱的产生 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS 由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。下面主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6微米大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。

相关文档
相关文档 最新文档