文档库 最新最全的文档下载
当前位置:文档库 › 废水同步脱氮除磷原理及工艺 电子教案.

废水同步脱氮除磷原理及工艺 电子教案.

废水同步脱氮除磷原理及工艺 电子教案.
废水同步脱氮除磷原理及工艺 电子教案.

《水处理微生物》教案

教学重点废水生物同步脱氮除磷原理

教学难点

微生物在废水同步脱氮除磷中

的作用

废水同步脱氮除磷工艺及应用

参考资料1.《环境微生物学》,陈剑虹主编,武汉理工大学出版社,2015.1

2.《环境工程微生物技术》,钟飞主编,化学工业出版社,2010

3.《水处理微生物学》,赵远主编,高等教育出版社出版,201

4.7

随着经济的发展,大量含氮、磷物质排入环境,导致水体污染日益加剧,给水体生态系统和人群健康造成极大的危害,当磷大与0.01mg/l,氮大于0.1 mg/l,水体开始发生富营养化。因此,需对废水脱氮除磷,以保护水生生态系统。

一、同步脱氮除磷原理

在生物脱氮除磷工艺中,厌氧池的主要功能是释放磷,使污水中的磷浓度升高,溶解性的有机物被微生物细胞吸收而是无水肿的BOD下降,另外,氨氮因细胞的合成而被去除一部分,是水中氨氮浓度下降,但硝态氮含量没有变化。在缺氧池中,反硝化细菌利用无水肿的有机物作为碳源,将回流液中的硝态氮还原为氮气从水中逸出,水中氨氮和BOD含量都下降。在好氧池中,有机物被微生物生化降解而下降,有机氮被氨化继而被硝化;磷随着聚磷菌的过量摄取被转化到生物体中,随着剩余污泥彻底从水中去除。

所以,同步生物脱氮除磷具有有机物的去除、氨化、硝化、反硝化脱氮,厌氧释放磷,好氧吸收磷等功能,能在同一个工艺中同时完成氮磷的去除。

二、同步脱氮除磷工艺

在好氧池中,有机物被微生物生化降解而下降,有机氮被氨化继而被硝化;磷随着聚磷菌的过量摄取被转化到生物体中,随着剩余污泥彻底从水中去除。所以,同步生物脱氮除磷具有有机物的去除、氨化、硝化、反硝化脱氮,厌氧释放磷,好氧吸收磷等功能,能在同一个工艺中同时完成氮磷的去除。

图 A2/O法同步脱氮除磷工艺流程

同步脱氮除磷工艺目前主要有A2/O法。

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和- 34PO 和-24 SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+???→?+亚硝酸菌 3225.0HNO HNO O ??→?+硝酸菌 ○ 2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+ ][35.122233H O H N HNO NH ++→+

污水脱氮除磷机理

浅谈生活污水脱氮除磷研究 摘要:介绍了污水中氮磷的来源和危害,污水脱氮除磷的机理以及几种常用的生活污水脱氮除磷工艺,分析了其优缺点,并介绍了相关污水脱氮除磷的研究。 关键词:生活污水脱氮除磷 1 前言 氮和磷是生物重要营养源。随着人口的持续增长和人们生活水平的不断提高,生活污水人均排放量持续增加,加之洗涤剂的普遍使用,以及二级生化处理城市污水出水中氮磷含量较高,排入水体后使受纳水体中氮、磷含量增加,蓝、绿藻大量繁殖,水体缺氧并产生毒素,水质恶化。我国淮河流域、太湖、巢湖、滇池等水体富营养化严重,近海岸每年发生的十多起大面积的赤潮,严重影响水生生物和人体健康。 大量氮、磷化合物进入水体后加速水体的富营养化进程,降低了水体的经济价值和美学价值,破坏水体生态环境,影响供水水质等;消耗水体中的溶解氧,不利于水体质量的改善以及鱼类的生存;降低氯的消毒效率,大大增加氯的消耗量,同时对人类的健康存在着潜在的危害。 因此,解决氮磷污染问题对解决我国水环境污染问题具有重大意义。 2 污水脱氮除磷机理 污水中氮的存在形式主要有氨氮、亚硝酸盐氮和硝酸盐氮,可通过物理法、化学法和生物法去除。常用的物化方法有氨吹脱法、化学沉淀法、折点加氯法、选择性离子交换法和催化氧化法。污水中磷的存在形态主要是磷酸盐、聚磷酸盐和有机磷,其去除方法主要有混凝沉淀法、结晶法和生物法。由于生物脱氮除磷被公认为是一种经济、有效和最有发展前途的方法,且生活污水的可生化性好,因此,目前污水脱氮除磷大多采用生物法。 2.1生物脱氮机理 污水生物处理脱氮过程主要是氮的转化,即同化、氨化、硝化和反硝化。 (1)同化作用在生物处理过程中,污水中的一部分氮(氨氮或有机氮)被同化成微生物细胞的组成成分。同化作用的氨氮去除率一般为8%~20%。 (2)氨化作用污水中的含氮有机物(一般动物、植物和微生物残体以及

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

污水生物脱氮除磷改良技术

污水生物脱氮除磷改良技术 随着科技的发展,节能降耗的改良的脱氮除磷技术在国内外迅速发展。文章阐述了污水生物脱氮除磷的改良的技术,介绍了UCT技术、同步硝化反硝化、短程硝化反硝化、SBR改良工艺及CASS工艺等脱氮除磷技术,这些工艺运行灵活、费用低,解决因碳源不足、含NO2-或NO3-污泥回流等问题而影响脱氮除磷效果的新型技术,是今后污水脱氮除磷发展的方向。 标签:生物脱氮除磷;同步硝化反硝化;短程硝化反硝化;改良 Abstract:With the development of science and technology,the improved nitrogen and phosphorus removal technology of saving energy and reducing consumption is developing rapidly at home and abroad. In this paper,the improved technologies of biological nitrogen and phosphorus removal from wastewater are introduced,such as UCT technology,simultaneous nitrification and denitrification,short-cut nitrification and denitrification,improved SBR process and CASS process. These processes are flexible in operation and low in cost,able to solve problems such as insufficient carbon source and NO2- or NO3- sludge backflow,which impact the effect of nitrogen and phosphorus removal,therefore it is the development direction of wastewater nitrogen and phosphorus removal in the future. Keywords:biological nitrogen and phosphorus removal;simultaneous nitrification and denitrification;Short-cut nitrification and denitrification;improvement 近年来我国水环境遭受了不同程度的污染,其中水体富营养化现象最为严重。造成水体富营养化的主要原因是氮、磷元素的超标排放,氮、磷元素主要来自未经处理或处理不完全的工业废水、城市生活污水、有机垃圾和家畜家禽粪便以及农施化肥。氮、磷是水中生物的重要营养元素,但超过生物所需时,就会使水体中的藻类及浮游生物过量繁殖,大量消耗水体中溶解氧(DO),使水体中鱼类及其他水生生物因缺氧而大量死亡,生物多样性降低,水的透明度下降,水质恶化[1]。与化学法和物理化学法相比,具有脱氮除磷功能的生物污水处理工艺因对有机物、氮和磷均有较高的去除效率、其运行费用低、污泥沉降性能良好等优点而广泛受到污水处理工程界的重视和青睐,特别是20世纪90年代以来,生物脱氮、除磷技术有了重大的发展。在传统生物脱氮除磷工艺,如A/O工艺、A2/O工艺、氧化沟工艺的基础上,间歇曝气、节省能耗的改良的脱氮除磷技术在国内外迅速发展。 1 UCT工艺(MUCT工艺) UCT工艺是A2/O工艺的一种改造,是南非开普敦大学研究提出的脱氮除磷工艺,为了防止二沉池中的NO2-或NO3-进入厌氧池,破坏厌氧池的厌氧状态而影响系统的除磷效率,该工艺将二沉池污泥回流到缺氧区而不是回流到厌氧池,

脱氮除磷工艺原理及方法比较

1.水污染现状 自从我们进入和谐社会以来,随着科学和经济的发展,资源严重浪费、环境重度污染等一些问题逐渐突出。由于我国经济发展模式与环境承受能力不相融合,导致现在我国大部分水体造成严重污染。在我国坚持走可持续发展的道路上,水资源的污染和浪费已经成为我国推进现代化建设和可持续发展的绊脚石。防止水资源环境进一步被污染和治理被污染的水资源环境,早就成为我国目前最需要处理的棘手问题之一。水污染的现状也是触目惊心。 2.脱氮除磷工艺原理及方法比较 生物脱氮原理由同化作用、氨化作用、硝化作用、反硝化作用四个步骤组成。在污水生物处理过程中,一部分氮(氮氨或有机氮)被同化成微生物细胞的组分;氨化作用将有机氮化合物在氨化菌的作用下,分解、转化为氨氮;硝化作用实际上是由种类非常有限的自养微生物完成的,该过程分两步:氨氮首先由亚硝化单胞菌氧化为亚硝酸氮,继而亚硝酸氮再由硝化杆菌氧化为硝酸氮;反硝化作用是由一群异养型微生物在缺氧的条件下完成的生物化学过程。生物除磷原理过程中,在好氧条件下细菌吸收大量的磷酸盐,磷酸盐作为能量的储备;在厌氧状态下吸收有机底物并释放磷。 现在,广泛应用的生物脱氮除磷工艺方法有氧化沟法、SBR法、A2/O法等。 ①氧化沟又称连续循环反应器,是20世纪50年代由荷兰的公共卫生所(TNO)开发出来的。氧化沟是常规活性污泥法的一种改型和发展,是延时曝气法的一种特殊形式。其主要功能是供氧;保证其活性污泥呈悬浮状态,是污水、空气、和污泥三者充分混合与接触;推动水流以一定的流速(不低于0.25m/s)沿池长循环流动,这对保持氧化沟的净化功能具有重要的意义。 氧化沟具有出水水质好、抗冲击负荷能力强、除磷脱氮效率高、污泥易稳定、能耗省、便于自动化控制等优点。但是,在实际的运行过程中,仍存在一系列的问题,如污泥膨胀问题、泡沫问题、污泥上浮问题、流速不均及污泥沉积问题。 ②?间歇式活性污泥法简称SBR工艺,一个运行周期可分为五个阶段即:进水、反应、沉淀、排水、闲置。这种一体化工艺的特点是工艺简单,由于只有一个反应池,不需二沉池、回流污泥及设备,一般情况下不设调节池,多数情况下可省去初沉池。 SBR法?工艺流程:?污水?→?一级处理→?曝气池?→?处理水? 特点有:大多数情况下,无设置调节池的心要;SVI值较低,易于沉淀,一般情况下不会产生污泥膨胀;通过对运行方式的调节,进行除磷脱氮反应;自动化程度较高;得当时,处理效果优于连续式;单方投资较少;占地规模较大,处理水量较小。 ③?A2/O法即厌氧一缺氧一好氧活性污泥法。污水在流经厌氧、缺氧、好氧三个不同功能分区的过程中,在不同微生物菌群的作用下,使污水中的有机物、N、P得到去除。A2/O法是最简单的同步除磷脱氮工艺,总水力停留时问短,在厌?氧缺氧、好氧交替运行的条件下,可抑制丝状菌的繁殖,克服污泥膨胀,SVI一般小于100,有利于处理后的污水与污泥分离,

生物脱氮除磷原理

生物脱氮原理 (碳源) (碳源)图1 硝化和反硝化过程 图2 A2/O工艺流程

水体中氮的存在形态 生物脱氮原理 1、氨化作用 在好氧或厌氧条件下,有机氮化合物在氨化细菌的作用下,分解产生氨氮的过程,常称为氨化作用。 有机氮 氨氮 2、硝化作用 以A 2/O 工艺为例,硝化作用主要发生在好氧反应器中,污水中的氨氮NH 4+-N 在亚硝酸 细菌的作用下转化为亚硝酸氮NO 2--N ,亚硝酸氮NO 2--N 在硝酸细菌的作用下进一步转化为硝酸氮NO 3 --N 。(见图 1左边) 亚硝酸细菌和硝酸细菌统称为硝化细菌,属于好氧自养型微生物,不需要有机物作为营养物质。 3、反硝化作用 反硝化作用主要发生在缺氧反应器中,好氧反应器中生成的硝酸氮NO 3--N 和亚硝酸氮NO 2--N 通过内循环回流到缺氧池中,在有一定碳源的条件下,由反硝化细菌先将硝酸氮NO 3--N 转化为亚硝酸氮NO 2--N ,亚硝酸氮再进一步转化为氮气N 2,水体中的氮从化合物转化为氮气进入到空气中,才能最终将污水中TN 降低。(见图1右边) 反硝化细菌是异养兼性缺氧型微生物,其反应需要在缺氧环境中才能进行。 氨化菌

生物除磷原理 磷在自然界以2 种状态存在:可溶态(正磷酸盐PO43-)或颗粒态(多聚磷酸盐)。 所谓除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。 厌氧释磷 污水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生自身生长所需的所需的能量,称该过程为磷的释放。 好氧吸磷 进入好氧环境后,聚磷菌活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。 富含磷的污泥通过剩余污泥外排的方式最终使磷得到去除。

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

生物脱氮除磷工艺中的矛盾

5,生物脱氮除磷工艺中的矛盾 (1)泥龄问题 作为硝化过程的主休,硝化菌通常都属于自养型专性好氧菌.这类微生物的一个突出特点是繁殖速度慢,世 代时间较长.在冬季,硝化菌繁殖所需世代时间可长达30d以上;即使在夏季,在泥龄小于5d的活性污泥中硝 化作用也十分微弱.聚磷菌多为短世代微生物,为探讨泥龄对生物除磷工艺的影响,Rensink等(1985年)[23]用表2归纳了以往的研究成果,并指出降低泥龄将会提高系统的除磷效率. 泥龄与除磷率关系表2 泥龄/d 30 17 5.3 4.6 磷去除率/% 40 50 87.5 91 由表2可见聚磷微生物所需要泥龄很短.泥龄在3.0d左右时,系统仍能维持较好的除磷效率.此外,生物除磷 的唯一渠道是排除剩余污泥.为了保证系统的除磷效果就不得不维持较高的污泥排放量,系统的泥龄也不得 不相应的降低.显然硝化菌和聚磷菌在泥龄上存在着矛盾.若泥龄太高,不利于磷的去除;泥龄太低,硝化菌 无法存活,且泥量过大也会影响后续污泥处理.针对此矛盾,在污水处理工艺系统设计及运行中,一般所采用 的措施是把系统的泥龄控制在一个较窄范围内,兼顾脱氮与除磷的需要.这种调和,在实践中被证明是可行 的. 为了能够充分发挥脱氮与降磷两类微生物的各自优势,可采取的其它对策大致上有两类. 第一类是设立中间沉淀池,搞两套污泥回流系统使不同泥龄的微生物居于前后两级(见图4),第一级泥龄很短,主要功能是除磷;第二级泥龄较长,主要功能是脱氮.该系统的优点是成功地把两类泥龄不同的微生物分开.但是,这类工艺也是存在局限性.第一,两套污泥回流系统,再加上中间沉淀池和内循环,使该类工艺流程 长且比较复杂.第二,该类工艺把原来常规A2/O(见图5)工艺中同步进行的吸磷和硝化过程分离开来,而各 自所需的反应时间又无法减少,因而导致工艺总的停留时间变长.第三,该工艺的第二级容易发生碳源不足 的情况,致使脱氮效率大受影响.此外,由于吸磷和硝化都需要好氧条件,工艺所需的曝气量也可能有所增加. 第二类方法是在A2/O工艺好氧区的适当位置投放填料.由于硝化菌可栖息于填料表面不参与污泥回流,故 能解决脱氮除磷工艺的泥龄矛盾.这种作法的优点是既达到了分离不同泥龄微生物的目的,又维持了常规 A2/O工艺的简捷特点.但是该工艺也必须解决好以下几个问题:①投放填料后必须给悬浮性活性污泥以优先 的和充分的增殖机会,防止生物膜越来越多而MLSS越来越少的情况发生;②要保证足够的搅拌强度,防止因 填料截留作用致使污泥在填料表面间大量结团;③填料投放量必须适中,投放量太少难以发挥作用,太多则难免出现对污泥的截留.此外,填料的类型和布置方式都应作慎重考虑.

脱氮除磷工艺汇总

脱氮除磷工艺汇总 MBR工艺脱氮除磷 MBR是一种结合膜分离和微生物降解技术的高效污水处理工艺。在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善。 MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善。所以MBR工艺一般和SBR系列/AAO等工艺组合使用。五种常见组合工艺: SBR-MBR工艺 A2O-MBR工艺 3A-MBR工艺 A2O/A-MBR工艺 A(2A)O-MBR工艺 SBR-MBR工艺: 将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身和SBR工艺两种程序运行都互有帮助。由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附和降解有机物的能力较强,同时也具有较好的硝化能力。此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR的循环时间;同时,序批式的运行方式可以延缓膜污染。

A2O-MBR工艺: 由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O-MBR工艺,可进一步拓展MBR的应用范畴。在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。A2O-MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。 3A-MBR工艺: 3A-MBR是依据生物脱氮除磷机理,结合膜生物反应器技术特点而形成的具有高效脱氮除磷性能的新型污水处理工艺。其基本原理是,膜生物反应器内的高浓度硝化液和高浓度活性污泥经过回流系统形成良好的缺氧、厌氧条件,实现系统的高效脱氮除磷。该工艺的内部流程依次是第一缺氧池、厌氧池、第二缺氧池、好氧池和膜池,膜池混合液分别回流至第一缺氧池和第二缺氧池。第一缺氧池利用进水碳源和回流硝化液进行快速反硝化,接着混合液进入厌氧池进行厌氧释磷,减少了硝酸盐对释磷的影响,第二缺氧池再利用污水中剩余的碳源和回流的硝化液进一步反硝化脱氮,好氧池内同步发生有机物降解、好氧释磷和好氧硝化等多种反应,彻底去除污水中的污染物,混合液再a经膜过滤出水,实现了对污水中有机物和氮磷的去除。3A-MBR工艺合理地组合了有机物降解和脱氮除磷等各处理单元,协调了各种生物降解功能的发挥,达到了同步去除各污染指标的目的,具有较高的推广应用价值。 A2O/A-MBR工艺: A2O/A-MBR工艺是一种强化内源反硝化的新型工艺,该工艺利用MBR内高浓度活性污泥和生物多样性来强化脱氮除磷效果,工艺流程依次为厌氧、缺氧、好氧、缺氧和膜池。该工艺在普通A2O工艺后再设一级缺氧池,在利用进水快速碳源完成生物除磷和脱氮后,再利用第二缺氧池进行内源反硝化,进一步去除TN,之后,再利用膜池的好氧曝气作用保障出水。A2O/A-MBR工艺是针对进水碳源不足,而同时又有较高脱氮要求的污水处理项目所开发,也是强化脱氮的MBR脱氮处磷

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

污水脱氮除磷

中小城镇污水处理厂生物除磷脱氮工艺的选择 一概述 改革开放以来,在我国的大中型城市中,建设了一批污水处理设施,对于保护大中型城市的环境,治理水污染起到了很大作用。随着我国城乡经济的发展,人民生活水平的显著提高,我国农村城市化的速度将大大加快,大量的小城镇将迅速兴起,预计到本世纪末,全国设市城市将达1200个左右,建制镇25000~3O000个左右,全国城镇人口达6.8亿左右,城市化水平约为45%,其中小城镇人口所占比例达65%左右。从发展眼光看,今后我国的大部分人口将生活在中小城镇。 目前全国共有1700O个建制镇,绝大多数没有排水和污水处理设施,而且,由于二十几年来,乡镇企业的蓬勃发展,造成一些中小城镇尤其是经济比较发达的中小城镇,污染严重,已经影响到人民的生活和健康。 从另一方面讲,中小城镇和大中城市在水系上是相通的,而且往往处于大中城市的上游,中小城镇的污水治理工作做不好,大中城市水环境的质量也不会有明显改善,因此,中小城市的环境保护问题越来越引起人们的重视。针对目前的情况,国家提出至2010年我国污水处理率要达到4O%,因此,未来一段时间内我国将会集中在中小城镇建设一大批污水处理厂,这些污水处理厂的规模,小的只有每日几十吨,大的每日几万吨,因此在规模上和大型污水处理厂相差较大,而且,由于这些中小城镇和大中城市经济发展水平、排水体制,基础资料,融资渠道有很大不同,因此以往建设大型污水处理厂的经验只有借鉴的意义,不可能也不应该把大中城市的污水治理工艺、技术装备等搬用到城镇级的污水处理厂中去,否则目前在大中城市中出现的“建的起,用不起”的局面将会在中、小城镇更加强烈的表现出来,甚至会演变成“既建不起,更用不起”的局面,因此探索适合中小城镇的经济实用的污水处理工艺,以较少的投资建成污水处理厂,以较低的运行费用运转污水处理厂,达到消除污染、保护环境的目的是摆在给排水工作者面前的一个挑战。 考虑到1998年1月1日之后,已经开始实行《污水排放综合标准》(GB8978-1996),因此中小城镇的污水处理厂在选择处理工艺时都要考虑除磷脱氮,本文谨就适合于中小城镇城市污水处理厂的生物除磷脱氮工艺谈一些粗浅的看法,供大家参考,不妥之处请指正。 二可供选择的工艺 各种除磷脱氮工艺一般都是除碳、除氮、除磷三种流程的有机组合,得利满公司提出了“SARAOE”概念,来描述用于除磷脱氮的不同区域。 1.选择区(Selectorzone) 设置选择区的目的主要是为了避免污泥膨胀。 2.厌氧区(Anaerobiczone) 设置厌氧区是为了提供一个使聚磷菌释放磷的环境,为后续的好氧吸磷创造条件。 3.再活化区(Reactivationzone) 设置再活化区用于再活化回流污泥。 4.缺氧区(Anoxiczone) 设置缺氧区,提供一个缺氧环境,使硝酸盐氮被还原为氮气。 5.好氧区(Oxidationzone) 该区为主反应区,在该反应区内完成碳的氧化和氨氮的硝化。 6.内源呼吸区(Endogenouszono) 在该区内进一步完成硝酸盐氮的反硝化。 在实际的工程设计中,根据受纳水体的要求和其它一些实际情况,生物除磷脱氮工艺可以分成以下几个层次: 1、去除有机物、氨氮和硝酸盐氮,因对总氮无要求,可以采用生物硝化工艺,生物硝化工艺与传统活

污水处理厂A-A-O生物脱氮除磷工艺简介

龙源期刊网 https://www.wendangku.net/doc/cc6510347.html, 污水处理厂A-A-O生物脱氮除磷工艺简介 作者:孟永进 来源:《硅谷》2009年第15期 中图分类号:X7文献标识码:A文章编号:1671-7597(2009)0810007-01 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产 生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷,其工艺流程如图1所示。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP 保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有

污水处理生物除磷工艺

污水处理生物除磷工艺 (一)缺氧好氧活性污泥法(A/O工艺) 当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。 厌氧/好氧工艺流程 1. 设计参数 A/O工艺生物除磷设计参数见下表 A/O工艺生物除磷设计参数 2. 工艺计算 缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式 (二)弗斯特利普( Phostrip) 除磷工艺 Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流 管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。 Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。 四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺 需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。 A2/O工艺脱氮除磷流程 (一)一般规定 进入系统的污水应符合下列要求: (1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求; (4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

五大MBR组合工艺解决脱氮除磷问题

五大MBR组合工艺解决脱氮除磷问题 【格林大讲堂】 几乎所有的传统脱氮除磷工艺都被应用到了MBR工艺中,如AO、A2O、SBR等,这些传统工艺中遇到的技术问题同样会在MBR脱氮除磷工艺中出现。 A2O及其变形强化工艺是众多应用在MBR脱氮除磷工艺中处理效果最为突出,运行管理最为方便,也是最稳定可靠的一类。以下将介绍多种形式的MBR 脱氮除磷组合工艺。 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 A2O-MBR工艺 在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。传统的生物脱氮工艺通常采用前置反硝化或后置反硝化来实现氮的去除,而设置了厌氧、缺氧和好氧反应器的A2O工艺则可以实现同步除碳和脱氮除磷功能。 A2O-MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。由A2O工艺与膜分离技术结合而成的具有同步脱氮除磷功能的A2O-MBR工艺,可进一步拓展MBR的应用范畴。

A2O/A-MBR工艺 A2O/A-MBR工艺是一种强化内源反硝化的新型工艺,该工艺利用MBR内高浓度活性污泥和生物多样性来强化脱氮除磷效果,工艺流程依次为厌氧、缺氧、好氧、缺氧和膜池。A2O/A-MBR工艺是针对进水碳源不足,而同时又有较高脱氮要求的污水处理项目所开发,也是强化脱氮的MBR脱氮处磷工艺。 该工艺在普通A2O工艺后再设一级缺氧池,在利用进水快速碳源完成生物除磷和脱氮后,再利用第二缺氧池进行内源反硝化,进一步去除TN,之后,再利用膜池的好氧曝气作用保障出水。 3A-MBR工艺 该工艺的内部流程依次是第一缺氧池、厌氧池、第二缺氧池、好氧池和膜池,膜池混合液分别回流至第一缺氧池和第二缺氧池。3A-MBR工艺合理地组合了有机物降解和脱氮除磷等各处理单元,协调了各种生物降解功能的发挥,达到了同步去除各污染指标的目的,具有较高的推广应用价值。 3A-MBR是依据生物脱氮除磷机理,结合膜生物反应器技术特点而形成的具有高效脱氮除磷性能的新型污水处理工艺。其基本原理是,膜生物反应器内的高浓度硝化液和高浓度活性污泥经过回流系统形成良好的缺氧、厌氧条件,实现系统的高效脱氮除磷。第一缺氧池利用进水碳源和回流硝化液进行快速反硝化,接着混合液进入厌氧池进行厌氧释磷,减少了硝酸盐对释磷的影响,第二缺氧池再利用污水中剩余的碳源和回流的硝化液进一步反硝化脱氮,好氧池内同步发生有机物降解、好氧释磷和好氧硝化等多种反应,彻底去除污水中的污染物,混合液再a经膜过滤出水,实现了对污水中有机物和氮磷的去除。

相关文档
相关文档 最新文档