文档库 最新最全的文档下载
当前位置:文档库 › 气体吸附(氮气吸附法)比表面积测定

气体吸附(氮气吸附法)比表面积测定

气体吸附(氮气吸附法)比表面积测定
气体吸附(氮气吸附法)比表面积测定

气体吸附(氮气吸附法)比表面积测定

比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威比表面积测试方法。许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277 (Determination of the specific surface area of solid by gas adsorption-BET method)。我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T 19587-2004《气体吸附BET法测定固体物质比表面积》。

气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定

的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)

具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。通过测定

出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。由于实际

颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的

颗粒外表面和内部通孔总表面积之和,如图所示意位置。

氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。计算公式如下:

Sg: 被测样品比表面积(m2/g)

Vm: 标准状态下氮气分子单层饱和吸附量(ml)

Am: 氮分子等效最大横截面积(密排六方理论值Am = 0.162 nm2)

W:被测样品质量(g)

N:阿佛加德罗常数(6.02x1023)

代入上述数据,得到氮吸附法计算比表面积的基本公式:

由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。

测试方法分类

比表面积测试方法有两种分类标准。一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法、容量法及重量法,重量法现在基本上很少采用;再者是根据计算比表面积理论方法不同可分为:直接对比法比表面积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流动法来测定吸附气体量的多少,而BET法既可以采用连续流动法,也可以采用容量法来测定吸附气体量。其关系如图所示。

连续流动法

连续流动法是相对于静态法而言,整个测试过程是在常压下进行,吸附剂是在处于连续流动的状态下

被吸附。连续流动法是在气相色谱原理的基础上发展而来,藉由热导

检测器来测定纳米样品吸附气体量的多少。连续动态氮气吸附法是以

氮气为吸附气,以氦气或氢气为载气,两种气体按一定比例混合,使氮

气达到指定的相对压力,流经样品颗粒表面。当样品管置于液氮环境

下时,粉体材料对混合气中的氮气发生物理吸附,而载气不会被吸附,

造成混合气体成分比例变化,从而导致热导系数变化,这时就能从热

导检测器中检测到信号电压,即出现吸附峰。吸附饱和后让样品重新回到室温,被吸附的氮气就会脱附出来,形成与吸附峰相反的脱附峰。吸附峰或脱附峰的面积大小正比于样品表面吸附的氮气量的多少,可通过定量气体来标定峰面积所代表的氮气量。通过测定一系列氮气分压P/P0下样品吸附氮气量,可绘制出氮等温吸附或脱附曲线,进而求出比表面积。通常利用脱附峰来计算比表面积。

特点:连续流动法测试过程操作简单,消除系统误差能力强,同时具有可采用直接对比法和BET比表面积法进行比表面积理论计算。

容量法

容量法(静态容量法)中,测定样品吸附气体量多少是利用气态方程来计算。在预抽真空的密闭系统中导入一定量的吸附气体,通过测定出样品吸脱附导致的密闭系统中气体压力变化,利用气态方程P*V/T=nR 换算出被吸附气体摩尔数变化。

直接对比法

直接对比法比表面积分析测试是利用连续流动法来

测定吸附气体量,测定过程中需要选用标准样品(经严格

标定比表面积的稳定物质)。并联到与被测样品完全相同

的测试气路中,通过与被测样品同时进行吸附,分别进行

脱附,测定出各自的脱附峰。在相同的吸附和脱附条件下,

被测样品和标准样品的比表面积正比于其峰面积大小。计

算公式如下:

Sx:被测样品比表面积S0:标准样品比表面积,

Ax:被测样品脱附峰面积A0:标准样品脱附峰面积,

Wx:被测样品质量W0:标准样品质量。

优点:无需实际标定吸附氮气量体积和进行复杂的理论计算即可求得比表面积;测试操作简单,测试速度快,效率高。

缺点:当标样和被测样品的表面吸附特性相差很大时,如吸附层数不同,测试结果误差会较大。

直接对比法仅适用于与标准样品吸附特性相接近的样品测量,由于BET法具有更可靠的理论依据,目前国内外更普遍认可BET法比表面积测定。

BET比表面积测定法

BET理论计算是建立在Brunauer、Emmett和Teller三人从经典统计理论推导出的多分子层吸附公式基础上,即著名的BET方程:

P: 吸附质分压P0: 吸附剂饱和蒸汽压

V: 样品实际吸附量V m: 单层饱和吸附量

C:与样品吸附能力相关的常数

由上式可以看出,BET方程建立了单层饱和吸附量Vm与多层吸附量V之间的数量关系,为比表面积测定提供了很好的理论基础。

BET方程是建立在多层吸附的理论基础之上,与许多物质的实际吸

附过程更接近,因此测试结果可靠性更高。实际测试过程中,通常

实测3-5组被测样品在不同气体分压下多层吸附量V,以P/P0为X

轴,为Y轴,由BET方程做图进行线性拟合,得到直线的斜率和截距,从而求得Vm值计算出被测样品比表面积。理论和实践表明,当P/P0取点在0.05-0.35范围内时,BET方程与实际吸附过程相吻合,图形线性也很好,因此实际测试过程中选点需在此范围内。由于选取了3-5组P/P0进行测定,通常我们称之为多点BET。当被测样品的吸附能力很强,即C值很大时,直线的截距接近于零,可近似认为直线通过原点,此时可只测定一组P/P0数据与原点相连求出比表面积,我们称之为单点BET。与多点BET 相比,单点BET结果误差会大一些。

若采用流动法来进行BET测定,测量系统需具备能精确调节气体分压P/P0的装置,以实现不同P/P0下吸附量测定。对于每一点P/P0下BET吸脱附过程与直接对比法相近似,不同的是BET法需标定样品实际吸附气体量的体积大小,而直接对比法则不需要。

特点:BET理论与物质实际吸附过程更接近,可测定样品范围广,测试结果准确性和可信度高,特别适合科研及生产单位使用。

孔径(孔隙度)分布测定

气体吸附法孔径(孔隙度)分布测定利用的是毛细凝聚现象和体积等效代换的原理,即以被测孔中充满的液氮量等效为孔的体积。吸附理论假设孔的形状为圆柱形管状,从而建立毛细凝聚模型。由毛细凝聚理论可知,在不同的P/P0下,能够发生毛细凝聚的孔径范围是不一样的,随着P/P0值增大,能够发生凝聚的孔半径也随之增大。对应于一定的P/P0值,存在一临界孔半径Rk,半径小于Rk的所有孔皆发生毛细凝聚,液氮在其中填充,大于Rk的孔皆不会发生毛细凝聚,液氮不会在其中填充。临界半径可由凯尔文方程给出了:

Rk称为凯尔文半径,它完全取决于相对压力P/P0。凯尔文公式也可以理解为对于已发生凝聚的孔,当压力低于一定的P/P0时,半径大于Rk的孔中凝聚液将气化并脱附出来。理论和实践表明,当P/P0大于0.4时,毛细凝聚现象才会发生,通过测定出样品在不同P/P0下凝聚氮气量,可绘制出其等温吸脱附曲线,通过不同的理论方法可得出其孔容积和孔径分布曲线。最常用的计算方法是利用BJH(Barrett-Joyner-Halenda三位科学家的首字母)理论,通常称之为BJH孔容积和孔径分布。

溶液吸附法测定比表面

实验七:溶液吸附法测定比表面 一、实验目的: 1、用溶液吸附法测定颗粒活性炭的比表面; 2、了解溶液吸附法测定比表面的基本原理; 3、进一步熟悉722型分光光度计的使用; 二、实验原理: (1) 比表面是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。测定固体物质比表面的方法很多,常用的有BET低温吸附法、电子显微镜法和气相色谱法等,不过这些方法都需要复杂的装置,或较长的时间。而溶液吸附法测定固体物质比表面,仪器简单,操作方便,还可以同时测定许多个样品,因此常被采用,但溶液吸附法测定结果有一定误差。其主要原因在于:吸附时非球型吸附层在各种吸附剂的表面取向并不一致,每个吸附分子的投影面积可以相差很远,所以,溶液吸附法测得的数值应以其它方法校正之。然而,溶液吸附法常用来测定大量同类样品的相对值。溶液吸附法测定结果误差一般为10%左右。 (2) 水溶性染料的吸附已广泛应用于固体物质比表面的测定。在所有染料中,次甲基蓝具有最大的吸附倾向。研究表明,在大多数固体上,次甲基蓝吸附都是单分子层,即符合朗格缪尔型吸附。但当原始溶液浓度较高时,会出现多分子层吸附,而如果吸附平衡后溶液的浓度过低,则吸附又不能达到饱和,因此,原始溶液的浓度以及吸附平衡后的溶液浓度都应选在适当的范围内。本实验原始溶液浓度为0.2%左右,平衡溶液浓度不小于0.1%。 (3) 根据朗格缪尔单分子层吸附理论,当次甲基蓝与活性炭达到吸附饱和后,吸附与脱附处于动态平衡,这时次甲基蓝分子铺满整个活性粒子表面而不留下空位。此时吸附剂活性炭的比表面可按式(1)计算:

(1) 式中,S为比表面(m ·kg ); C为原始溶液的质量分数; C为平衡溶液的质量分数; G为溶液的加入量(kg); W为吸附剂试样质量(k g); 2.45×10 是1kg次甲基蓝可覆盖活性炭样品的面积(m ·kg )。 (4)次甲基蓝分子的平面结构如图4.1所示。阳离子大小为1.70×10 m×76×10 m×325×10 m。次甲基蓝的吸附有三种趋向:平面吸附,投影面积为1.35×10-18 m ;侧面吸附,投影面积为7.5×10-19 m ;端基吸附,投影面积为39.5×10 m 。对于非石墨型的活性炭,次甲基蓝可能不是平面吸附,也不是侧面吸附,而是端基吸附根据实验结果推算,在单层吸附的情况下,1mg次甲基蓝覆盖的面积可按2.45 m

溶液吸附法测定固体比表面积

中级化学实验报告 实验名称:溶液吸附法测定固体比表面积 一、 实验目的 1. 用亚甲基蓝水溶液吸附法测定活性炭、硅藻土、碱性层析氧化铝 的比表面积。 2. 掌握溶液吸附法测定固体比表面积的基本原理和测定方法。 3. 了解溶液吸附法测定固体比表面积的优缺点。 二、 实验原理 测定固体物质比表面的方法很多,常用的有BET 低温吸附法、电子显微镜法和气相色谱法等,不过这些方法都需要复杂的装置,或较长的时间。而溶液吸附法测定固体物质比表面,仪器简单,操作方便,还可以同时测定许多个样品,因此常被采用,但溶液吸附法测定结果有一定误差。其主要原因在于:吸附时非球型吸附层在各种吸附剂的表面取向并不一致,每个吸附分子的投影面积可以相差很远,所以,溶液吸附法测得的数值应以其它方法校正之。然而,溶液吸附法常用来测定大量同类样品的相对值。溶液吸附法测定结果误差一般为10%左右。 根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比 kc bc I I A ==-=ε0 lg (5) 式中,A 为吸光度,I 0为入射光强度,I 为透过光强度,为吸光系数,b 为光径长度或液层厚度,c 为溶液浓度。

亚甲基蓝溶液在可见区有2个吸收峰:445nm 和665nm 。但在445nm 处活性炭吸附对吸收峰有很大的干扰,故本试验选用的工作波长为665nm , 并用分光光度计进行测量。 水溶性染料的吸附已广泛应用于固体物质比表面的测定。在所有染料中,亚甲基蓝具有最大的吸附倾向。研究表明,在大多数固体上,亚甲基蓝吸附都是单分子层,即符合朗格缪尔型吸附。但当原始溶液浓度较高时,会出现多分子层吸附,而如果吸附平衡后溶液的浓度过低,则吸附又不能达到饱和,因此,原始溶液的浓度以及吸附平衡后的溶液浓度都应选在适当的范围内。本实验原始溶液浓度为100ppm 左右,平衡溶液浓度不小于10ppm 。 亚甲基蓝具有以下矩形平面结构: S H H N N CH 3 H 3C CH 3 - 亚甲基蓝分子的平面结构如图所示。阳离子大小为1.70×10-10m ×76×10-10m ×325×10-10m 。亚甲基蓝的吸附有三种趋向:平面吸附,投影面积为1.35×10-18m 2;侧面吸附,投影面积为7.5×10-19m 2;端基吸附,投影面积为39.5×10-19m 2。对于非石墨型的活性炭,亚甲基蓝可能不是平面吸附,也不是侧面吸附,而是端基吸附根据实验结果推算,在单层吸附的情况下,1mg 亚甲基蓝覆盖的面积可按2.45m 2计算。而对Al 2O 3则可能是侧面吸附。求出各种固体对亚甲基蓝的饱和吸附量后,即可求出各种固体的比表面积。 三、 实验步骤

溶液吸附法测固体比表面积

实验报告溶液吸附法测固体比表面积 一、实验目的: 1.用次甲基蓝水溶液吸附法测定颗粒活性炭的比表面积。 2.了解朗缪尔单分子层吸附理论及用溶液法测定比表面的基本原理。 二、实验原理 见预习报告 三.仪器和试剂: 1、仪器 722型光电分光光度计及其附件1台;康氏振荡器1台;容量瓶(500mL)6个;容量瓶(50mL,100mL)各5个;2号砂心漏斗1只,带塞锥形瓶(100mL)5个;滴管若干;移液管若干。 2、试剂 次甲基蓝(质量分数分别为0.2%和0.1%的原始溶液和标准溶液);颗粒状非石墨型活性炭。 四、实验步骤: 1.样品活化: 将颗粒活性炭置于瓷坩埚中,放入500℃马弗炉中活化1h,然后置于干燥器中备用。 试验中用到的活性炭为颗粒状,已经由老师制备好,此步骤略去。 2.平衡溶液: 取5个洁净干燥的100mL带塞锥形瓶,编号,分别准确称取活性炭约0.1g 置于瓶中,记录活性炭的用量。按下表中的数据配制不同浓度的次甲基蓝溶液,然后塞上磨口瓶塞,放置在振荡器上振荡适当时间,振荡速率以活性炭可翻动为(实验所用振荡器100r左右为宜) 吸附样品编号 1 2 3 4 5 V(w0.2%次甲基蓝溶液)/mL 30 20 15 10 5 V(蒸馏水)/mL 20 30 25 40 45 样品振荡达到平衡后,将锥形瓶取下,用玻璃漏斗(塞上棉花)过滤,得到吸附平衡后溶液。分别量取滤液1g,放入500mL容量瓶中,并用蒸馏水稀释至刻度,待用。 3.原始溶液 为了准确称取质量分数约为0.2%的次甲基蓝原始溶液(此浓度为一近似值,

故需进一步测量),称取1g溶液放入500mL容量瓶中,并用蒸馏水稀释至刻度,待用。 4.次甲基蓝标准溶液的配制 用移液管吸取0.5mL,1mL,1.5mL,2mL,2.5mL质量分数0.01%标准次甲基蓝溶液于100mL容量瓶中。用蒸馏水稀释至刻度,即得2×10-6、4×10-6、6×10-6、8×10-6、10×10-6的标准溶液,待用。次甲基蓝溶液的密度可以用水的密度代替。 5.选择工作波长 对于次甲基蓝溶液,工作波长为665nm,由于各台分光光度计波长刻度略有误差,可取某一待用标准溶液,在600~700nm范围内每隔5nm测量消光值,以吸光度最大的波长作为工作波长。 测量时发现最大吸收波长为660nm. 6.测量吸光度 以蒸馏水为空白溶液,在选定的工作波长下,分别测量5个标准溶液、5个稀释后平衡溶液以及稀释后的原始溶液的吸光度。 7.实验测定完成,关闭分光光度计,倒掉比色皿中溶液,用蒸馏水、乙醇洗净,放入盒中。倒掉残余的亚甲基蓝溶液,洗净各类玻璃仪器,整理试验台,指导老师签字。 五.数据记录 ①最大工作波长的测量,以质量分数10×10-6的标准溶液为待测液 入射波长 / nm 吸光度 A 入射波长 / nm 吸光度 A 6100.313 6150.315 6200.325 6250.324 6300.336 6350.368 6400.406 6450.456 6500.502 6550.541 6600.572 6650.574 670 0.525 675 6800.292 685 画出吸收曲线

气体吸附(氮气吸附法)比表面积测定

气体吸附(氮气吸附法)比表面积测定 比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威测试方法。许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO 标准组织的ISO-9277。我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004 《气体吸附BET法测定固体物质比表面积》。 气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定 的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质) 具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。通过测定 出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。由于实际 颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的 颗粒外表面和内部通孔总表面积之和,如图所示意位置。 氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。计算公式如下: sg: 被测样品比表面积(m2/g) Vm: 标准状态下氮气分子单层饱和吸附量(ml) Am: 氮分子等效最大横截面积(密排六方理论值Am = 0.162 nm2) W:被测样品质量(g) N:阿佛加德罗常数(6.02x1023) 代入上述数据,得到氮吸附法计算比表面积的基本公式: 由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测 定的关键。 测试方法分类 比表面积测试方法有两种分类标准。一是根据测定样品吸附气 体量多少方法的不同,可分为:连续流动法、容量法及重量法,重 量法现在基本上很少采用;再者是根据计算比表面积理论方法不同可分为:直接对比法比表面积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等。同时这两种分类标准又有着一定的联系,直

溶液吸附法测定比表面积

溶液吸附法测定比表面积 ——杨兰森(20096842) 一、实验目的 (1) 用溶液吸附法测定颗粒活性炭的比表面。 (2)了解溶液吸附法测定比表面的基本原理。 (3)了解721型分光光度计的基本原理并熟悉使用方法。 二、实验原理 (1) 比表面是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。测定固体物质比表面的方法很多,常用的有BET低温吸附法、电子显微镜法和气相色谱法等,不过这些方法都需要复杂的装置,或较长的时间。而溶液吸附法测定固体物质比表面,仪器简单,操作方便,还可以同时测定许多个样品,因此常被采用,但溶液吸附法测定结果有一定误差。其主要原因在于:吸附时非球型吸附层在各种吸附剂的表面取向并不一致,每个吸附分子的投影面积可以相差很远,所以,溶液吸附法测得的数值应以其它方法校正之。然而,溶液吸附法常用来测定大量同类样品的相对值。溶液吸附法测定结果误差一般为10%左右。 (2) 水溶性染料的吸附已广泛应用于固体物质比表面的测定。在所有染料中,次 甲基蓝具有最大的吸附倾向。研究表明,在大多数固体上,次甲基蓝吸附都是单分子层,即符合朗格缪尔型吸附。但当原始溶液浓度较高时,会出现多分子层吸附,而如果吸附平衡后溶液的浓度过低,则吸附又不能达到饱和,因此,原始溶液的浓度以及吸附平衡后的溶液浓度都应选在适当的范围内。本实验原始溶液浓度为0.2%左右,平衡溶液浓度不小于0.1%。 (3) 根据朗格缪尔单分子层吸附理论,当次甲基蓝与活性炭达到吸附饱和后,吸附与脱附处于动态平衡,这时次甲基蓝分子铺满整个活性粒子表面而不留下空位。此时吸附剂活性炭的比表面可按式(1)计算: (1) 式中,S0为比表面(m2·kg-1); C0为原始溶液的质量分数; C为平衡溶液的质量分数;

固液吸附法测定比表面实验报告

物理化学实验报告 学号 姓名

固液吸附法(醋酸在活性炭上的吸附)测定比表面 一、实验目的 1.用溶液吸附法测定活性炭的比表面。 2.了解溶液吸附法测定比表面的基本原理。 二、预习要求 1.掌握比表面的概念及其计算式。 2.明确实验所测各个物理量的意义,并掌握测定方法。 三、实验原理 实验表明在一定浓度范围内,活性炭对有机酸的吸附符合朗格缪尔(Langmuir)吸附方程: K C 1K C ∞ Γ=Γ+ (1) 式中,Г表示吸附量,通常指单位质量吸附剂上吸附溶质的摩尔数;Г∞表示饱和吸附量;C 表示吸附平衡时溶液的浓度;K 为常数。将(1)式整理可得如下形式: C 11C K ∞∞ = +ΓΓΓ (2) 作C /Г—C 图,得一直线,由此直线的斜率和截距可求常数K 。 如果用醋酸作吸附质测定活性炭的比表面则可按下式计算: 23 20 0S 6.02310 2.4310 -∞=Γ???? (3) 式中,S 0为比表面(m 2·kg -1);Г∞为饱和吸附量(mol·kg -1);6.023×1023为阿佛加德罗常数;24.3×10-20为每个醋酸分子所占据的面积(m 2)。 四、仪器与药品 1.仪器 带塞三角瓶(250mL)5个;三角瓶(150mL)5个;滴定管1只;漏斗;移液管;电动振荡器1台。 2.药品

活性炭;HAc 溶液(0.4mol·dm -3);标准NaOH 溶液(0.1mol·dm -3);酚酞指示剂。 五、实验步骤 1.准备5个洗净干燥的带塞三角瓶,分别称取约1g(准确到0.001g)的活性炭,并将5个三角瓶标明号数,用滴定管分别按下列数量加入蒸馏水与醋酸溶液。 2.将各瓶溶液配好以后,用磨口瓶塞塞好,并在塞上加橡皮圈以防塞子脱落,摇动三角瓶,使活性炭均匀悬浮于醋酸溶液中,然后将瓶放在振荡器上,盖好固定板,振荡30min 。 3.振荡结束后,用干燥漏斗过滤,为了减少滤纸吸附影响,将开始过滤的约5mL 滤液弃去,其余溶液滤于干燥三角瓶中。 4.从1,2号瓶中各取1 5.00mL ,从3,4,5号瓶中各取30.00mL 的醋酸溶液,用标准NaOH 溶液滴定,以酚酞为指示剂,每瓶滴二份,求出吸附平衡后醋酸的浓度。 5.用移液管取5.00mL 原始HAc 溶液并标定其准确浓度。 六、数据处理 重新标定醋酸浓度:() N aO H 0.098/c m o l L =①用掉()121.98N a O H V m l =,解出10.431/c m ol L =②用掉() 221.54N a O H V m l =,解出2 0.422/c m ol L =。取平均值 ()0.4265/H A C c m o l L =

固液吸附法测定比表面实验报告

实验二十固液吸附法测定比表面(醋酸在活性炭上的吸附) 一、实验目的 同(一)次甲基蓝在活性炭上的吸附 【实验原理】 实验表明在一定浓度范围内,活性炭对有机酸的吸附符合朗格缪尔(Langmuir)吸附方程: (2) 式中,Г表示吸附量,通常指单位质量吸附剂上吸附溶质的摩尔数;Г∞表示饱和吸附量;C表示吸附平衡时溶液的浓度;K为常数.将(2)式整理可得如下形式: (3) 作C/Г-C图,得一直线,由此直线的斜率和截距可求Г∞和常数K. 如果用醋酸作吸附质测定活性炭的比表面时,可按下式计算: S0=Г∞×6.023×1023×24.3×10-20 (4) 式中,S0为比表面(m2·kg-1);Г∞为饱和吸附量(mol·kg-1);6.023×1023为阿佛加德罗常数;24.3×10-20为每个醋酸分子所占据的面积(m2). 式(3)中的吸附量Г可按下式计算 (5) 式中,C0为起始浓度;C为平衡浓度;V为溶液的总体积(dm3);m为加入溶液中吸附剂质量(kg). 【仪器药品】 带塞三角瓶(250mL,5只);三角瓶(150mL,5只);滴定管1支;漏斗1只;移液管1支;电动振荡器1台. 活性炭;HAc(0.4mol·dm-3);NaOH (0.1000mol·dm-3);酚酞指示剂. 【实验步骤】 1. 取5个洗净干燥的带塞三角瓶,分别放入约1g(准确到0.001g)的活性炭,并将5个三角瓶标明号数,用滴定管分别按下列数量加入蒸馏水与醋酸溶液. 瓶号 1 2 3 4 5 V蒸馏水 /mL 50.00 70.00 80.00 90.00 95.00 V醋酸溶液/mL 50.00 30.00 20.00 10.00 5.00 2. 将各瓶溶液配好以后,用磨口瓶塞塞好,并在塞上加橡皮圈以防塞子脱落,摇动三角瓶,使活

溶液吸附法测定固体比表面积

实验五溶液吸附法测定固体比表面积 一、实验目的 了解Langmuir吸附理论及溶液法测定比表面积的基本原理 二、实验原理 比表面积是粉末及多孔性物质的一个重要特性参数。它在催化、色谱、环保及纺织等生产和科研部门有着广泛的应用。 测定比表面积的方法有电子显微镜法、色谱法及BET法。常用BET法(又分静态法和动态法),但仪器及数据处理复杂是其缺点。而本法所用仪器简单,操作方便。 本实验采用亚甲蓝染料水溶液吸附法测定硅胶的比表面积,亚甲蓝具有很强的吸附倾向,可被大多数固体物质吸附,在一定条件下为单层吸附,该吸附具有Langmuir吸附特征。 根据Langmuir理论,当吸附达饱和时,吸附质(亚甲蓝)分子铺满整个吸附剂(硅胶)表面而不留下空位。此时,单位质量的吸附质分子所占的面积就等于被吸附的吸附质的分子数与每个分子在表面层所占面积的乘积。通常通过测定吸附质的重量而求得吸附质分子数。按下式计算吸附剂的比表面积S(m2/g): S=Γ∞N A A/ΓM 5-1 式中:M为吸附质分子量(亚甲蓝的分子量为373.88),N A为阿弗伽德罗常数 (6.0222 ×1023),Γ为吸附剂的质量(g),Γ∞为吸附达饱和时吸附质的质量(g),A为吸附质(亚甲蓝)分子吸附投影面积。 亚甲蓝易溶于水呈天蓝色,在空气中较稳定,不易受吸附剂酸碱性的影响。亚甲蓝水溶液在445nm和665nm处具有吸收峰,用紫外分光光度计测定吸附前后溶液吸收度值的变化,求出Γ∞。 由于亚甲蓝分子具有矩形结构,分子长16.0 ?,宽8.4 ?,最小的宽度为4.7 ?,如下图所示:它吸附于吸附剂上有三种取向,平面吸附投影面积为135 ?2,侧面吸附投影面积为75 ?2,端积吸附投影面积为39.5 ?2。因此,对于不同吸附剂或同种吸附剂的不同条件,吸附取向不同,投影面积也不同,测得的A也不同。所以实验时要严格控制实验条件的一致。通常用已知比表面积的样品,实验测得Γ∞和Γ,用上式反求A。 三、仪器和试剂 水浴振荡器亚甲蓝硅胶蒸馏水 四、实验操作 1.配制0.05mg/ml亚甲蓝标准液的配制 水为溶剂。 2.硅胶比表面积的测定 精密量0.05mg/ml亚甲蓝标准液15ml加入50ml具塞三角瓶中,共三份,然后准确称未知硅胶15mg加入,盖塞,在振荡器上振荡2小时,静置后取滤液稀释4倍,加水稀释至刻度。以蒸馏水为空白分别测定溶液的吸收度,按标准曲线计算溶液浓度。 3.亚甲蓝吸附投影面积的测定 除样品用已知比表面积的微粉硅胶,其余操作和步骤2一致。将已知比表面积S和测得的Γ和Γ∞代入式S=Γ∞N A A/ΓM,求得A值。 4.亚甲蓝标准曲线的绘制 用水稀释得到分别浓度为2.5μg/ml,5μg/ml,7.5μg/ml,10μg/ml,12.5μg/ml, 15μg/ml的溶液,以蒸馏水为空白分别测定溶液吸收度,以吸收度值对溶液浓度(μg/ml)进行直线拟合,得拟合直线方程。 五、实验数据及处理

20固液吸附法测定比表面(精)

实验二十 固液吸附法测定比表面 Ⅰ.次甲基蓝在活性炭上的吸附 一、实验目的 1.用溶液吸附法测定活性炭的比表面。 2.了解溶液吸附法测定比表面的基本原理。 二、预习要求 1.掌握比表面的概念及其计算式。 2.明确实验所测各个物理量的意义,并掌握测定方法。 三、实验原理 比表面是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。 测定固体比表面的方法很多,常用的有BET 低温吸附法、电子显微镜法和气相色谱法,但它们都需要复杂的仪器装置或较长的实验时间。而溶液吸附法则仪器简单,操作方便。本实验用次甲基蓝水溶液吸附法测定活性炭的比表面。此法虽然误差较大,但比较实用。 活性炭对次甲基蓝的吸附,在一定的浓度范围内是单分子层吸附,符合朗格缪尔(Langmuir)吸附等温式。根据朗格缪尔单分子层吸附理论,当次甲基蓝与活性炭达到吸附饱和后,吸附与脱附处于动态平衡,这时次甲基蓝分子铺满整个活性粒子表面而不留下空位。此时吸附剂活性炭的比表面可按下式计算: ()060C C G S 2.4510W -= ?? (1) 式中,S 0为比表面(m 2·kg -1);C 0为原始溶液的质量分数;C 为平衡溶液的质量分数;G 为溶液的加入量(kg);W 为吸附剂试样质量(kg);2.45×106是1kg 次甲基蓝可覆盖活性炭样品的面积(m 2·kg -1)。 本实验溶液浓度的测量是借助于分光光度计来完成的,根据光吸收定律,当入射光为一定波长的单色光时,某溶液的光密度与溶液中有色物质的浓度及溶液的厚度成正比,即: E=KCL 。式中,E 为光密度;K 为常数;C 为溶液浓度;L 为液层厚度。

实验七 溶液吸附法测定固体比表面积

实验七溶液吸附法测定固体比表面积 一、实验目的 1.用次甲基蓝水溶液吸附法测定颗粒活性碳的比表面。 2.了解Langmuir单分子层吸附理论及溶液法测定比表面的基本原理。 3.了解722型光电分光光度计的基本原理并熟悉其使用方法。 二、实验原理 根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比: A=lg(I0/I)=KCL 式中A为吸光度,I0为入射光强度,I为透射光强度,K为消光系数,c为溶液浓度,L为液层厚度。 一般来说光的吸收定律可适用于任何波长的单色光,但同一种溶液在不同波长所测得的吸光度不同,如果把吸光度A对波长λ作图可得到溶液的吸收曲线,为了提高测量的灵敏度,工作波长一般选在A值最大处。 次甲基蓝在可见区有两个吸收峰,445nm和Array 665nm;但在445nm处,活性碳吸附对吸收峰有很 大的干扰,故本实验选用的工作波长为665nm。 水溶液染料的吸附已用于固体比表面的测 定,在所有染料中次甲基蓝具有最大的吸附倾向。 研究表明,在一定的浓度范围之内,大多数固体对 次甲基蓝的吸附是单分子吸附,即符合朗格缪尔型 (图7—1)。但当原始溶液的浓度过高时,会出现 多分子层吸附,而如果平衡后的浓度过低,吸附又 不能达到饱和,因此原始溶液的浓度以及吸附平衡 后的浓度都应选择在适当的范围之内,本实验原始溶液的浓度为0.2%左右,平衡溶液浓度 不小于0.1%。 次甲基蓝具有以下矩形平面结构: 阳离子大小为17.0×7.6×3.25×10-30m2。次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10-20m2;侧面吸附投影面积为75×10-20m2;端基吸附投影面积为39×10-20m2;;对于非石墨型的活性碳,次甲基蓝是以端基吸附取向。根据实验结果推算,在单层吸附的情况下,1毫克次甲基蓝复盖的面积可按2.45米2计算。 测定固体比表面的方法很多,常用的有BET低温吸附法、电子显微镜法、气相色谱法等,这些方法都需要复杂的装置,或较长的实验时间,而溶液法测比表面仪器简单,操作方便,还可同时测定许多样品,因此也常被采用,但溶液法的测定结果有一定的相对误差,其主要原因在于,吸附时非球形吸附质在各种吸附剂表面的取向并不都一致,因此,每个吸附质分子的投影面积可以相差很远,所以,溶液吸附法测的数值应以其它方法校正之,然而溶液法常可用来测定大量同类样品的表面积的相对值。溶液法的测定误差一般为10%左右。 此外,也可用苯酚或硬脂酸作为吸附质来测比表面。

完全吃透氮气物理吸附表征数据

完全吃透氮气物理吸附表征数据——孔类型分析是重点 【前言】 目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。 ★★注意★★ 我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型 几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在: 低压端偏Y轴则说明材料与氮有较强作用力(?型,??型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。 ◆几个常数 ※液氮温度77 K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354 nm ※标况(STP)下1 mL氮气凝聚后(假定凝聚密度不变)体积为0.001547 mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61 mL ※STP每mL氮气分子铺成单分子层占用面积4.354平方米 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理

物理化学 溶液吸附法测定固体物质的比表面

四 数据处理与实验结论 表一 溶液吸附法测定固体物质的比表面数据记录 编号 硅胶重量(mg) 亚甲基蓝溶液浓度(mg/ml) 光密度 标准曲线查得的浓度 平衡溶液浓度 C(mg/ml) 吸附亚甲基蓝质量△W(mg) 2 0 0.0050 0.100 3 0 0.0075 0.158 4 0 0.0100 0.215 5 0 0.0125 0.280 图一 吸附剂的比表面①平面吸附投影面积S= △WAN A WM =0.0006*1.35*10?18*6.022*1023/0.0486*373.88=26.845 ②侧面吸附投影面积 S=△WAN A WM =0.0006*7.52*10?19*6.022*1023/0.0486*373.88=14.95 ③端基吸附投影面积S=△WAN A WM =0.0006*3.95*10?19*6.022*1023/0.0486*373.88=7.85 由上表得△W=0.6

五.实验讨论 实验中测定吸光度与标准溶液的浓度的关系时得到吸光度与浓度的标准工作曲线y = 23.28x - 0.0129 R= 0.9990≈1 所以曲线拟合性较好。 六.思考题 1公式(9-1)的应用要求的条件? 测量比表面较大的试样所得的结果较为满意 2产生实验结果的偏差荡后吸取清液时为什么不能吸取上硅胶? 实验要测量的是硅胶吸附后的甲基蓝溶液的浓度,吸上硅胶可能会导致硅胶中的甲基蓝重新析出,影响光密度和实验结果。 3比表面的测定与温度,吸附质的浓度,吸附平衡的时间有什么关系? 温度高时吸附量低,反而吸附量高,吸附质的浓度至少要能满足吸附剂达到饱和吸附时所需的浓度但溶液不能太浓,否则会出现多层吸附震荡要达到饱和吸附时所需时间,吸附剂颗粒大小不要相差太大。 4亚甲基蓝吸附投影面积A对测定比表面有什么影响?如何测定? S=△WAN A 亚甲基蓝吸附吸附于吸附剂上有三种取向,平面吸附投影侧面吸附投影端基吸附WM 投影。不同投影方式有不同的面积,从而影响比表面。通常用已知的比表面的样品,实验测 反求A。 得△W和W,用S=△WAN A WM

氮气等温吸脱附

【资源】关于氮气等温吸脱附计算比表面积、孔径分布的若干说明 ★★★★★★★★★★★★★★★★★★★★★ 小木虫(金币+1):奖励一下,鼓励发有价值的话题 dy322112:标题高亮2010-12-16 16:31 zhangwengui330(金币+10):很好很强大,欢迎原创!!2010-12-16 17:02:55 jinkai838(金币+10):perfect 2010-12-16 20:46:19 jinkai838:为什么加这么多的分,因为我们是论坛,我们鼓励原创,鼓励用自己的语言,自己的经验,来表述科学,我们也喜欢读书,但是我们更推崇这样的自己发表理解的帖子!2010-12-16 20:48:48 jinkai838:标题高亮2010-12-16 20:49 目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。★★注意★★ 我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET (Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型

氮气吸附脱附曲线

1. I 类吸附等温线都有哪些特点?哪种多孔材料表现为I 类吸附等温线? I型等温线弯向P/P0轴,其后的曲线呈水平或近水平状,吸附量接近一个极限值,是典型的Langmuir等温线。吸附量趋于饱和是由于受到吸附气体能进入的微孔体积的制约,而不是由于内部表面积。在P/P0非常低时吸附量急剧上升,这是因为在狭窄的微孔(分子尺寸的微孔)中,吸附剂-吸附物质的相互作用增强,从而导致在极低相对压力下的微孔填充。但当达到饱和压力时(P/P0>0.99),可能会出现吸附质凝聚,导致曲线上扬。?微孔材料表现为I类吸附等温线。对于在77K的氮气和87?K的氩气吸附而言,I(a):? 是只具有狭窄微孔材料的吸附等温线,一般孔宽小于1?nm。?I(b):? 微孔的孔径分布范围比较宽,可能还具有较窄介孔。这类材料的一般孔宽小于2.5?nm。?具有相对较小外表面的微孔固体(例如,某些活性炭,沸石分子筛和某些多孔氧化物)具有可逆的I型等温线。其特点是吸附很快达到饱和。? 2. II 类吸附等温线都有哪些特点?哪种多孔材料表现为II 类吸附等温线? 无孔或大孔材料产生的气体吸附等温线呈现可逆的II 类等温线。其线形反映了不受限制的单层-多层吸附。如果膝形部分的曲线是尖锐的,应该能看到拐点B,它是中间几乎线性部分的起点——该点通常对应于单层吸附完成并结束;如果这部分曲线是更渐进的弯曲(即缺少鲜明的拐点B),表明单分子层的覆盖量和多层吸附的起始量叠加。当P/P0?=1 时,还没有形成平台,吸附还没有达到饱和,多层吸附的厚度似乎可以无限制地增加。? 3. III 类吸附等温线都有哪些特点?哪种多孔材料表现为III 类吸附等温线? III型等温线也属于无孔或大孔固体材料。它不存在B点,因此没有可识别的单分子层形成;吸附材料-吸附气体之间的相互作用相对薄弱,吸附分子在表面上在最有引力的部位周边聚集。对比II型等温线,在饱和压力点(即,在P/P0=1处)的吸附量有限。? 4. IV 类吸附等温线都有哪些特点?哪种多孔材料表现为IV 类吸附等温线? IV型等温线是来自介孔类吸附剂材料(例如,许多氧化物胶体,工业吸附剂和介孔分子筛)。介孔的吸附特性是由吸附剂-吸附物质的相互作用,以及在凝聚状态下分子之间的相

动态氮吸附孔径分布测试的原理和方法

动态氮吸附孔径分布测试的原理和方法 许多超细粉体材料的表面是不光滑的,甚至专门设计成多孔的,而且孔的尺寸大小、形状、数量与它的某些性质有密切的关系,例如催化剂与吸附剂,因此,测定粉体材料表面的孔容、孔径分布具有重要的意义。国际上,一般把这些微孔按尺寸大小分为三类:孔径≤2nm为微孔,孔径=2~50nm为中孔,孔径≥50nm为大孔,其中中孔具有最普遍的意义。 用氮吸附法测定孔径分布是比较成熟而广泛采用的方法,它是用氮吸附法测定BET比表面的一种延伸,都是利用氮气的等温吸附特性曲线:在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对压力(P/P ),P 为氮气分压,P 0为液氮温度下氮气的饱和蒸汽压;当P/P 在0.05~0.35范 围内时,吸附量与(P/P )符合BET方程,这是氮吸附法测定粉体材料比 表面积的依据;当P/P ≥0.4时,由于产生毛细凝聚现象,即氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容、孔径分布。所谓孔容、孔径分布是指不同孔径孔的容积随孔径尺寸的变化率。 所谓毛细凝聚现象是指,在一个毛细孔中,若能因吸附作用形成一个凹形的液面,与该液面成平衡的蒸汽压力P必小于同一温度下平液面的饱 和蒸汽压力P ,当毛细孔直径越小时,凹液面的曲率半径越小,与其相平 衡的蒸汽压力越低,换句话说,当毛细孔直径越小时,可在较低的P/P 压力下,在孔中形成凝聚液,但随着孔尺寸增加,只有在高一些的P/P 0压力下形成凝聚液,显而易见,由于毛细凝聚现象的发生,将使得样品表面的吸附量急剧增加,因为有一部分气体被吸附进入微孔中并成液态,当固体表面全部孔中都被液态吸附质充满时,吸附量达到最大,而且相对压 力P/P 也达到最大值1。相反的过程也是一样的,当吸附量达到最大(饱和)的固体样品,降低其相对压力时,首先大孔中的凝聚液被脱附出来,随着压力的逐渐降低,由大到小的孔中的凝聚液分别被脱附出来。 设定粉体表面的毛细孔是圆柱形管状,把所有微孔按直径大小分为若干孔区,这些孔区按大到小的顺序排列,不同直径的孔产生毛细凝聚的压

氮气等温吸脱附

关于氮气等温吸脱附计算比表面积、孔径分布的若干说明 目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。 ★★注意★★ 我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型 几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,

先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(?型,??型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。 中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。 ◆几个常数 ※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm ※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL ※STP每mL氮气分子铺成单分子层占用面积4.354平方米 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距) ◆以SBA-15分子筛的吸附等温线为例加以说明 此等温线属IUPAC 分类中的IV型,H1滞后环。从图中可看出,在低压段吸附量平

(推荐)氮气净化方案

氮气净化方案 一、几种工业制氮方法比较 空气中氮气占78.09%,氧气占20.94%,氦气占0.93%。现代工业用氮的制取方法都是以空气为原料,将其中的氧和氮分离而获得。为了得到浓度较高的氮气,必须分离去除空气中的氧气。目前工业制氮主要有三种,即深冷空分法、分子筛空分法(PSA)和膜空分法。 1.深冷空分制氮 深冷空分制氮是一种传统的制氮方法,已有近九十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24h),安装要求高、周期较长。综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置小20%~50%。深冷空分制氮装置宜于大模工业制氮,而中、小规模制氮就显得不经济。 2.分子筛空分制氮 分子筛空分制氮是以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA(Pressure Swing Adsorption)制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的首选方法。 3.膜空分制氮 膜空分制氮是八十年代国外迅速发展的又一种新型制氮技术,在国内推广应用时间较短。膜空分制氮的基本原理是以空气为原料,在一定压力条件下,利

固液吸附法测比表面积剖析

物理化学实验报告 院系化学院环境工程学院 班级 0409402 学号 23 姓名张玉 日期 2011/11/24同组者姓名张永胜

实验二十 固液吸附法测定比表面 Ⅰ.次甲基蓝在活性炭上的吸附 一、实验目的 1.用溶液吸附法测定活性炭的比表面。 2.了解溶液吸附法测定比表面的基本原理。 二、预习要求 1.掌握比表面的概念及其计算式。 2.明确实验所测各个物理量的意义,并掌握测定方法。 三、实验原理 比表面是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。 测定固体比表面的方法很多,常用的有BET 低温吸附法、电子显微镜法和气相色谱法,但它们都需要复杂的仪器装置或较长的实验时间。而溶液吸附法则仪器简单,操作方便。本实验用次甲基蓝水溶液吸附法测定活性炭的比表面。此法虽然误差较大,但比较实用。 活性炭对次甲基蓝的吸附,在一定的浓度范围内是单分子层吸附,符合朗格缪尔(Langmuir)吸附等温式。根据朗格缪尔单分子层吸附理论,当次甲基蓝与活性炭达到吸附饱和后,吸附与脱附处于动态平衡,这时次甲基蓝分子铺满整个活性粒子表面而不留下空位。此时吸附剂活性炭的比表面可按下式计算: ()06 0C C G S 2.4510W -=?? (1) 式中,S 0为比表面(m 2·kg -1);C 0为原始溶液的质量分数;C 为平衡溶液的质量分数;G 为溶液的加入量(kg);W 为吸附剂试样质量(kg);2.45×106是1kg 次甲基蓝可覆盖活性炭样品的面积(m 2·kg -1)。 本实验溶液浓度的测量是借助于分光光度计来完成的,根据光吸收定律,当入射光为一定波长的单色光时,某溶液的光密度与溶液中有色物质的浓度及溶液的厚度成正比,即: E=KCL 。式中,E 为光密度;K 为常数;C 为溶液浓度;L 为液层厚度。

实验五活性炭吸附气体中的氮氧化物实验

实验五活性炭吸附气体中的氮氧化物实验 5.1 实验的意义和目的 活性炭吸附广泛应用于防止大气污染|、水质污染或有毒气体进化领域。用吸附法进化NO X尾气是一种简便、有效的方法。通过吸附剂的物理吸附性能和大的比表面将尾气中的污染气体分子吸附在吸附剂上;经过一段时间,吸附达到饱和。然后使吸附质解吸下来,达到进化的目的,吸附剂解吸后重复使用。 本实验采用玻璃夹套式U型吸附器,用活性炭作为吸附剂,媳妇进化浓度约2500ppm 的模拟尾气,得出吸附进化效率和转校时间数据。应达到以下目的:①深入理解吸附法进化有毒废气的原理和特点:②了解活性炭吸附剂在尾气进化方面的性能和作用。③掌握活性炭吸附、解吸、样品分析和数据处理的技术。 5.2 实验原理 活性炭是基于其较大的比表面(可高达1000m2/g)和较高的物理吸附性能吸附气体中的NOx。活性炭吸附NOx是可逆过程,在一定的温度和压力下达到吸附平衡,而在高温、减压下被吸附的NO X又被解吸出来,活性炭得到再生。 在工业应用中,由于活性炭填充层的操作条件依活性炭的种类,特别是吸附细孔德比表面、孔径分布以及填充高度、装填方法、原气条件的不同而异。所以通过实验应该明确吸附净化尾气系统的影响因素较多,操作条件是否合适直接关系到方法的技术经济性。 5.3 实验的装置、流程、遗弃或试剂 5.3.1 实验的装置、流程 本实验采用一夹套式U型吸附器,如附图8所示。吸附器内装填活性炭。实验装置及流程如附图9所示。 5.3.2 实验设备规格及试剂 (1)吸附器硬质玻璃,直径d=15mm,高度H=150mm,套管外径D=25mm,1个。 (2)活性炭果壳,粒径200目。 (3)稳定阀YJ-0.6型,1个。 (4) 蒸气瓶体积V=5L,1个。 (5)冷凝器1只。 (6)加热套M-106型,功率W=500W,一个。 (7)吸气瓶1个 (8)储气罐不锈钢,容积V=400L,最高耐压P=15kg/cm3,1个 (9)空气压缩机V-0 1/10型,排气量Q=0.1m3/min,压力P=20kg/cm2 (10)真空泵2XZ-0.5型,抽气量Q=0.5L/min,转数N=140r/min,1台 (11) 医用注射器容积V=5ml,V=2ml,各1只 (12)721型分光光度计1台 (13)调压器TDGC-0.5型,功率W=500W,1台 (14)对氨基苯磺酸分析纯1瓶 (15)盐酸萘乙二胺分析纯1瓶 (16)冰醋酸分析纯1瓶 (17)氢氧化钠分析纯1瓶 (18)硫酸亚铁工业纯1瓶

相关文档