文档库 最新最全的文档下载
当前位置:文档库 › 线性代数练习题集线性方程组

线性代数练习题集线性方程组

线性代数练习题集线性方程组
线性代数练习题集线性方程组

线性代数练习题 第四章 线性方程组

系专业班 姓名学号

第一节 解线性方程组的消元法

一.选择题:

1.设A 是n m ?矩阵,b Ax =有解,则 [ C ] (A )当b Ax =有唯一解时,n m = (B )当b Ax =有无穷多解时,<)(A R m (C )当b Ax =有唯一解时,=)(A R n (D )当b Ax =有无穷多解时,0=Ax 只有零解 2.设A 是n m ?矩阵,如果n m <,则 [ C ] (A )b Ax =必有无穷多解 (B )b Ax =必有唯一解 (C )0=Ax 必有非零解 (D )0=Ax 必有唯一解

3.设A 是n m ?矩阵,齐次线性方程组0=Ax 仅有零解的充要条件是)(A R [ D ] (A )小于m (B )小于n (C )等于m (D )等于n 二.填空题:

设????? ??-+=21232121a a A ,????

?

??=031b ,????? ??=321x x x x

(1)齐次线性方程组0=Ax 只有零解,则31a a ≠≠-或 (2)非齐次线性方程组b Ax =无解,则a =1=- 三.计算题:

1. 求解非齐次线性方程组??

?

??=--+=+-+=+-+122241

2w z y x w z y x w z y x

21

3122211112111121001421120011000110211110002000020121122000

.2000r r r r r r y

x x y y x

z w z z w w w --+--??????

? ? ?-???→-???→- ? ? ? ? ? ?----??????

-?=?+==-?????

-=∴==??????-===???

?

3.λ取何值时,非齐次线性方程组???

??=++=++=++2

321

3213211λλλλλx x x x x x x x x ⑴ 有唯一解 ⑵ 无解 ⑶ 有无穷多解

321

1

1

132(1)(2)

1

1

1

1111

11

1100

0111000111111212212124003λ

λ

λλλλλ

λλλ=-+=-+≠????

?

?

→ ? ? ? ????

?

????

?

?

--→-- ? ? ? ?-?

???

当1,-2时,方程有唯一解11当=1时10,有无穷多解;10-22

当=-2时1

1

,方程组无解。10

线性代数练习题 第四章 向量组的线性相关性

系专业班 姓名学号

第四节 线 性 方 程 组 的 解

一.选择题:

1.设A 是45?矩阵,),,,(4321αααα=A ,已知T

),,,(40201=η,T

)4,5,2,3(2=η是0=Ax 的基础解系,则 [ D ] (A )31αα,线性无关 (B )42αα,线性无关 (C )1α不能被43αα,线性表示 (D )4α能被32αα,线性表示

2.设A 是45?矩阵,若b Ax =有解,21ηη,是其两个特解,导出组0=Ax 的基础解系是21αα,,

则不正确的结论是 [ B ] (A )b Ax =的通解是12211ηαα++k k (B )b Ax =的通解是)(212211ηηαα+++k k (C )b Ax =的通解是22122211/)()(ηηααα++++k k

(D )b Ax =的通解是211222112ηηαααα-+-++)()(k k

3.设321ααα,,是四元非齐次线性方程组b Ax =的三个解向量,且3=)(A R ,T

),,,(43211=α,

T ),,,(321032=+αα,C 表示任意常数,则线性方程组b Ax =的解是 [ C ]

(A )T

T

C )1,1,1,1()4,3,2,1(+ (B )T

T

C )3,2,1,0()4,3,2,1(+ (C )T

T

C )5,4,3,2()4,3,2,1(+ (

D )T

T

C )6,5,4,3()4,3,2,1(+

4.齐次线性方程组???

??=++=++=++0

00321

3213221x x x x x x x x x λλλλ 的系数矩阵记为A ,若存在三阶矩阵0≠B 使得

0=AB ,则 [ C ]

(A )2-=λ且0=B , (B )2-=λ且0≠B (C )1=λ且0=B (D )1=λ且0≠B 二.填空题:

1. 设????? ??-+=21232121a a A ,????? ??=321b ,=x ???

?

?

??321x x x

(1)齐次线性方程组0=Ax 只有零解,则a 31≠-, (2)非齐次线性齐次组b Ax =无解,则a = 31-或 三.计算题:

1.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它的三个解向量,且

T )5,4,3,2(1=η,23(1,2,3,4)T ηη+=,求该方程的通解

1231231231231,(2)2020()431,03243(2).5465Ax b A A A b

A b b b Ax n R A Ax Ax b k k ηηηηηηηηηηηηη====--=--=--=-=-==???? ? ? ? ?=--+=+ ? ? ? ?????

解:设方程为 则那么故是的解.

又故的基础解系只有一个向量所以的通解为

2.求非齐次线性方程组???

??-=+++-=-++=-+-6

2421635113254321

43214321x x x x x x x x x x x x 的一个解及对应齐次方程组的基础解系。

12342341234234152311152311152311:53611028414560142728242160142728000001523112,024*********

2427x x x x x x x x x x x x x x ------?????? ? ? ?--→--→-- ? ? ?

? ? ?---??????

?? ?-+-=-? ?? ?-+=-?

???

-+-=-+解原方程组化为求出一个解为

另外34120917211,,.,72011091172112.

72001010x x k k ??=?

????- ? ? ? ?

???? ? ?

- ? ? ?

????? ? ?

? ? ?

?????????

- ? ??? ? ? ?- ? ? ?

-++ ? ? ? ? ? ?

? ??? ? ?

????

10设()分别为解01所以通解为

线性代数练习题 第四章 线性方程组

系专业班 姓名学号

第四节 克拉默法则

一、选择题:

1.若方程组30

4050x ky z y z kx y z +-=??

+=?

?-+=?

有非零解,则k (A )0 (B )1 (C )1- (D )3=k

3.设21,ξξ为齐次线性方程组0=Ax 的解,21,ηη为非齐次线性方程组b Ax =的解,则[ C ] (A )112ηξ+为0=Ax 的解 (B )21ηη+为b Ax =的解 (C )21ξξ+为0=Ax 的解 (D )21ηη-为b Ax =的解

二、填空题:

2. 若方程组??

?

??=+-=++=+02020z y kx z ky x z kx

仅有零解,则2k =

三、计算题

1.计算A 是秩为3的5×4矩阵,321,,ααα是非齐次线性方程组b Ax =的三个不同的解,若

1232(2,0,0,0)T ααα++=,T )8,6,4,2(321=+αα,求方程组b Ax =的通解。

解:因A 是秩为3的5×4矩阵,431n r -=-=,故对应齐次线性方程组0Ax =的基础解系为ξ.

1231212312[(2)(3)]23230

A A A A A A b b b b b αααααααααα++-+=++--=++--=12312[(2)(3)](2,0,0,0)(2,4,6,8)(0,4,6,8)T T T ξααααα=++-+=-=---是对应齐次线性

方程组0Ax =的基础解系. 又123123

[(2)(3)]4304

A b b ααααα++-

+=-=, 123123312[(2)(3)](2,0,0,0)(2,4,6,8)(,3,,6)4429

T T T ηααααα=++-+=-=---是非齐次线

性方程组b Ax =的特解。

方程组b Ax =的通解为12(0,4,6,8)(,3,,6)29

T

T

x C C ξη=+=---+---.

四、用克拉默法则解方程组1234124234

1234

258

3692254760

x x x x x x x x x x x x x x +-+=??--=?

?

-+=-??+-+=?

解:2

151130*********

476

D ---=

=≠--,方程组有唯一解。

181

5193068152120476

D ---=

=---,22

8511906108051

21076D --=

=----

32181139

62702521

4

6D --=

=--42

15813

09270215

1

4

7

0D --=

=---

方程组有唯一解为118121D x D ==,2210821D x D ==-

,339

7D x D ==-,4497

D x D ==.

线性代数期末试题及答案

工程学院2011年度(线性代数)期末考试试卷样卷 一、填空题(每小题2分,共20分) 1.如果行列式233 32 31 232221 131211 =a a a a a a a a a ,则=---------33 32 31 232221 13 1211222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

线性代数模拟试题及答案1

一、判断题(本题共5小题,每小题3分, 共15分.下列叙述中正确的打√,错误的打×.) 1. 图解法与单纯形法,虽然求解的形式不同,但从几何上理解,两者是一致的. ( ) 2. 若线性规划的原问题有多重最优解,则其对偶问题也一定具有多重最优解. ( ) 3. 如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方 案将不会发生变化. ( ) 4. 对于极大化问题max Z = ij n i n j ij x c ∑∑==11 ,令 {}ij ij ij c c b c c -==,max 转化为极小化问题 ij n i n j ij x b W ∑∑===11m in ,则利用匈牙利法求解时,极大化问题的最优解就是极小化问题 的最优解,但目标函数相差: n+c. ( ) 5. 影子价格是对偶最优解,其经济意义为约束资源的供应限制. ( ) 二、填空题(本题共8小题, 每空3分, 共36分.把答案填在题中横线上.) 1、在线性规划问题的约束方程,0m n A X b X ?=≥中,对于选定的基B ,令非基变量X N =0,得到的解X= ;若 ,则称此基本解为基本可行解. 2、线性规划试题中,如果在约束条件中出现等式约束,我们通常用增加 的方法来产生初始可行基。 3、用单纯形法求解线性规划问题的迭代步骤中,根据k λ= 确定k x 为进基变量;根据最小比值法则θ= ,确定r x 为出基变量。 4、原问题有可行解且无界时,其对偶问题 ,反之,当对偶问题无可行解时,原问题 。 5、对于Max 型整数规划问题,若其松弛问题的最优单纯形表中有一行数据为:

最新线性代数试题精选与精解(含完整试题与详细答案-考研数学基础训练)

精品文档 线性代数试题精选与精解(含完整试题与详细答案,2020 考研数学基础训练) 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设3阶方阵A =(α1,α2,α3),其中αi (i =1,2,3)为A 的列向量,若| B |=|(α1+2α2, α2,α3)|=6,则| A |=( ) A.-12 B.-6 C.6 D.12 【答案】C 【解析】本题考查了矩阵行列式的性质。有性质可知,行列式的任意一列(行)的(0)k k ≠倍加至另一列(行),行列式的值不变。本题中,B 是由A 的第二列的2倍加到了第一列形成的,故其行列式不变,因此选C 。 【提醒】行列式的性质中,主要掌握这几条:(1)互换行列式的两行或两列行列式要变号;(2)行列式的任意一行(列)的(0)k k ≠倍加至另一行(列),行列式的值不变;(2)行列式行(列)的公因子(公因式)可以提到行列式的外面。 【点评】本题涉及内容是每年必考的,需重点掌握。热度:☆☆☆☆☆;可出现在各种题型中,选择、填空居多。 【历年考题链接】 (2008,4)1.设行列式D=3332 31 232221 131211a a a a a a a a a =3,D 1=33 32 3131 2322212113 12 1111252525a a a a a a a a a a a a +++,则D 1的值为( ) A .-15 B .-6 C .6 D .15 答案:C 。 2.计算行列式3 2 3 20 2 0 0 0 5 10 2 0 2 0 3 ----=( ) A.-180 B.-120

精品文档 C.120 D.180 【答案】A 【解析】本题考查了行列式的计算。行列式可以根据任意一行(列)展开。一般来说,按含零元素较多的行或列展开计算起来较容易。本题,按第三列展开,有: 44 1424344433 313233 3 0 2 0 302 2 10 5 000033(1)2105 0 0 2 000 2 2 3 2 3 3 3(002)6(1) =630180. 210 A A A A A A A ++--=?+?+?+?=-----=?+?-=---?=- 【提醒】还要掌握一些特殊矩阵的行列式的计算,如对角矩阵,上(下)三角矩阵,还有分块矩阵。 【点评】行列式的计算是每年必考的,常出现在选择、填空和计算中,选择、填空居多。近几年,填空题的第一题一般考察这个内容。需重点掌握。热度:☆☆☆☆☆。 【历年考题链接】 (2008,1)11.若,02 11 =k 则k=_______. 答案:1/2。 3.若A 为3阶方阵且| A -1 |=2,则| 2A |=( ) A.21 B.2 C.4 D.8 【答案】C 【解析】本题考查了逆矩阵行列式的计算,和矩阵行列式的运算性质。由于1 1,A A -= 由已知| A -1 |=2,从而12A = ,所以3 122842 A A ==?=。

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

线性代数模拟试卷及答案

线性代数(文)模拟试题库及参考答案 一.填空题(每小题3分,共12分) 1.设????? ??=333222111c b a c b a c b a A ,????? ??=33 3222111d b a d b a d b a B ,2=A ,3=B ,则B A -2=1. 解 B A -2=3 332221 113332221113333222211112222d b a d b a d b a c b a c b a c b a d c b a d c b a d c b a -=--- =12=-B A . 2.已知向量)3,2,1(=α,)3 1,21,1(=β,设βαT A =,其中T α是α的转置,则n A =A n 13-. 解 注意到3321)31,21,1(=???? ? ??=T βα,故 n A = β αβαβαβαT n T T T 个)())(( =ββαβαβααβα T n T T T T 个)1()())((- =A n T n 1133--=βα. 注 若先写出A ,再求2A ,…,n A 将花比前更多的时间. 3.若向量组T )1,0,1(1-=α,T k )0,3,(2=α,T k ),4,1(3-=α线性相关,则k =3-. 解 由1α,2α,3α线性相关,则有 321,,ααα=k k 0143011--=1 043011--k k k =04)1(3143=--=-k k k k . 由此解得3-=k . 4.若4阶矩阵A 与B 相似,矩阵A 的特征值为 21,31,41,5 1,则行列式E B --1 =24. 解 因为A 与B 相似,所以A ,B 有相似的特征值,从而E B --1有特征值1,2,3,4.故2443211=???=--E B .

线性代数考试练习题带答案(6)

线性代数考试练习题带答案 说明:本卷中,A -1 表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式33 32 31 2322 21131211a a a a a a a a a =4,则行列式33 3231232221 13 1211 333222a a a a a a a a a =( ) A.12 B.24 C.36 D.48 2.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1 CB -1 B.CA -1B -1 C.B -1A -1C D.CB -1A -1 3.已知A 2 +A -E =0,则矩阵A -1 =( ) A.A -E B.-A -E C.A +E D.-A +E 4.设54321,,,,ααααα是四维向量,则( ) A.54321,,,,ααααα一定线性无关 B.54321,,,,ααααα一定线性相关 C.5α一定可以由4321,,,αααα线性表示 D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=n D.0

线性代数期末考试试卷答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号填“√”,错误的在括号填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 £ s £ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示

网络提交:《线性代数与概率统计》模拟题二(2013.11,90分钟)

华南理工大学网络教育学院 《线性代数与概率统计》 模拟试题二 1. 2. ?单项选择题(每小题 行列式D A. 2. -1 -1 5分, 共8小题,总计40 分) ). B. C . D. 3. -2 -3 已知 ai2 a 13 a 21 a 22 a 23 a 22 a 23 =m ,则 2a 3^ -a 11 2a 32 — a 12 2a 32 — a 13 a 32 a 33 3a 11 + 2a 21 3^2 + 2a 22 3a 13 + 2a 23 a 11 =(A ). a 21 B. -6m C. 12m D. -12m ‘1 0 1) (2 -1 0、 设/ A = 3丿 B = i 1 .2 -1 13 2 5丿 a 31 A. 6m 3. 2 ) 3 A. ,求 2A — 3B =?( D ) D. — 8 —8 -8

= X 2 -5X +3,矩阵 A =『2 ,定义 f(A)=A 2 -5A +3E ,则 f(A)=?( B ) 1-3 3 丿 0 1 0丿 D. 5.向指定的目标连续射击四枪,用 A 表示“第i 次射中目标”,试用A 表示四枪中至少有一枪 7.市场供应的热水瓶中,甲厂的产品占 50%,乙厂的产品占30%,丙厂的产品占20%,甲 厂产品的合格 率为 90%,乙厂产品的合格率为 85%,丙厂产品的合格率为 80%,从市场上任意 击中目标(C ): A. A 1A 2A 3 A 4 B . 1 -A 1A 2A 3A 4 C . A+A 2 + A3+A 4 D. 1 6. 一批产品由8件正品和 (B ) A. 3 5 B . 8 15 C . 7 15 D. 2 5 2件次品组成,从中任取 3件,这三件产品中恰有一件次品的概率为 4.设 f(x)

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数期末复习题

线性代数 一. 单项选择题 1。设A 、B 均为n 阶方阵,则下列结论正确的是 . (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b )若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d )若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b ) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A )=m 时,则方程组 。 (a ) 可能无解 (b)有唯一解 (c)有无穷多解 (d )有解 4.矩阵A 与对角阵相似的充要条件是 。 (a )A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5。A 为n 阶方阵,若02 =A ,则以下说法正确的是 。 (a ) A 可逆 (b ) A 合同于单位矩阵 (c ) A =0 (d ) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B)CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A |=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

线性代数模拟题(开卷)

《线性代数》模拟题(补) 一.单项选择题 1.设为阶矩阵,且,则(C)。 A. B. C. D.4 2.维向量组(3 s n)线性无关的充要条件是(C)。 A.中任意两个向量都线性无关 B.中存在一个向量不能用其余向量线性表示 C.中任一个向量都不能用其余向量线性表示 D.中不含零向量 3.下列命题中正确的是(D)。 A.任意个维向量线性相关 B.任意个维向量线性无关 C.个维向量线性无关 D.任意个维向量线性相关任意 4.n元非齐次线性方程组AX=B有唯一解的充要条件是(B)。A.r(A)=n B.r(A)=r(A,B)=n C.r(A)=r(A,B)

5.矩阵A的特征值分别为1, -1, 2, 则|A2+2I|= 24。6.写出二次型对应的对称矩阵 。 三.计算题 .问取何值时,下列向量组线性无关?。 解: 即时向量组线性无关. .求的全部特征值和特征向量。 解: 特征值。 对于,特征向量为; 对于,特征向量为。 .求行列式的值。 解: 4.已知矩阵,求。 解: 因为,, ,所以 5.求向量组的极大无关组,并用极大无关组表示其余向量。解: , 因此,极大无关组为且。 6.已知矩阵,求正交矩阵T使得为对角矩阵。 解: 1) 首先求其特征值:, 其特征根为:

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有 一个是符合题目要求の,请将其代码填在题后の括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵Aの秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是() A.η1+η2是Ax=0の一个解 B.1 2 η1+ 1 2 η2是Ax=bの一个解

线性代数模拟试题(4套)

模拟试题一 一、判断题:(正确:√,错误:×)(每小题2分,共10分) 1、若B A ,为n 阶方阵,则B A B A +=+.……………………() 2、可逆方阵A 的转置矩阵T A 必可逆.……………………………() 3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…() 4、A 为正交矩阵的充分必要条件1-=A A T .…………………………() 5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合1、23456. 7、(R 8、若9、设10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为. 三、计算:(每小题8分,共16分) 1、已知4阶行列式1 6 11221212 112401---= D ,求4131211132A A A A +-+.

2、设矩阵A 和B 满足B A E AB +=+2,其中??? ? ? ??=101020101A ,求矩阵B . 四、(10分)求齐次线性方程组???????=++-=-++=--+-=++-024********* 432143214 3214321x x x x x x x x x x x x x x x x 的基础解系和它的通解. 五、(10分)设三元非齐次线性方程组b Ax =的增广矩阵为 2六、(10(1(2(3(41. 2、(单 (1)做矩阵53?A 表示2011年工厂i a 产矿石j b 的数量)5,4,3,2,1;3,2,1(==j i ;

(2)通过矩阵运算计算三个工厂在2011年的生产总值. 模拟试题二 一、 判断题(正确的打√,不正确的打?)(每小题2分,共10分) ()1、设,A B 为n 阶方阵,则A B A B +=+; ()2、可逆矩阵A 总可以只经若干次初等行变换化为单位矩阵E ; ()3、设矩阵A 的秩为r ,则A 中所有1-r 阶子式必不是零; ()4、若12,x x ξξ==是非齐次线性方程组Ax b =的解,则12x ξξ=+也是该方程组的解. ()5、n 阶对称矩阵一定有n 个线性无关的特征向量。 123、设4、(33α5一; 67、设向量(1,2,1)T α=--,β=()T 2,,2λ-正交,则λ=; 8、设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为。 三、计算题(每小题8分,共16分) 1、设矩阵??? ? ??=???? ??--=1201,1141B A ,求矩阵AB 和BA 。

线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 勺L =力(jW'g 叫?叫 (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转宜行列式D = D r ) ② 行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③ 常数k 乘以行列 式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行 推论:行列式中某一行 ④ 行列式具有分行 ⑤ 将行列式某一行 行列式依行(列)展开:余子式M”、代数余子式州=(-1)砒 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 0 非齐次线性方程组:当系数行列式£>工0时,有唯一解:Xj= +(j = l 、2......n ) 齐次线性方程组 :当系数行列式D = 1^0时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: 5 铅 a l3 5 ?21 ①转置行列式: ?21 a 22 U 23 "12 ^22 °32 Cl 3\ Cl 32 °33 勺3 ?23如 ②对称行列式:gj = 5 ③反对称行列式:勺= ~a ji 奇数阶的反对称行列式值为零 务2 a !3 ④三线性行列式: “22 0 方法:用?“22把"21化为零,。。化为三角形行列式 0 "33 (列) (列) 成比例,则行列式值为零; 元素全为 零,行列式为零。 可加性 的k 倍加到另一行(列)上,值不变

⑤上(下)三角形行列式:

行列式运算常用方法(主要) 行列式定义法(二三阶或零元素多的) 化零法(比例) 化三角形行列式法、降阶法.升阶法、归纳法、 第二章矩阵 矩阵的概念:A 〃伤(零矩阵、负矩阵、行矩阵.列矩阵.n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵) ------- 交换、结合律 数乘kA = (ka ij )m .n ---- 分配、结合律 注意什么时候有意义 一般AB*BA,不满足消去律:由AB=O,不能得A=0或B=0 (M)r = kA T (AB)T = B T A r (反序定理) 方幕:A kl A kz =A k ^kl 对角短阵:若 AB 都是N 阶对角阵,k 是数,贝ij kA 、A+B 、 A3都是n 阶对角阵 数量矩阵:相当于一个数(若……) 单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵 阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 制是0 数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素 逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的. 力"=3(非奇异矩阵、奇异矩阵IAI=O.伴随矩阵) 初等变换1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 仔加到另一行(列)初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的(对换阵倍乘阵倍加阵) (I o\ 等价标准形矩阵r O O 乘法 转置(A T )T = A (A + B)T =A r +B 1 几种特殊的矩阵: 分块矩阵:加法,

《线性代数》线性方程组部分练习题

一,填空题 1 已知四维向量α,β满足3α+4β=()2112T ,2α+3β=()12 31T -,则向量α=________,β=_____ 2 有三维列向两组1α=()100T ,()2110αT =,()3111αT =,()123βT =,且有112233βχαχαχα++=,则123χχχ=_____ ,=_____,=_____ 3.若向量组123,,ααα线性无关,则向量组122331,,αααααα+++是线性____。 4若n 个 n 维列向量线性无关,则由此n 个向量构成的矩阵必是______ 矩阵。 5若R )(1234,,,4αααα=,则向量组123,,ααα是线性________。 6若向量组)()()()( 12341,1,3,2,4,5,1,1,0,2,2,6,αααα===-=则此向量组的秩是______,一个极大无关组是______。 7已知向量组()()()1231,2,1,1,2,0,,0,0,4,5,2t ααα=-==--的秩为2,则t =____. 8已知方程组12312112323120x a x a x ????????????+=????????????-?????? 无解,则a =_____。 二,选择题 1.向量组()()()()12341,1,2,0,1,1,2,3,5,2,2,4αααα==-==的极大无关组为( ) (A )12,;αα (B )13,;αα (C )123,,;ααα (D )23,;αα 2.若A =12421110λ?? ? ? ??? 为使矩阵A 的秩有最少值,则λ应为( ) (A )2; (B )-1; (C)94; (D)12 ; 3. n 元齐次线性方程组AX=0有非零解时,它的每一个基础解系中所含解向量的个数等于( ) (A )R )(A -n ; (B ))(R n A + (C ))(n R -A ; (D))( n R +A 4.设123412342 34234355222χχχχχχχχχχχλ+-+=??+-+=??+-=? 当λ取( )时,方程组有解。 (A )-12 (B) 12 (C)1- (D)1

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

[考研类试卷]考研数学一(线性代数)模拟试卷4.doc

[考研类试卷]考研数学一(线性代数)模拟试卷4 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 设A,B为n阶可逆矩阵,则( ). (A)存在可逆矩阵P1,P2,使得P1-1AP1,P2-1BP2为对角矩阵 (B)存在正交矩阵Q1,Q1,使得Q1T AQ1,Q2T BQ2为对角矩阵 (C)存在可逆矩阵P,使得p-1(A+B)P为对角矩阵 (D)存在可逆矩阵P,Q,使得.PAQ=B 2 n阶实对称矩阵A正定的充分必要条件是( ). (A)A无负特征值 (B)A是满秩矩阵 (C)A的每个特征值都是单值 (D)A*是正定矩阵 3 下列说法正确的是( ). (A)任一个二次型的标准形是唯一的 (B)若两个二次型的标准形相同,则两个二次型对应的矩阵的特征值相同(C)若一个二次型的标准形系数中没有负数,则该二次型为正定二次型(D)二次型的标准形不唯一,但规范形是唯一的 4 设A为可逆的实对称矩阵,则二次型X T AX与X T A-1X( ).

(A)规范形与标准形都不一定相同 (B)规范形相同但标准形不一定相同 (C)标准形相同但规范形不一定相同 (D)规范形和标准形都相同 5 设n阶矩阵A与对角矩阵合同,则A是( ). (A)可逆矩阵 (B)实对称矩阵 (C)正定矩阵 (D)正交矩阵 6 设A,B都是n阶矩阵,且存在可逆矩阵P,使得AP=B,则( ).(A)A,B合同 (B)A,B相似 (C)方程组AX=0与BX=0同解 (D)r(A)=r(B) 7 设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是( ).(A)r(A)=r(B) (B)|A|=|B| (C)A~B

完整word版最速下降法求解线性代数方程组

最速下降法求解线性代数方程组要求:对于给定的系数矩阵、右端项和初值,可以求解线性代数方程组 一、最速下降法数学理论 PP?tX?Xf(X)的负梯中,在基本迭代公式每次迭代搜索方向取为目标函数kk1kkk?t)X??f(P?取为最优步长,由此确定的算法称为最速度方向,即,而每次迭代的步长kkk下降法。 X)Xminf(kk。现在次,获得了第,假定我们已经迭代了为了求解问题个迭代点k X出发,可选择的下降方法很多,一个非常自然的想法是沿最速下降方向(即负梯度方从k X邻近的范围内是这样。因此,去搜索方向为 )进行搜索应该是有利的,至少在向k P???f(X). kk P k?1进行一维搜索,由此得到第为了使目标函数在搜索方向上获得最多的下降,沿k个跌带点,即 X?X?t?f(X),kk1k?k t按下式确定其中步长因子k f(X?t?f(X))?minf(X?t?f(X)), kkkkkk X?ls(X,??f(X)). ( 1) k1k?k X X,XX,, ,,?k0,12是初始点,由计算就可以得到一个点列,显然,令其中0210{X}f)X(X)(f 的满足一定的条件时,由式()所产生的点列必收敛于者任意选定。当1k极小点。 二、最速下降法的基本思想和迭代步骤 ???,)(Xf(X)g. ,终止限已知目标函数及其梯度和321Xf?f(X),g?g(X)k?0. ,计算;置(1)选定初始点00000X?ls(X,?g)f?f(X),g?g(X). (2)作直线搜索:;计算 k?1kk1?k1k?kk?1?1(X,f(X))k?k?1,置,结束;用终止准则检验是否满足:若满足,则打印最优解否则,1k?1?k转(2) (3)最速下降法算法流程图如图所示.

线性代数模试题试题库

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D -。 3、设1101A ??= ? ?? , 则100A =110001?? ???。 2 3 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1555n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

相关文档
相关文档 最新文档