文档库 最新最全的文档下载
当前位置:文档库 › 利用能量法计算物体作简谐运动的周期

利用能量法计算物体作简谐运动的周期

利用能量法计算物体作简谐运动的周期
利用能量法计算物体作简谐运动的周期

利用能量法计算物体作简谐运动的周期

浙江胡亦中

当物体作简谐运动时,求振动周期的常用方法是利用动力学方法,即利用回复力F=

-kx,由周期求得。但当系统受力较难分析时,可利用能量法求解。下面以弹簧振子为例进行分析:

1.基本规律

以水平方向弹簧振子为例,设振子的位移x随时间的变化规律为x=Acos(wt+),在振动中的任何一时刻t时,振子具有动能E K,弹簧具有弹性势能E P。此两者的值分别为

由于k=mw2,故上式又可写为

可见这一振动系统的动能和势能都随时间作周期性变化,但系统总的机械能E=E K+E P

=保持不变。这一总机械能与振幅的平方成正比,与角频率的平方成正比。这也是简谐运动的一般规律。

简谐运动能量的表达式还为我们提供了求振子频率的另一种方法,这种方法不涉及振子所受的力,因此在力不易求得时较为方便。若将势能E P写成位移x的函数,由前述势能的表达式可得到

w=,

或将总能量写成振幅的函数,则由前述总能量的表达式可以得到

w=。

2.用能量法求周期的规律应用

【例1】有一轻质刚性杆,长为L,可绕上端的水平轴自由转动,下端固定着质量为m 的质点,构成单摆。如图1所示,质点通过一根劲度系数为k的水平弹簧拴到墙上,当摆竖直下垂时,弹簧处于松弛状态,求系统小幅度振动的周期。

解析:设质点偏离平衡位置的最大位移为x,杆偏离竖直方向的夹角为θ,则系统总的机械能为

式中x=Lθ,

1-cosθ=。

故得,

而,

比较上两式得系统的角频率为,

故系统振动的周期为。

【例2】如图2所示,摆球质量为m,凹形滑块质量为M,摆长为l。m与M、M与水平面之间光滑,令摆线偏转很小角度后,从静止释放,求系统的振动周期。

解析:设未放凹形滑块的单摆以角频率w振动,偏角为θ,振幅A=lθ。由系统振动能量守恒得

mgl(1-cosθ)=,

设带有凹形滑块的摆以同样的振幅以角频率为w′振动,则有

mgl(1-cosθ)=,

由上两式得

,而

故系统的振动周期为。

通过以上两例可知采用能量法求周期的一般步骤:

(1)确定振动系统,分析振动系统的机械能是否守恒;

(2)找出平衡位置并将选定为坐标原点;

(3)写出任意位置处的机械能表达式(或特殊位置);

(4)将求得的结果与弹簧作简谐运动时能量关系作比较,求得系统振动周期。

3.巩固练习

【例1】如图3所示,质量为m的小球用轻杆悬挂,两侧用劲度系数为k的弹簧连接,杆自由下垂,弹簧无形变,图中已知,求摆杆作简谐运动的周期。

(答案:)

【例2】一个单摆,由一根刚性轻杆和杆端质量为m的重物组成,做微小振幅的自由振动。如果在杆上某点再固定一个和杆端重物质量相同的重物,使原单摆变成一个异形复摆,其振动周期最多改变百分之几?

(答案:9%)

简谐运动的动力学条件和周期公式的推导

简谐运动的动力学条件和周期公式的推导 [摘要]:本文从简谐运动的概念出发, 用数学知识,推理出了简谐运动的动力学条件及弹簧振子的周期公式、单摆做小角度摆动的周期。从逻辑上对机械振动一章的知识有了一 个整体的认识。 [关键词]:简谐运动,动力学条件,周期公式,弹簧振子,单摆 [正文] 课程标准实验教科书《物理》3—4第十一章从运动学的角度对简谐运动进行了定义,恰好从数学课上学生也学到了关于导数的知识。这就为构造简谐运动的逻辑提供了条件,通过这样的一个逻辑构造,可以让学生体会数学在物理学中的应用。同时,也可以让学生充分体会物理学逻辑上的统一美。激发学生学习物理,从理论上探究物理问题的兴趣和决心。 如果质点的位移与时间的关系遵从正弦的规律,即它的振动图象( x —t 图象)是一条正弦,这样的运动叫做简谐运动。 由定义可知,质点的位移时间关系为t A x sin ………………(1)对时间求导数可得速度随时间变化的规律:t A dt dx v cos ………………(2)再次对埋单求导数可得加速度随时间变化的规律:t A dt dv a sin 2 (3) 由牛顿第二定律可知,质点受到的合力为: ma F ………………(4)由(3)(4)可知: t mA F sin 2 (5) 将(1)式代入(5)式可得: x m F 2..................(6)上式中,m 和都是常数,从而可以写成下面的形式kx F (7) 其中2m k ,至此得到了质点做简谐运动的动力学条件:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置。 对于的弹簧振子来说,(7)式中的k 表示弹簧的劲度系数,对比(6)式可知k m 2,

例析抽象函数周期的求法

例析抽象函数周期的求法

————————————————————————————————作者:————————————————————————————————日期:

例析抽象函数周期的求法 抽象函数周期问题是近年来高考及各地模拟试题中高频出现的问题,其周期求法能有效考查学生的逻辑思维能力和代数推理能力,对培养学生思维品质大有帮助。下面举例说明求周期的常用方法及技巧。 一、仅含抽象关系式的周期函数 例1 若存在常数m>0,使函数f(x)满足,则 的一个正周期是____________。 解:设,则,依题意有 ,由周期函数的定义,是的一个周期 所以期 例2已知函数满足,求证:函数为周期函数。 证明:因为对有 (2)代入(1)得 这样 所以为周期函数,且为它的一个周期。

例3 设函数的定义域关于原点对称,且对定义域内任意,有 ,且存在常数,使。试证:是周期函数,且有一个周期为4a。 证明:设,则 所以y=f(x)为周期函数,且有一个周期为4a。 说明:从以上几例可见,适当的赋值和变量代换,是探求抽象函数周期的关键。下面再给一个探求周期来计算函数值的例子。 例4 设是定义在R上的函数,且对任意,都有 ,又,求的值。 解:

又 所以 可知是以2为一个周期的周期函数 所以 二、图象中有两条对称轴的抽象函数 例5 若函数的图象关于两条直线和都对称,试证:是周期函数,且是它的一个周期。 证明:因为的图象关于直线和(a<B)都对称< span> 所以且 这样 所以是周期函数,且是它的一个周期。 例6 设是定义在R上的偶函数,且它的图象关于x=2对称,已知 时,,求时,的表达式。 解:由题设知:有两条对称轴和 所以为周期函数,且为它的一个周期 又当时, 所以 三、图象关于两点成中心对称的抽象函数 例7设函数的图象关于相异两点A(a,0),B(b,0)都对称,则是一个周期为的周期函数。 证明:由题设有,这样

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

高中数学破题致胜微方法(求函数解析式):12.利用周期性求函数解析式 Word版含解析

利用周期性求函数解析式 周期性是函数的一种性质,当我们通过题目的已知条件,能够判断函数是周期函数时,再相关性质,求函数的解析式,就能简单一些了。今天我们就根据实际例子,看看如何利用周期性,求函数的解析式。 先看例题 例:设f (x )是定义在区间(,)-∞+∞上,且以2为周期的函数,对k Z ∈,用k I 表示区间(21,21)k k -+,已知当0x I ∈时,2 ()f x x =,求f (x )在k I 上的解析式 解:由已知,当k =0时,0(1,1)I =- 我们利用区间转移的方法,如果k x I ∈ 即0(21,21)2x k k x k I ∈-+?-∈ 121x k ?-<-< 则有:2 (2)(2)f x k x k -=- 又因为该函数以2为周期,所以有(2)(),f x k f x -= 所以函数在k I 上的解析式为:2()(2)f x x k =- 一般规律: 区间转移: 将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间。 进而求出,该区间上的函数解析式 再看一个例题加深印象 练:设f (x )是定义在R 上的奇函数,且其图象关于直线x =1对称,当[]2,0x ∈-时,()22.f x x x +=

当[]2,4x ∈时,求f (x )的解析式 首先通过题目条件,证明函数为周期函数 因为函数关于x =1对称,且函数为奇函数 所以有()(2)()f x f x f x +=-=- 又因为(2)()f x f x +=- 所以:()()(4)(2)[]f x f x f x f x +=-+=--= 所以函数为周期函数,且周期T =4 因为函数在[]2,0x ∈-上的解析式已知,所以 由[]2,4,4[2,0],x x ∈-∈- 可得:()22(4)2(4)(4)68.f x f x x x x x ----==+=+ 总结: 1.根据题目条件,判断、证明函数为周期函数. 2.将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间. 3.根据题目条件,以及函数性质,确定所求区间上的解析式 练习: 1.设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间2,3]上时,f (x )=-2(x -3)2+4,求当x ∈1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值. 2.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在0,1]上是一次函数,在1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5. (1)证明:f (1)+f (4)=0; (2)试求y =f (x ),x ∈1,4]的解析式; (3)试求y =f (x )在4,9]上的解析式. 答案:

简谐运动位移公式推导

简谐运动位移公式推导-CAL-FENGHAI.-(YICAI)-Company One1

简谐运动位移公式推导 问题:质量为m的系于一端固定的轻弹簧(弹簧质量可不计)的自由端。如图(a)所示, 将物体略向右移,在弹簧力作用下,若接触面光滑,m物体将作往复运动,试求位移x与时间t的函数关系式。 图(a) 分析:m物体在弹力F的作用下运动,显然位移X与弹力F有关,进而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F替换成关于X与t的量,再求解该微分方程。 推导:取物体平衡位置O为坐标原点,物体运动轨迹为X轴,向右为正。设弹力为F, 由胡克定律,K为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m物体加速度a====-x (1) 可令= (2) 代入(a),得 =X或X=0 (3)

显然,想求出位移X与时间t的函数关系式,须解出此微分方程 求解:对于X=0,即X’’+X=0 (4) (4)式属可将阶的二阶微分方程, 若设X’=u,消去t,就要把把X”转化为关于X与t的函数,那么 X’’===u , u+X=0, u X 下面分离变量再求解微分方程,然后两边积分,得 = 得=+C,即+C1 (5) u=x’,x’== (6) 再次分离变量,=dt (7) 两边积分,右边=t,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: 运用三角代换,令X= (7)式左边化为==-, 两边积分,得-–=t+C2

由此可得,X=t+), 即 X=A t+) (8) 其中 A, Ψ皆为常数 此方程即为简谐运动方程 若Ψ=0,X-t为余弦曲线,如图(b)所示 图(b) 验证:通过高频照相机拍摄后发现m的轨迹为周期摆动的简谐曲线,与 X=A t+)图像基本吻合,故可判断X=A t+)即为所求,如图(c)所示。 图(c)

简谐运动周期公式的推导

简谐运动周期公式的推导 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标 系。 图2 图 3 图4

则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注) 图5

定积分中奇偶函数和周期函数处理方法

定积分计算中周期函数和奇偶函数的处理方法 一、基本方法 (一)、奇偶函数和周期函数的性质 在定积分计算中,根据定积分的性质和被积函数的奇偶性,及其周期性,我们有如下结论 1、若()x f 是奇函数(即()()x f x f --=),那么对于任意 的常数a ,在闭区间 ][a a ,-上,()0=?-a a dx x f 。 2、若()x f 是偶函数(即()()x f x f -=),那么对于任意的常数a ,在闭区间][a a ,-上()()??-=a a a dx x f dx x f 0 2。 3、若()x f 为奇函数时,()x f 在][a a ,-的全体原函数均为偶函数;当()x f 为偶函数时,()x f 只有唯一原函数为奇函数即()?x dt t f 0. 事实上:设()()C dt t f x d x f x +=??0 ,其中C 为任意常数。 当()x f 为奇函数时,()?x dt t f 0 为偶函数,任意常数C 也是偶函数?()x f 的全体 原函数()C dt t f x +?0 为偶函数; 当()x f 为偶函数时, ()?x dt t f 0 为奇函数,任意常数0≠C 时为偶函数? ()C dt t f x +?0 既为非奇函数又为非偶函数,?()x f 的原函数只有唯一的一个原函 数即()?x dt t f 0是奇函数。 4、若()x f 是以T 为周期的函数(即()()x f x T f =+),且在闭区间][T ,0上连续可积,那么()()()? ?? +-==T a a T T T dx x f dx x f dx x f 0 22 。 5、若()x f 是以T 为周期的函数(即()()x f x T f =+),那么()?x dt t f 0 以T 为周期 的充要条件是 ()00 =?T dt t f

例析抽象函数周期的求法

例析抽象函数周期的求法 抽象函数周期问题是近年来高考及各地模拟试题中高频出现的问题,其周期求法能有效考查学生的逻辑思维能力和代数推理能力,对培养学生思维品质大有帮助。下面举例说明求周期的常用方法及技巧。 一、仅含抽象关系式的周期函数 例1 若存在常数m>0,使函数f(x)满足,则的一个正周期是____________。 解:设,则,依题意有 ,由周期函数的定义,是的一个周期 所以期 例2 已知函数满足,求证:函数 为周期函数。 证明:因为对有 (2)代入(1)得 这样 所以为周期函数,且为它的一个周期。

例3 设函数的定义域关于原点对称,且对定义域内任意,有 ,且存在常数,使。试证:是周期函数,且有一个周期为4a。 证明:设,则 所以y=f(x)为周期函数,且有一个周期为4a。 说明:从以上几例可见,适当的赋值和变量代换,是探求抽象函数周期的关键。下面再给一个探求周期来计算函数值的例子。 例4 设是定义在R上的函数,且对任意,都有 ,又,求的值。 解:

又 所以 可知是以2为一个周期的周期函数 所以 二、图象中有两条对称轴的抽象函数 例5 若函数的图象关于两条直线和都对称,试证:是周期函数,且是它的一个周期。 证明:因为的图象关于直线和(a 所以且 这样 所以是周期函数,且是它的一个周期。 例6 设是定义在R上的偶函数,且它的图象关于x=2对称,已知时, ,求时,的表达式。 解:由题设知:有两条对称轴和 所以为周期函数,且为它的一个周期 又当时, 所以 三、图象关于两点成中心对称的抽象函数 例7 设函数的图象关于相异两点A(a,0),B(b,0)都对称,则是一个周期为的周期函数。 证明:由题设有,这样

单摆作简谐运动的周期公式可以应用简谐运动周期公式推出

单摆作简谐运动的周期公式可以应用简谐运动周期公式 推出。 可以看出:单 摆的振动周期 跟摆长的平方 根成正比,跟 该处重力加速 度的平方根成 反比。 单摆的 这就是单摆的振动周期公式,是荷兰物理学家惠更斯最早确定的。这个公式只适用于单摆最大偏 角很小的情况。 当最大偏角增大时,振幅随之增大,单摆的周期也将增大。下表是单摆的偏角增大时实际周期与简谐振动周期的比值的变化情况。

显然,最大偏角越小, 应用公式计算的周期 值与实际周期越相 符。当最大偏角为5° 时,误差为万分之五, 10°时误差为万分 之十九,将近千分之 二,30°时误差就接 近百分之二了。 这说明单摆的摆角很 小时,它的实际周期 就近似等于简谐振动 周期 周期为2秒的单摆叫做秒摆。 由于重力加速度跟地球的纬度与距地心的高 度有关,所以世界各地秒摆都有些差异。 若重力加速度g取9.8m·s -2 则秒摆摆长为l=0.993m。 秒摆 重力加速度一、首先是与地球的因素有关,如: 1、物体处在地面的位置。 如,由于地球自转的原因,重力是地球对物体万有引力的一个分力,还有一个分力是供给物体绕地球自转所需要的向心力。 1)赤道处物体,随地球转动的线速度大,需要的向心力大,则分得的重力小,重力加速度就小。 2)向两极位置去时,物体的随地球转动的线速度变小,需要的向心力变小,则分得的重力重力变大,重力加速度就变大。 3)到极点时,物体的随地球转动的线速度最小,需要的向心力最小,则分得的重力最大,

重力加速度就最大。 2、物体离地面的高度,越高,重力加速度越小,因为重力是地球对物体万有引力的一个分力,而且这个万有引力的主要分量就是重力,万有引力的大小与距离的平方成反比,物体离地面越高,物体与地球中心的距离越大,万有引力越小,重力就越小,所以加速度越小; 3、如果是地面打的一个深洞,则越深,重力加速度越小,物体处于地球中心时,理论上说重力加速度是“0”这是根据理论力学的原理得到的。 二、与外来星体的吸引力有关,如太阳、月亮对地球的吸引,使得物体受的重力减小,使重力加速度变小。

简谐周期的求解

简谐周期的求解 广东仲元中学 刘雁 一、数学规律 已知函数x 随变量t 的变化规律为 0cos()x A t ωφ=+ 其中A 、ω和0?为常量。 对上述函数求导,可得: 0sin()x A t ωωφ'=-+ 再求导,可得: 20cos()x A t ωωφ''=-+ 即:2 0x x ω''+= 由此可知,方程20x x ω''+=的解为:0cos()x A t ωφ=+ 其中A 、ω和0?的值可由初始条件求得。 其周期为: 2T πω= 二、简谐周期的求解 1、质点所受各力的合力F 与质点的位移x 的关系为F kx =-(其中k 为正常量),质点的质量为m 。求质点运动的周期。 解:由牛顿第二定律知: F ma mx ''== 所以: mx kx ''=- 即: 0k x x m ''+ = 令2k m ω=,即ω= max 0cos()x x t ω?=+ 所以: 22T πω= =

说明:如果力与位移的关系是F kx b =-+,我们可以通过改变位移参考点的位置使力与位移大小成正比。所以,若质点所受各力的合力F 与质点的位移x 的关系为F kx b =-+ (其中k 和b 为常量,且0k >),质点的质量为m 。则质点的运动周期为2T =。 2、已知刚体对转动轴的转动惯量为I ,若刚体所受各力对转动轴的合力矩M 与角位移θ的关系满足M k θ=-(k 为正常量,M 与θ的正方向关系满足右手螺旋规律),求其周期的表达式。 解:由刚体运动定律知:M I I βθ''== 所以: I k θθ''=- 即: 0k I θθ''+= 令2k I ω= ,即ω= max 0cos()t θθω?=+ 所以:22T πω= = 3、已知LC 振荡回路中线圈的自感系数为L ,电容器的电容为C 。求LC 振荡周期。 解:由回路电压规律得:q Li C '-= 即:q Lq C ''-= 10q q LC ''+ = 令21LC ω= ,即ω= max 0cos()q q t ω?=+ 所以:22T πω= = L C

如何求三角函数的最小正周期

如何用初等方法求三角函数的最小正周期 在三角函数中,求最小正周期是一个重要内容,有关求三角函数最小正周期的问题,供大家参考。 一 公式法 函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω π2;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω y=Af(ωx+φ)(A ≠0,ω>0)一类三角函数的最小正周期(这里“f ”表示正弦、余弦、正切或余切函数)。 例1 求下列函数的最小正周期: (1) f(x)=2sin (53πx +1)。 (2) f(x)=1-31cos(4x 3π-)。 (3) f(x)=51tan(31x 3 π-). f(x)=)6 2cot(21π--x 解:用T 表示各函数的最小正周期,则: (1)T=5 32ππ =310 T=42π=2 π T=3 1 π=3π f(x )的最小正周期和y 1=1-2cot(2x -6π)的最小正周期相同,为T=2 π 二 定义法 根据周期函数和最小正周期的定义,确定所给函数的最小正周期。 例2 求函数f(x)=2sin (21x -6 π)的最小正周期。 解:把2 1x -6 π看成是一个新的变量z,那么2sinz 的最小正周期是2π。由于z +2π=21x-6π=(21x +4π)-6π。所以当自变量x 增加到x +4π且必须增加到x +4π时,函数值重复出现。 ∴函数y=2sin(21x-6 π)的最小正周期是4π。 例3 求函数f(x)=|sinx|-|cosx|的最小正周期。

解:根据周期函数的定义,易知2π、π都是这个的周期,下面证明π是这个函数的最小正周期。 设0<T <π是这个函数的周期,则|sin(x +T )|-|cos(x +T )|=|sinx|-|cosx| ① 对于任意x ∈R 都成立,特别的,当x=0时也应成立。 ∴ |sinT|-|cosT|=|sin0|-|cos0|=-1。 但当0<T <π时,0<|sinT|≤1,0<|cosT|<1,故有-1<|sinT|-|cosT|≤1, 矛盾,所以满足①且小于π的正数T 不存在。故函数f(x)=|sinx|-|cosx|的最小正周期是π。 三、最小公倍数法 求几个正弦、余弦和正切函数的最小正周期,可以先求出各个三角函数的最小正周期,然后再求期最小公倍数T,即为和函数的最小正周期。 例4 求下列函数的最小正周期: (1)f(x)=sin3x+cos5x (2)f(x)=cos 34 x -sin 2 1x. (3)f(x)=sin 53x +tan 7 3x. 解:(1)∵sin3x 的最小正周期为T 1=π32,cos5x 的最小正周期为T 2=π52。而π32和π5 2的最小公倍数是2π. ∴f(x)的最小正周期为T=2π. (2) ∵cos 34x 的最小正周期为T 1=π23,-sin 2 1x 的最小正周期为T 2=4π。而π2 3和4π的最小公倍数是12π。 ∴f(x)=cos 34 x -sin 2 1x 的最小正周期为T=12π. (3)∵sin 53x 的最小正周期为T 1=π310,tan 73x 的最小正周期为T 2=π37。而π310和π3 7的最小公倍数是70π。 ∴f(x)=sin 53x +tan 7 3x 的最小正周期为T=70π. 说明:几个分数的最小公倍数,我们约定为各分数的分子的最小公倍数为分子,各分母的最大公约数为分母的分数。 四 图象法 作出函数的图象,从图象上直观地得出所求的最小正周期。 例5 求下函数的最小正周期。 (1)y=|sin(3x +3 π)|

简谐运动位移公式推导

简谐运动位移公式推导 问题:质量为m的系于一端固定的轻弹簧(弹簧质量可不计)的自由端。如图(a)所示, 将物体略向右移,在弹簧力作用下,若接触面光滑,m物体将作往复运动,试求位移x与时间t的函数关系式。 图(a) 分析:m物体在弹力F的作用下运动,显然位移X与弹力F有关,进而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F替换成关于X与t的量,再求解该微分方程。 推导:取物体平衡位置O为坐标原点,物体运动轨迹为X轴,向右为正。设弹力为F, 由胡克定律F=?kX,K为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m物体加速度a=dv dt =d2X dt2 =F m =-k m x(1) 可令k m =ω2 代入(a),得 d2X dt2=?ω2X或d2X dt2 +ω2X=0 显然,想求出位移X与时间t的函数关系式,须解出此微分方程

求解:对于d2X dt 2+ω2X=0,即X ’’+ ω2X=0 (4) (4)式属可将阶的二阶微分方程, 若设X ’=u ,消去t,就要把把X ”转化为关于X 与t 的函数,那么 X ’’= dX "dt = du dx dx dt =u du dx , u du dx +ω2X=0, u du dx =?ω2X 下面分离变量再求解微分方程,然后两边积分,得 udu =?ω2 Xdx 得 12u 2=? 12ω2 x 2+C ,即u 2=? ω2 x 2+C1 (5) u=x ’,x ’= 2 x 2 =dx dt 再次分离变量, C1? ω2 x 2=dt (7) 两边积分,右边=t ,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: 运用三角代换,令X= C1ωcos z (7)式左边化为 d cos z ωsin z =?sin zdz ωsin z =-dz ω, 两边积分,得 -–z ω=t+C2 由此可得, X= C1ωcos(ωt+ωC2),

函数的周期性及其应用解题方法

函数的周期性及其应用解题方法 方法提炼 抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形: (1)若函数满足f(x+T)=f(x),由函数周期性的定义可知T是函数的一个周期; (2)若满足f(x+a)=-f(x),则f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),所以2a是函数的一个周期; ! (3)若满足f(x+a)=1/f(x),则f(x+2a)=f[(x+a)+a]=1/f(x+a)=f(x),所以2a是函数的一个周期; (4)若函数满足f(x+a)=-1/f(x),同理可得2a是函数的一个周期; (5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x); ②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象. 没有等价变形而致误 ' 【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2). (1)求f(1)的值; (2)判断f(x)的奇偶性,并证明; (3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围. 错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0. > (2)f(x)为偶函数,证明如下: 令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0. 令x1=-1,x2=x,有f(-x)=f(-1)+f(x), ∴f(-x)=f(x).∴f(x)为偶函数. (3)f(4×4)=f(4)+f(4)=2, 》 f(16×4)=f(16)+f(4)=3, 由f(3x+1)+f(2x-6)≤3, 得f[(3x+1)(2x-6)]≤f(64). 又∵f(x)在(0,+∞)上是增函数, ∴(3x+1)(2x-6)≤64. 《 ∴-7/3≤x≤5. 分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1, 有f(1×1)=f(1)+f(1),解得f(1)=0. (2)f(x)为偶函数,证明如下:

高三物理简谐运动的公式描述.docx

简谐运动的公式描述教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4) 知道简谐运动的位移公式为x=A sin (ωt+),了解简谐运动位移公式中各量的物 理含义. (5) 了解位相、位相差的物理意义. (6) 能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1) 通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1— 3— 1 中数据的 比较,并描出z— t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点 ,难点 1.简谐运动位移公式x=Asin(ω t +)的推导 2.相位 , 相位差的物理意义 .. ●教学过程 教师讲授 简谐振动的旋转矢量法 。y 在平面上作一坐标轴 OX,由原点 O 作一长度等于振幅的矢量 A t=0 ,矢量与坐标轴的夹角等于初相 矢量 A 以角速度w 逆时针作匀速圆周运动, 研究端点M 在 x 轴上投影点的运动, 1.M 点在 x 轴上投影点的运动 x=Asin(ω t+)为简谐振动。 x 代表质点对于平衡位置的位移,t 代表时间,简谐运动的三角函数表示 回答下列问题 a:公式中的 A 代表什么 ? b:ω叫做什么 ?它和 f 之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? M A t M 0 o x P x

《简谐运动的振幅、周期、频率》进阶练习 (二)-1-2

《简谐运动的振幅、周期、频率》进阶练习 一、单选题 1.一质点做简谐运动的图象如图所示,下列说法正确的是( ) A.质点振动频率是4 Hz B.在10 s内质点经过的路程是20 cm C.第4 s末质点的速度是零 D.在t=1 s和t=3 s两时刻,质点位移大小相等、方向相同 2.简谐运动中反映物体振动强弱的物理量是() A.周期 B.频率 C.振幅 D.位移 3.弹簧振子做简谐运动,若某一过程中振子的速率在减小,则此时振子的运动() A.速度与位移方向一定相反 B.加速度与速度方向可能相同 C.回复力一定在增大 D.位移可能在减小 二、填空题 4.如图甲所示为一弹簧振子的振动图象,规定向右的方向为正方向,试根据图象分析以 下问题: (1)如图乙所示的振子振动的起始位置是 ______ ,从初始位置开始,振子向 ______ (填“右”或“左”)运动. (2)在乙图中,找出图象中的O、A、B、C、D各对应振动过程中的位置,即O对应 ______ ,A对应 ______ ,B对应 ______ ,C对应 ______ ,D对应 ______ . (3)在t=2s时,振子的速度的方向与t=0时速度的方向 ______ . (4)质点在前4s内的位移等于 ______ .

5.一位学生研究弹簧振子的运动,当振子经过平衡位置时开始记时,并从零开始记数,以后振子每经过平衡位置他就记一次数,在4s内正好数到10,则这个弹簧振子的频率是 ______ ,周期是 ______ .

参考答案 【答案】 1.B 2.C 3.C 4.E;右;E;G;E;F;E;相反;0 5.1.2Hz;0.8s 【解析】 1. 【分析】 由简谐运动的图象直接读出周期,求出频率,根据时间与周期的关系求出在10s内质点经过的路程.根据质点的位置分析其速度,根据对称性分析t=1s和t=35s两时刻质点的位移关系。 由振动图象能直接质点的振幅、周期,还可读出质点的速度、加速度方向等等,求质点的路程,往往根据时间与周期的关系求解,知道质点在一个周期内通过的距离是4A, 半个周期内路程是2A,但不能依此类推,周期内路程不一定是A。 【解答】 A.由图读出质点振动的周期T=4s,则频率,故A错误; B.质点做简谐运动,在一个周期内通过的路程是4A,t=10s=2.5T,所以在10s内质点经过的路程是 S=2.5×4A=10×2cm=20cm,故B正确; C.在第4s末,质点的位移为0,经过平衡位置,速度最大,故C错误; D.由图知在t=1s和t=3s两时刻,质点位移大小相等、方向相反,故D错误; 故选B。 2. 解:A、B频率和周期表示振动的快慢.故AB错误. C、振幅是振动物体离开平衡位置的最大距离,表示振动的强弱,故C正确. D、位移大小是振动物体离开平衡位置的距离,不表示振动的强弱,故D错误. 故选:C 能够反映物体做机械振动强弱的物理量是振幅,不是频率,回复力和周期 振幅是振动物体离开平衡位置的最大距离,表示振动的强弱;频率和周期表示振动的时间上的快慢,注意理解 3. 【分析】 首先知道判断速度增减的方法:当速度与加速度方向相同时,速度增大;当速度与加速

物理竞赛中简谐运动周期的四种求法

物理竞赛中简谐运动周期的四种求法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

物理竞赛中简谐运动周期的四种求法 物理竞赛中在解决简谐运动问题时,经常会涉及周期的求解。本文通过具体实例,介绍物理竞赛中简谐运动周期的四种求法。 一、周期公式法 由简谐运动的周期公式可知,运用周期公式求周期的关键是求出回复力系数 k。通常情况下,可以通过两种途径求出回复力系数。一是通过对简谐运动物体进行受力分析求出回复力,然后根据物体简谐运动时回复力大小的特征F=kx,找到回复力F与位移x的关系求出回复力系数k;二是通过求简谐运动物体在位移为x时的势能,然后根据物体做简谐运动时势能的关系求出回复力数k。 例1如图1所示,摆球质量为m,凹形滑块质量为M,摆长为L,m与M、M与水平面之间光滑,求摆线偏转很小角度,从静止释放后,系统振动的周期。 图1分析与解由于摆球m周期与整个系统运动周期相等,因此系统振动的周期可以通过求摆球m周期来求出。 凹形滑块M受到水平地面的支持力、重力 G=Mg及m对M的水平作用的作用(图2),由于 M只能在水平面上滑动,因此M沿水平面做往复运动时受到的回复力可表示为:(1) 对摆球m进行受力分析(图3),可得到下列关系式: (2)

例2如图4所示,横截面积为S,粗细均匀的U形管中灌有密度为ρ,质量为m 的水银,现在将B管管口用塞子密封后加热,由于封在B管中空气的膨胀,使水银面在A管内上升,若此时将B管口的塞子拔去,那么水银做简谐运动的周期是多少? 图4 分析与解设A、B两管液面相平时为水银柱的零势能位置,则当B管中水银面距两管液面相平时的液面高度为x时,整个水银柱具有的势能为 。 二、刚体角加速度法 绕定轴转动的刚体的角加速度和外力的关系应遵循刚体定轴转动定律:即刚体所受的对于某一固定转轴的合外力矩等于刚体对此转轴的转动惯量与刚体在此合外力矩

如何求三角函数的周期

如何求三角函数的周期 三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法. 1、根据周期性函数的定义求三角函数的周期 例1 求下列函数的周期 x y 2sin )1(= , 3 2tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π. ∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π. (2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 3 2tan )(32tan x T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tan ππ+=+=x x x , 即3 2tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π2 3. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值, 如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立. 2、根据公式求周期 对于函数B x A y ++=)sin(?ω或B x A y ++=)cos(?ω的周期公式是| |2ωπ=T , 对于函数B x A y ++=)tan( ?ω或B x y ++=)cot(?ω的周期公式是||ωπ=T . 例3 求函数)623sin( 3π-=x y 的周期 解: 3 42 32ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期 例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y

物理竞赛中简谐运动周期的四种求法

物理竞赛中简谐运动周期的四种求法 物理竞赛中在解决简谐运动问题时,经常会涉及周期的求解。本文通过具体实例,介绍物理竞赛中简谐运动周期的四种求法。 一、周期公式法 由简谐运动的周期公式可知,运用周期公式求周期的关键是求出回复力系数 k。通常情况下,可以通过两种途径求出回复力系数。一是通过对简谐运动物体进行受力分析求出回复力,然后根据物体简谐运动时回复力大小的特征F=kx,找到回复力F与位移x的关系求出回复力系数k;二是通过求简谐运动物体在位移为x时的势能,然后根据物体做简谐运动时势能的关系求出回复力数k。 例1 如图1所示,摆球质量为m,凹形滑块质量为M,摆长为L,m与M、M 与水平面之间光滑,求摆线偏转很小角度,从静止释放后,系统振动的周期。 图1分析与解由于摆球m周期与整个系统运动周期相等,因此系统振动的周期可以通过求摆球m周期来求出。 凹形滑块M受到水平地面的支持力、重力 G=Mg及m对M的水平作用的作用(图2),由于 M只能在水平面上滑动,因此M沿水平面做往复运动时受到的回复力 (1) 对摆球m进行受力分析(图3),可得到下列关系式:

(2) 例2 如图4所示,横截面积为S,粗细均匀的U形管中灌有密度为ρ,质量为m 的水银,现在将B管管口用塞子密封后加热,由于封在B管中空气的膨胀,使水银面在A管内上升,若此时将B管口的塞子拔去,那么水银做简谐运动的周期是多少? 图4 分析与解设A、B两管液面相平时为水银柱的零势能位置,则当B管中水银面距两管液面相平时的液面高度为x时,整个水银柱具有的势能为 。 二、刚体角加速度法

绕定轴转动的刚体的角加速度和外力的关系应遵循刚体定轴转动定律:即刚体所受的对于某一固定转轴的合外力矩等于刚体对此转轴的转动惯量与刚体在此合外力矩 作用下所获得的角加速度的乘积。采用这种方法时,往往通过刚体定轴转动定律求出刚体转动的角加速度,然后根据加速度与角加速度的关系求出刚体转动的角速度,从而求出刚体做简谐运动的周期。 例3 如图5所示,质量为m的小球用轻杆悬挂,两侧用劲度系数为k的弹簧连接。杆自由下垂时,弹簧无形变,图中a、b已知,求摆杆做简谐运动的周期T。 图5 分析与解设轻杆向右偏很小的角度θ时,小球向右偏离平衡位置距离x=bsinθ≈bθ,此时右侧弹簧压缩了aθ,左侧弹簧伸长了aθ。根据刚体定轴转动定律可得: 三、解方程组法

函数周期常用求法

三角函数周期的常用求法 一、 公式法 对于函数B x A y ++=)sin(?ω或B x A y ++=)cos(?ω的周期公式是||2ωπ=T , 对于函数B x A y ++=)tan(?ω或B x y ++=)cot(?ω的周期公式是| |ωπ=T . 例1 函数)2 3sin( x y -=π的最小正周期是 ( ) A.π B.2π C.-4π D.4π 解:由公式,得ππ42 12=-=T ,故选D. 评注:对于函数)sin(?ω+=x A y 或)cos(?ω+=x A y 可直接利用公式ω π2=T 求得;对于)tan(?ω+=x A y 或)cot(?ω+=x A y 可直接利用公式ωπ= T 求得。 二、图像法 例2 求下列函数的最小正周期 ① x y sin = ②x y sin 解:分别作出两个函数的图像知 图 二、 定法 解:∵ 2 cos()2sin(ππk x k x +++=x x cos sin + (Z k ∈) ∴ 2πk 是函数x x y cos sin +=的周期.显然2πk 中最小者是2 π 下面证明2π是最小正周期

假设2π不是x x y cos sin +=的最小正周期,则存在<+T T ② ∴ ①与②矛盾, ∴ 假设不成立,∴2π是x x y cos sin +=最小正周期. 评注:这种方法依据周期函数的定义,从式子)()(x f T x f =+出发,设法找出周期T 中的最小正数(须用反证法证明). 四、转化法 1、把三角函数表达式化为一角一函数的形式,再利用公式求周期 例4求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y ∴ ππ==2 2T . 变式 求函数x x y 66cos sin +=的最小正周期 解:∵ y =)cos sin 3cos sin 3()cos (sin 4224322x x x x x x +-+ =)4cos 1(831)cos (sin )cos (sin 31222x x x x x -- =+- =x 4cos 8 385+ ∴ 函数x x y 66cos sin +=的最小正周期是2 42ππ==T 评注:就是先根据三角公式已知式转化为一个脚的一个三角函数的形式,再利用公式去求.这是最常见的求周期题型,也是高考考察的热点. 2、遇到绝对值时,可利用公式 2||a a =, 化去绝对值符号再求周期 例5求函数 |cos |x y =的周期 解:∵ 22cos 1cos |cos |2x x x y +== = ∴ ππ==2 2T . 例6求函数|cos ||sin |x x y +=的周期

相关文档
相关文档 最新文档