文档库 最新最全的文档下载
当前位置:文档库 › 简谐振动周期公式

简谐振动周期公式

简谐振动周期公式

简谐振动周期公式T=2πk m /的简单推导

1. 物体在其平衡位置附件作来回往复的运动叫机械振动.

2. 当振动物体所受回复力和振动位移成正比方向相反时,这样的振动叫简谐振动。即:

F=-kX ⑴

3. 物体作简谐振动时其位移x=Acos ωt

4. 物体作简谐振动时其速度v=dt

dx =ωAsin ωt 5. 物体作简谐振动时其加速度a=dt dv =ω2Acos ωt

6. 根据牛顿第二定律,F=ma=m ω2Acos ωt ⑵

7. 当简谐振动物体位移最大x=A 时 F=kA=m ω2A

8. 所以得k= m ω2

9. 将ω=2π/T 代入上式就可得简谐振动的周期公式T=2πk m /

振动台计算

振动台在使用中经常运用的公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2 ) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A= D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈ D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.610 3 ?= - …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D = D A ??2 3 )2(10 π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n= 2 Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R=T Lg f f Lg L H 2 / ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

气轨上的弹簧简谐振动实验报告

气轨上弹簧振子的简谐振动 目的要求: (1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。 (2)观测简谐振动的运动学特征。 (3)测量简谐振动的机械能。 仪器用具: 气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。 实验原理: (一)弹簧振子的简谐运动过程: 质量为 m1的质点由两个弹簧与连接,弹簧的劲度系数分别 为k1和 k2,如下图所示: 当 m1偏离平衡位置 x时,所受到的弹簧力合力为 令 k=,并用牛顿第二定律写出方程 解得 X=Asin() 即其作简谐运动,其中 在上式中,是振动系统的固有角频率,是由系统本身决定的。m=m 1+m0是振动系统的有效质量, m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。系统的振动周期为

通过改变测量相应的 T,考察 T 和的关系,最小二乘法线性拟合求出 k 和 (二)简谐振动的运动学特征: 将()对 t 求微分 ) 可见振子的运动速度 v 的变化关系也是一个简谐运动,角频率为,振幅为,而且 v 的相位比 x 超前 . 消去 t,得 v2=v02(v2?v2) x=A时,v=0,x=0 时,v 的数值最大,即 实验中测量 x和 v 随时间的变化规律及 x和 v 之间的相位关系。 从上述关系可得 (三)简谐振动的机械能: 振动动能为 系统的弹性势能为 则系统的机械能 式中:k 和 A均不随时间变化。上式说明机械能守恒,本实验通过测定不同 位置 x上 m 1的运动速度 v,从而求得和,观测它们之间的相互转换并验证机械能守恒定律。 (四)实验装置: 1.气轨设备及速度测量 实验室所用气轨由一根约 2m 长的三角形铝材做成,气轨的一端堵死,另 一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的表面经过精加工与

振动加速度计算公式

1、振动方向:垂直(上下)/水平(左右) 2、最大试验负载:(50HZ、1~600HZ)100 kg. (1~5000HZ)50 kg. 3、调频功能(1~600HZ、1~5000HZ客户自定)在频率围任何频率必须在(最大加速度<20g 最大振幅<5mm); 4、扫频功能(1~600HZ、1~5000HZ客户自定):(上限频率/下限频率/时间围)可任意设定真正标准来回扫频; 5、可程式功能(1~600HZ、1~5000HZ客户自定):15段每段可任意设定(频率/时间)可循环. 6、倍频功能(1~600HZ):15段成倍数增加,①.低频到高频②.高频到低频③.低频到高频再到低频/可循环; 7、对数功能(1~600HZ、1~5000HZ客户自定):①.下频到上频②.上频到下频③.下频到上频再到下频--3种模式对数/可循环; 8、振动机功率:2.2 KW. 9、振幅可调围:0~5mm 10、最大加速度:20g (加速度与振幅换算1g=9.8m/s2) 11、振动波形:正弦波. 12、时间控制:任何时间可设(秒为单位) 13、电源电压(V):220±20% 14、最大电流:10 (A) 15、全功能电脑控制(另购):485通讯接口如要连接电脑做控制,储存,记录,打印之功能需另买介面卡程式电脑. 16、精密度:频率可显示到0.01Hz,精密度0.1Hz . 17、显示振幅加速度(另购):如需看出振幅、加速度、最大加速度、准确数字需另购测量仪. 18、最大加速度20g(单位为g). 最大加速度=0.002×f 2(频率HZ)×D(振幅p-pmm) 举例:10HZ最大加 Foxda振动仪HG-V4最小加速度=0.002×102×5=1G Foxda振动仪HG-V4最大加速度=0.002×2002×5=400G 在任何頻率下最加速度不可大于20G 19、最大振幅5mm 最大振幅=20/(0.002×f2) 举例:100Hz最大振幅=20/(0.002×1002)=1mm 在任何频率下振幅不可大于5mm 20、加速度与振幅换算1g=9.8m/s2 21、频率越大振幅越小 四.符合标准: GB/2423;IEC68-2-6(FC);JJG189-97;GB/T13309-91.

简谐振动特性研究实验

实验一、简谐振动特性研究与弹簧劲度系数测量【实验目的】 1. 胡克定律的验证与弹簧劲度系数的测量; 2. 测量弹簧的简谐振动周期,求得弹簧的劲度系数; 3. 测量两个不同弹簧的劲度系数,加深对弹簧的劲度系数与它的线径、外径关系的了解。 4. 了解并掌握集成霍耳开关传感器的基本工作原理和应用方法。 【实验原理】 1. 弹簧在外力作用下将产生形变(伸长或缩短)。在弹性限度内由胡克定律知:外力和它的变形量成正比,即: (1) (1)式中,为弹簧的劲度系数,它取决于弹簧的形状、材料的性质。通过测量和的对应关系,就可由(1)式推算出弹簧的劲度系数。 2. 将质量为的物体挂在垂直悬挂于固定支架上的弹簧的下端,构成一个弹簧振子,若物体在外力作用下(如用手下拉,或向上托)离开平衡位置少许,然后释放,则物体就在平衡点附近做简谐振动,其周期为: (2) 式中是待定系数,它的值近似为,可由实验测得,是弹簧本身的质量,而被称为弹簧的有效质量。通过测量弹簧振子的振动周期,就可由(2)式计算出弹簧的劲度系数。 3. 磁开关(磁场控制开关): 如图1所示,集成霍耳传感器是一种磁敏开关。在“1脚”和“2 脚”间加直流电压,“1脚”接电源正极、“2脚”接电源负极。当垂直于该传感器的磁感应强度大于某值时,该传感器处于“导通”状 态,这时处于“”脚和“”脚之间输出电压极小,近似为零,当磁感

强度小于某值时,输出电压等于“1脚”、“2脚”端所加的电源电压,利用集成霍耳开关这个特性,可以将传感器输出信号输入周期测定仪,测量物体转动的周期或物体移动所经时间。 【实验仪器】 FB737新型焦利氏秤实验仪1台,FB213A型数显计时计数毫秒仪 【实验步骤】 1. 用拉伸法测定弹簧劲度系数:(不使用毫秒仪) (1)按图2,调节底板的三个水平调节螺丝,使重锤尖端对准重锤基准的尖端。 (2)在主尺顶部安装弹簧,再依次挂入带配重的指针吊钩、砝码托盘,松开顶端挂钩锁紧螺钉,旋转顶端弹簧挂钩,使小指针正好轻轻靠在平面镜上(注意:力度要适当,若靠得太紧,可能会因摩擦太大带来附加的系统误差),以便准确读数。这时因初始砝码等已使弹簧被拉伸了一段距离。(可参考说明书中的装置图)

简谐运动的动力学条件和周期公式的推导

简谐运动的动力学条件和周期公式的推导 [摘要]:本文从简谐运动的概念出发, 用数学知识,推理出了简谐运动的动力学条件及弹簧振子的周期公式、单摆做小角度摆动的周期。从逻辑上对机械振动一章的知识有了一 个整体的认识。 [关键词]:简谐运动,动力学条件,周期公式,弹簧振子,单摆 [正文] 课程标准实验教科书《物理》3—4第十一章从运动学的角度对简谐运动进行了定义,恰好从数学课上学生也学到了关于导数的知识。这就为构造简谐运动的逻辑提供了条件,通过这样的一个逻辑构造,可以让学生体会数学在物理学中的应用。同时,也可以让学生充分体会物理学逻辑上的统一美。激发学生学习物理,从理论上探究物理问题的兴趣和决心。 如果质点的位移与时间的关系遵从正弦的规律,即它的振动图象( x —t 图象)是一条正弦,这样的运动叫做简谐运动。 由定义可知,质点的位移时间关系为t A x sin ………………(1)对时间求导数可得速度随时间变化的规律:t A dt dx v cos ………………(2)再次对埋单求导数可得加速度随时间变化的规律:t A dt dv a sin 2 (3) 由牛顿第二定律可知,质点受到的合力为: ma F ………………(4)由(3)(4)可知: t mA F sin 2 (5) 将(1)式代入(5)式可得: x m F 2..................(6)上式中,m 和都是常数,从而可以写成下面的形式kx F (7) 其中2m k ,至此得到了质点做简谐运动的动力学条件:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置。 对于的弹簧振子来说,(7)式中的k 表示弹簧的劲度系数,对比(6)式可知k m 2,

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

振动试验常用公式

振动台在使用中经常运用的公式 1、求推力(F )的公式 F=(m 0+m 1+m 2+……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 =ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) =ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“”中同义 D —位移(mm 0-p )单峰值 =ω2D ×10-3………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 和D 与“”中同义,但A 的单位为g 1g=s 2 所以:A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6………………………………………公式(5)

式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=-…………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??23 )2(10π……………………………………公式(7) 式中:f A-D —加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、扫描时间和扫描速率的计算公式 线性扫描比较简单: S 1= 1 1 V f f H -……………………………………公式(8) 式中:S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 对数扫频: 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 扫描速率计算公式 R= T Lg f f Lg L H 2/……………………………公式(10)

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

机械振动实验报告

《机械振动基础》实验报告 (2015年春季学期) 姓名 学号 班级 专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写,必须包含以下内容: (1)实验名称 (2)实验器材 (3)实验原理 (4)实验过程 (5)实验结果及分析 (6)认识体会、意见与建议等 2.正文格式:四号字体,行距为1.25倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统一发送至:liuyingxiang868@https://www.wendangku.net/doc/684197027.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、实验名称:机械振动的压电传感器测量及分析 二、实验器材 1、机械振动综台实验装置(压电悬臂梁) 一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 8、NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。 q

简谐运动周期公式的推导

简谐运动周期公式的推导 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标 系。 图2 图 3 图4

则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注) 图5

简谐振动的研究·实验报告

简谐振动的研究·实验报告 【实验目的】 研究简谐振动的基本特征 【实验仪器】 气垫导轨、通用数字计时器、滑块、砝码、弹簧(5对)、约利氏秤 朱力氏秤 朱力氏秤的示意图如右图所示。一个可以升降的套杆1上刻有毫米分度,并附有读数游标2。将弹簧3挂在1顶部,下端挂一有水平刻线G 的小镜子4,小镜子外套一个带有水平刻线D 的玻璃管5,镜下再钩挂砝码盘6。添加砝码时,小镜子随弹簧伸长而下移。欲知弹簧伸长量需旋动标尺调节旋钮7将弹簧提升,直至镜上水平刻线G 与玻璃管上水平刻线D 及D 在镜中的像相互重合,实现所谓“三线重合”。测量时注意先用底座上螺丝调节弹簧铅直,此时小镜子应不会接触到玻璃管。 【实验原理】 简谐振动是振动中最简单、最基本的运动,对简谐振动的研究有着重要的意义。简谐振动的方程为 x x 2ω-= 其位移方程为 )sin(αω+=t A x 速度方程为 )sin(αωω+=t A v 其运动的周期为 ω π 2= T T 或ω由振动系统本身的特性决定,与初始运动无关。而A ,α是由初始条件决定的。 实验系统如图4-15-1所示。

两个弹性系数k 相同的弹簧分别挂在质量为m 的滑行器两侧,且处于拉伸的状态。在弹性恢复力的作用下,滑行器沿水平导轨作往复运动。当滑行器离开平衡位置0x 至坐标x 时,水平方向上受弹性恢复力)()(00x x k x x k --+-与的作用,有 x m x x k x x k =--+-)00()( 即 x m kx =-2 令k k 20=,有 x m k x x m x k 0 0-==- 或 上式形式与简谐振动方程相同,由此可知滑行器的运动为简谐振动。与简谐振动方程比较可得 m k 0 2= ω 即该简谐振动的角频率 m k 0 = ω 1、)sin(αω+=t A x 的验证 将光电门F 置于0x 处,光电门G 置于1x 处,滑行器1拉至A x 处(010x x x x A ->-)释放,由计时器测出滑行器从0x 运动至1x 的时间1t 。依次改变光电门G 的位置i x ,每次都从A x 释放滑行器,测出对应i x 的时间i t ,最后移开光电门G 。从滑行器通过0x 时开始计时,当它从最大位移返回到0x 时,终止计时,测出时间值为2 T t =,可求出达到最大位置的时间2 t t B = 。 从上面的操作中可以看出2 π α= =,A x A 。将测量的i x ,i t 值代入(4)式,看其是 否成立。ω可由(4)式求出,其中B t T 4=。 2、)cos(αωω+=t A v 的验证 使滑行器处于平衡位置,并使挡光板正对坐标原点,然后依次改变光电门的位置(x 取值与1中相同),每次仍均在A x 处释放滑行器,这样可由计时器给出的时间i t ?及滑行距离 s ?(挡光板两相应边距离)可求出i v ,将i v 及1测出的i t 对应代入(3)式时,看是否成

振动试验机--最大加速度、振幅的计算方法、功能

振动试验机--最大加速度、振幅的计算方法、功能News 振动试验机--最大加速度、振幅的计算方法、功能 发布时间:2010-4-19 点击次数:7363次 振动试验机用途:振动试验机是检测产品在运送、使用中产生碰撞及振动,为了避免这种事态的发生我们就要提早知道产品或产品中的部件的耐振寿命。 一、振动试验机计算公式: 1、振动试验机最大加速度20g 最大加速度=0.002×f2(频率HZ)×D(振幅mmp-p) 举例:10HZ最大加速度=0.002×102×5=1g 在任何頻率下最加速度不可大于20g 2、振动试验机最大振幅<5mm 最大振幅=20/(0.002×f2) 举例:100Hz最大振幅=20/(0.002×1002)=1mm 在任何频率下振幅不可大于5mm 3、频率越大振幅越小 二、振动试验机型号: 定频:垂直LD-L 水平LD-HL 垂直+水平LD-TL(50HZ) 调频:垂直LD-F 水平LD-HF 垂直+水平LD-TF(1~600HZ) 垂直LD-W 水平LD-HW 垂直+水平LD-TW(1~3000HZ) 垂直LD-T 水平LD-HT 垂直+水平LD-TT(1~5000HZ) 三、振动试验机技术参数: 1、标准型台体尺寸:垂直500*500*150:mm、水平500*500*250:mm

2、振动方向:垂直(上下)/水平(左右) 3、承重量:100kg 4、振幅可调范围:0~5mm、最大加速度:<20g 5、加速度与振幅换算1G=9.8m/s2 6、振动波形:正弦波/半弦波 7、时间设定范围:1-65000S(以秒为单位) 8、运行次数:1-65000次任意设定 9、精密度:频率可显示到0.01Hz、精密度0.1Hz 10、调频功能:在频率范围內任意设定频率 11、扫频功能:(上限频率/下限频率/时间范围)可任意设定真正标准来回扫频 12、可程式功能:15段每段可任意设定(频率/时间)可循环 13、对数功能:①下频到上频②上频到下频③下频到上频再到下频--3种模式对数/可循环 14、显示振幅加速度:如需看出振幅、加速度、最大加速度、准确数值需另购测量仪(另购) 15、全功能电脑控制:485通讯接口如要连接电脑做控制,储存,记录,打印之功能需另够介面卡程式电脑(另购) 16、电源电压:AC220V/50HZ、AC380V/50HZ 注:定频50HZ振动试验机无调频,扫频,可程式,倍频,对数等功能。 四、振动试验机使用环境: 1、环境温度:-10℃~60℃ 2、环境湿度:10﹪~95﹪

简谐振动及其周期推导与证明

简谐振动及其周期公式的推导与证明 简谐振动:如果做机械振动的物体,其位移与时间的关系遵从正弦(或余弦)函数规律, 这样的振动叫做简谐振动。 位移:用x 表示,指振动物体相对于平衡位置的位置变化,由简谐振动定义可以得出x 的 一 般式:)cos(?ω+=t A x (下文会逐步解释各个物理符号的定义); 振幅:用A 表示,指物体相对平衡位置的最大位移; 全振动:从任一时刻起,物体的运动状态(位置、速度、加速度),再次恢复到与该时刻完 全相同所经历的过程; 频率:在单位时间内物体完成全振动的次数叫频率,用f 表示; 周期:物体完成一次全振动所用的时间,用T 表示; 角频率:用ω表示,频率的2π倍叫角频率,角频率也是描述物体振动快慢的物理量。角频 率、周期、频率三者的关系为:ω=2π/T =2πf ; 相位:?ωφ+=t 表示相位,相位是以角度的形式出现便于讨论振动细节,相位的变化率 就是角频率,即dt d φω=; 初相:位移一般式中?表示初相,即t =0时的相位,描述简谐振动的初始状态; 回复力:使物体返回平衡位置并总指向平衡位置的力。(因此回复力同向心力是一种效果力) 如果用F 表示物体受到的回复力,用x 表示小球对于平衡位置的位移,对x 求二阶导即得: )cos(2?ωω+-=t A a 又因为F=ma ,最后可以得出F 与x 关系式: kx x m F -=-=2ω 由此可见,回复力大小与物体相对平衡位置的位移大小成正比。 式中的k 是振动系统的回复力系数(只是在弹簧振子系统中k 恰好为劲度系数),负号的意思是:回复力的方向总跟物体位移的方向相反。 简谐振动周期公式:k m T π 2=,该公式为简谐振动普适公式,式中k 是振动系统的回复力 系数,切记与弹簧劲度系数无关。 单摆周期公式:首先必须明确只有在偏角不太大的情况(一般认为小于10°)下,单摆的运 动可以近似地视为简谐振动。 我们设偏角为θ,单摆位移为x ,摆长为L ,当θ很小时,有关系式: L x ≈≈≈θθθtan sin , 而单摆运动的回复力为 F=mgsin θ,

振幅、加速度、振动频率三者的关系式

振动加速度、振幅、频率三者关系 在低频范围内,振动强度与位移成正比;在中频范围内,振动强度与速度成正比;在高频范围内,振动强度与加速度成正比。因为频率低意味着振动体在单位时间内振动的次数少、过程时间长,速度、加速度的数值相对较小且变化量更小,因此振动位移能够更清晰地反映出振动强度的大小;而频率高,意味着振动次数多、过程短,速度、尤其是加速度的数值及变化量大,因此振动强度与振动加速度成正比。 也可以认为,振动位移具体地反映了间隙的大小,振动速度反映了能量的大小,振动加速度反映了冲击力的大小。 振动加速度的量值是单峰值,单位是重力加速度[g]或米/秒平方[m/s2],1[g] = 9.81[m/s2]。 最大加速度20g(单位为g)。 最大加速度=0.002×f2(频率Hz的平方)×D(振幅p-pmm)f2:频率的平方值 举例:10Hz最大加速度=0.002×10*10×5=1g 在任何頻率下最加速度不可大于20g 最大振幅5mm 最大振幅=20/(0.002×f2) 举例:100Hz最大振幅=20/(0.002×100*100)=1mm 在任何频率下振幅不可大于5mm 加速度与振幅换算1g=9.8m/s2

A = 0.002 *F2 *D A:加速度(g) F:頻率(Hz) 2是F的平方D:位移量(mm) 2-13.2Hz 振幅为1mm 13.2-100Hz 加速度为7m/s2 A=0,002X(2X2)X1 A=0.002X4X1 A=0.008g 单位转换1g=9.81m/s2 A=0.07848 m/s2, 也就是2Hz频率时。它的加速度是0.07848m/s2. 以上公式按到对应的参数输入计算套出你想要的结果

简谐振动总结

★简谐运动 简谐运动(Simple harmonic motion)(SHM)(直译简单和谐运动)是最基本也最简单的机械振动。当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。它是一种由自身系统性质决定的周期性运动。(如单摆运动和弹簧振子运动)实际上简谐振动就是正弦振动。故此在无线电学中简谐信号实际上就是正弦信号。 如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 定义 如果做机械振动的质点,其位移与时间的关系遵从正弦(或余弦)函数规律,这样的振动叫做简谐运动,又名简谐振动。因此,简谐运动常用 作为其运动学定义。其中振幅A,角频率,周期T,和频率f的关系分别为:、 。 科学结论 振幅、周期和频率 简谐运动的频率(或周期)跟振幅没有关系,而是由本身的性质(在单摆中由初始设定的绳长)决定,所以又叫固有频率。 一般简谐运动周期 , 其中m为振子质量,k为振动系统的回复力系数。 一般,若振子受重力与弹力二力等效k=k,但平衡位置为kx=mg时所在位置。 单摆运动周期 其周期 (π为圆周率)这个公式仅当偏角很小时才成立。T与振幅(a<5°)都和摆球质量无关,仅限于绳长<<地球半径。[2] 扩展:由此可推出,据此可利用实验求某地的重力加速度。 周期公式证明 为了使示意图更加简洁,全部假设k=1,这样的话以为F回=-kx(并且在此强调此处负号只表示方向,不表示数值,所以在证明中使用数值关系时全部忽略负号),所以回复力F数值上和在图中的线段长度等于位移x,所以在两个示意图中都是用一条线表示的。 一般简谐运动周期公式证明 因为简谐运动可以看做圆周运动的投影,所以其周期也可以用圆周运动的公式来推导。 圆周运动的;很明显v无法测量到,所以根据

《简谐运动的振幅、周期、频率》进阶练习 (二)-1-2

《简谐运动的振幅、周期、频率》进阶练习 一、单选题 1.一质点做简谐运动的图象如图所示,下列说法正确的是( ) A.质点振动频率是4 Hz B.在10 s内质点经过的路程是20 cm C.第4 s末质点的速度是零 D.在t=1 s和t=3 s两时刻,质点位移大小相等、方向相同 2.简谐运动中反映物体振动强弱的物理量是() A.周期 B.频率 C.振幅 D.位移 3.弹簧振子做简谐运动,若某一过程中振子的速率在减小,则此时振子的运动() A.速度与位移方向一定相反 B.加速度与速度方向可能相同 C.回复力一定在增大 D.位移可能在减小 二、填空题 4.如图甲所示为一弹簧振子的振动图象,规定向右的方向为正方向,试根据图象分析以 下问题: (1)如图乙所示的振子振动的起始位置是 ______ ,从初始位置开始,振子向 ______ (填“右”或“左”)运动. (2)在乙图中,找出图象中的O、A、B、C、D各对应振动过程中的位置,即O对应 ______ ,A对应 ______ ,B对应 ______ ,C对应 ______ ,D对应 ______ . (3)在t=2s时,振子的速度的方向与t=0时速度的方向 ______ . (4)质点在前4s内的位移等于 ______ .

5.一位学生研究弹簧振子的运动,当振子经过平衡位置时开始记时,并从零开始记数,以后振子每经过平衡位置他就记一次数,在4s内正好数到10,则这个弹簧振子的频率是 ______ ,周期是 ______ .

参考答案 【答案】 1.B 2.C 3.C 4.E;右;E;G;E;F;E;相反;0 5.1.2Hz;0.8s 【解析】 1. 【分析】 由简谐运动的图象直接读出周期,求出频率,根据时间与周期的关系求出在10s内质点经过的路程.根据质点的位置分析其速度,根据对称性分析t=1s和t=35s两时刻质点的位移关系。 由振动图象能直接质点的振幅、周期,还可读出质点的速度、加速度方向等等,求质点的路程,往往根据时间与周期的关系求解,知道质点在一个周期内通过的距离是4A, 半个周期内路程是2A,但不能依此类推,周期内路程不一定是A。 【解答】 A.由图读出质点振动的周期T=4s,则频率,故A错误; B.质点做简谐运动,在一个周期内通过的路程是4A,t=10s=2.5T,所以在10s内质点经过的路程是 S=2.5×4A=10×2cm=20cm,故B正确; C.在第4s末,质点的位移为0,经过平衡位置,速度最大,故C错误; D.由图知在t=1s和t=3s两时刻,质点位移大小相等、方向相反,故D错误; 故选B。 2. 解:A、B频率和周期表示振动的快慢.故AB错误. C、振幅是振动物体离开平衡位置的最大距离,表示振动的强弱,故C正确. D、位移大小是振动物体离开平衡位置的距离,不表示振动的强弱,故D错误. 故选:C 能够反映物体做机械振动强弱的物理量是振幅,不是频率,回复力和周期 振幅是振动物体离开平衡位置的最大距离,表示振动的强弱;频率和周期表示振动的时间上的快慢,注意理解 3. 【分析】 首先知道判断速度增减的方法:当速度与加速度方向相同时,速度增大;当速度与加速

振动计算力学公式

振动台力学公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A= D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

弹簧振子的简谐振动实验报告--宋峰峰

Simple harmonic motion of soring oscillator The purpose : (1) 测量弹簧振子的振动周期T 。 (2) 求弹簧的倔强系数k 和有效质量0m The principles : 设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--=&& 令 12k k = 则有 kx mx -=&& ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系

222T π ω= == ② 改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 The procedure : (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质 量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。

相关文档
相关文档 最新文档