文档库 最新最全的文档下载
当前位置:文档库 › 复旦固体物理讲义-13晶体结构衍射实验

复旦固体物理讲义-13晶体结构衍射实验

泰山学院物理实验教学示范中心管理制度

泰山学院物理实验教学示范中心管理制度 (一)实验教学人员岗位责任制 一、熟悉学校制定的各项实验室规章制度。 二、及时掌握各类新进仪器设备的性能指标及使用方法,尽快使用在教学科研中。 三、对精密仪器、易损仪器要精心爱护,对毒品、易燃易爆物品、放射源等严加管理。 四、保持仪器设备的完好性,随时为教学科研服务。 五、电子设备应定期通电检查。 六、实验课应提前十五分钟到实验室,做好实验课前准备工作。 七、实验过程中,随时处理实验过程中出现的各种问题,不得长时间离开实验室。 八、实验结束后,督促学生整理好仪器设备、打扫卫生、关闭水源和电源。 九、离开实验室前,要重新检查水源、电源和窗子是否关闭,出门上锁。 十、做好防水、防火、防盗工作。 十一、以上各条适用于我系所有专、兼职实验人员。 泰山学院物理实验教学示范中心 2002年6月

(二)实验室守则 一、保持实验室环境的肃静和整洁。 二、实验前要根据教师所给或仪器卡片检查核对仪器,如有缺损,立即向教师报告,不准私自向别的实验台拿取。 三、未了解仪器性能之前切勿动手,使用仪器时必须严守仪器的操作规程(使用电子仪器要特别注意电源电压、极性); 不许擅自拆卸仪器。 四、仪器发生故障、损坏或丢失时,立即报告指导教师。 五、连接电路并在确定无误后,应请教师检查,经允许后方可接通电源。 六、注意爱护和正确使用仪器,注意节约材料和水、电等。 七、实验完毕后即关闭电源、照明灯、水道等,将仪器、材料恢复到实验前的状态,并请教师检查和在实验记录上签字,然后方可离开实验室。 泰山学院物理实验教学示范中心 2002年6月

(三)实验室安全制度 一、实验室要认真做好安伞防护工作,对防盗、防冻、防火、防水、防触电工作进行定期检查。经常对学生进行安全教育,以确保实验室的安全。 二、实验室应注意安全,必须严格遵守操作规程,防止发生意外事故。在实验过程中如出现事故,应及时报告指导教师,并立即切断电源、水源、停止实验,保护现场,检查原因,明确责任。 三、要文明上课,安全实验,离开实验室前,关好水、电、门、窗,以确保安全。 四、发现实验室被盗,仪器设备丢失等情况,应及时通知保卫处处理。 泰山学院物理实验教学示范中心 2002年6月

电子衍射试验

电子衍射实验讲义 毛杰健,杨建荣 一 实验目的 1 验证电子具有波动性的假设; 2 了解电子衍射和电子衍射实验对物理学发展的意义; 3 了解电子衍射在研究晶体结构中的应用; 二 实验仪器 电子衍射,真空机组,复合真空计,数码相机,微机 三 实验原理 (一)、电子的波粒二象性 波在传播过程中遇到障碍物时会绕过障碍物继续传播,在经典物理学中称为波的衍射,光在传播过程表现出波的衍射性,光还表现出干涉和偏振现象,表明光有波动性;光电效应揭示光与物质相互作用时表现出粒子性,其能量有一个不能连续分割的最小单元,即普朗克1900年首先作为一个基本假设提出来的普朗克关系 hv E = E 为光子的能量,v 为光的频率,h 为普朗克常数,光具有波粒二象性。电子在与电磁场相互作用时表现为粒子性,在另一些相互作用过程中是否会表现出波动性?德布罗意从光的波粒二象性得到启发,在1923-1924年间提出电子具有波粒二象性的假设, k p E ==, ω E 为电子的能量,p 为电子的动量,v πω2=为平面波的圆频率,k 为平面波的波矢量,π 2/h = 为约化普朗克常数;波矢量的大小与波长λ的关系为λπ/2=k ,k p =称为德布罗意关系。电子具有波 粒二象性的假设,拉开了量子力学革命的序幕。 电子具有波动性假设的实验验证是电子的晶体衍射实验。电子被电场加速后,电子的动能等于电子的电荷乘加速电压,即 eV E k = 考虑到高速运动的相对论效应,电子的动量 )2(1 2mc E E c p k += λ 由德布罗意关系得 ) 2/1(22 2 mc E E mc hc k k += λ 真空中的光速s A c o /10 99793.218 ?=,电子的静止质量26/10511.0c eV m ?=,普朗克常数 eV A hc eVs h o 415 1023986.1,1013571.4?=?=-,当电子所受的加速电压为V 伏特,则电子的动能 VeV E k =,电子的德布罗意波长 o A V V )1089.41(1507 -?-≈λ, (1)

固体物理

1。晶体结构中,常见的考题是正格子和倒格子之间的相互关系, 布里渊区的特点及边界方程,原胞和晶胞的区别,晶面指数和晶向指数,面间距的计算,比如面心立方的倒格子是体心立方,算 晶体结构中a/c,求米勒指数,以及表面驰豫和重构等等, 拔高一点的话,可以考二维或三维的对称性操作,叫你写出点群, 空间群甚至磁群。也可以考原子形状因子和几何结构因子。 要特别注意x射线衍射得到的是倒空间中的照片。 再拔高一点,可以考你准长程序的作用范围。让你求 径向分布函数,回答测量非晶的实验方法,以及准晶 和非晶的问题(penrose堆砌等,一般是定性的问答题) 2。固体的结合是主要做化学键和弱的非键电磁相互作用 (注意不是弱相互作用!!)的计算,注意马德隆能的计算 和晶体结构中计算次序的画法,然后要牢记born-mayer势 和lenard-johns势等。并用它来计算一些物理量如分子间的 平衡位置,分子间力和弹性模量甚至摩擦力等,并不容易。 3。晶格动力学和晶格热力学是晶格理论的核心和灵魂。 求解一维单原子链最简单。一般考试时会让我们算质量不一样, 或弹性系数不一样,或两者都不一样的一维双原子链,还会要 我们回答声学波和光学波的特点,并让我们做色散关系的图的。 拔高一点的话,可以出带电荷的一维双原子链,以及二三维 和多原子链的情形,不过考的可能性不是太大,如果两节课 算不完的话。 双原子链可以退化为单原子链,这个很基本,几乎必考。 晶格振动谱有一本专著,就叫《晶格振动光谱学》,高教出的。 声子的正过程和倒逆过程是德文,这个记不住就对不住观众了, 一般会问他们之间的差别,那个过程对热导没有贡献。 计算晶体热容时,重点掌握debye模型和einstein模型,后者 最基本,前者考试考得最多。用德拜模型算态密度,零点能, 比热,声速以及其高低温极限是必考内容,注意死背debye积分 (由Reman积分和Zeta积分构成),一定要记得结果。 热膨胀是非线性作用的后果,会计算格林爱森常数。 4。晶体中的缺陷理论也很重要。 缺陷的分类,0,1,2维缺陷的实例; 小角晶界与刃位错,晶体生长与螺位错 之间的关系需要熟练掌握。可能还要掌握 伯格斯矢量,伯格斯定理和位错, 位错线的画法。这都是很基本的内容。 一般认为,扩散的主导因素是填隙原子。 扩散的分类和扩散方程的求解,可能会结合 点缺陷的寿命来出题。 有时也可能考考色心,主要是F心,画图或问答题。 以上讲的是晶格理论。一般认为 固体物理可以分为晶格理论(含理想晶格理论, 晶格结构,晶格动力学,晶格热力学以及

电子衍射实验报告

电子衍射实验 本实验采用与当年汤姆生的电子衍射实验相似的方法,用电子束透过金属薄膜,在荧光屏上观察电子衍射图样,并通过衍射图测量电子波的波长。 一、 实验目的: 测量运动电子的波长,验证德布罗意公式。理解真空中高速电子穿过晶体薄膜时的衍射现象,进一步理解电子的波动性。掌握晶体对电子的衍射理论及对立方晶系的指标化方法;掌握测量立方晶系的晶格常数方法。 二、实验原理 在物理学的发展史上,关于光的“粒子性”和“波动性”的争论曾延续了很长一段时期。人们最终接受了光既具有粒子性又具有波动性,即光具有波粒二象性。受此启发,在1924年,德布罗意(deBeroglie )提出了一切微观粒子都具有波粒二象性的大胆假设。当时,人们已经掌握了X 射线的晶体衍射知识,这为从实验上证实德布罗意假设提供了有利因素。 1927年戴维逊和革末发表了他们用低速电子轰击镍单晶产生电子衍射的实验结果。两个月后(1928年),英国的汤姆逊和雷德发表了他们用高速电子穿透物质薄片直接获得的电子衍射花纹,他们从实验测得的电子波的波长,与按德布罗意公式计算出的波长相吻合,从而成为第一批证实德布罗意假设的实验。 薛定谔(Schrodinger )等人在此基础上创立了描述微观粒子运动的基本理论——量子力学,德布罗意、戴维逊和革末也因此而获得诺贝尔尔物理学奖。现在,电子衍射技术已成为分析各种固体薄膜和表面层晶体结构的先进方法。 1924 年德布罗意提出实物粒子也具有波粒二象性的假设,他认为粒子的特征波长λ与动量 p 的关系与光子相同,即 h p λ'= 式中h 为普朗克常数,p 为动量。 设电子初速度为零,在电位差为V 的电场中作加速运动。在电位差不太大时,即非相对论情况下,电子速度 c ν=(光在真空中的速度),故2 002m=m 1m c ν-≈其中0m 为电子的静止质量。 它所达到的速度v 可 由电场力所作的功来决定:2 21p eV=m 22m ν=(2) 将式(2)代入(1)中,得:2em V λ'=(3) 式中 e 为电子的电荷, m 为电子质量。将34h 6.62610 JS -=?、310m 9.1110kg -=?、-19e=1.60210C ?,各值代入式(3),可得:A V λ'&(4) 其中加速电压V 的单位为伏特(V ),λ的单位为1010-米。由式(4)可计算与电子德布罗意平面单色波的波 长。而我们知道,当单色 X 射线在多晶体薄膜上产生衍射时,可根据晶格的结构参数和衍射环纹大小来计算 图 1的波长。所以,类比单色 X 射线,也可由电子在多晶体薄膜上产生衍射时测出电子的波长λ 。如λ'与λ在误差范围内相符,则说明德布罗意假设成立。下面简述测量λ的原理。 根据晶体学知识,晶体中的粒子是呈规则排列的,具有点阵结构, 因此可以把晶体看作三维光栅。这种光栅的光栅常数要比普通人工刻 制的光栅小好几个量级。当高速电子束穿过晶体薄膜时所发生的衍射 现象与X 射线穿过多晶体进所发生的衍射现象相类似。它们衍射的方 向均满足布拉格公式。 1晶体是由原子(或离子)有规则地排列而组成的,

复旦大学物理教学实验中心建设国家级示范中心历程

复旦大学物理教学实验中心建设国家级示范中心历程 复旦大学物理教学实验中心 复旦大学, 每年有近3000名学子走进这里,来尽享实验的乐趣与思维的舞动。她就是一个致力于培育全校学生动手能力与科研素养的物理教学实验中心。2007年批准为国家级实验教学示范中心建设单位,这是她发展史上值得铭记的里程碑。在这以后的三年多时间里,奋进与奇迹并举, 一年一个飞跃,先后收获大学物理实验、文科物理(理论和实验)、近代物理实验等3门国家精品课程荣誉称号;获得上海市教学成果奖1项,学生发表论文40余篇,成功研制教学演示仪器和实验仪器近20种,并在全国高校仪器评比中频频获奖;上海市教育系统文明班组、宝钢优秀教师奖和上海市实验室工作先进工作者等集体和个人荣誉,更让她绽放出夺目的光芒。 近60年的发展历史塑造了它厚重的品质,不断创新的理念又给予它蓬勃向上的生命力。“以学生为本”是它始终如一的教育理念。既有厚重基础,又注重创新,两者均衡结合。“要对得起学生”是老师们常说的口头禅,他们时时这么想,处处这么做。这一既朴素又深邃的理念,是课程体系改革的出发点,也是改进教学实践的落脚点。中心建设的实验教学体系可概括为“一个核心,三个层面”,即以培养学生实践创新能力为核心,由“基础型实验教学—综合型实验教学—研究型实验教学”三个层面,既分层次又相互衔接的实验教学新体系。 实验中心有16名专职实验教师和8位实验技术人员,为使实验教学与科研紧密相连,在实验教学中加入科研元素,中心聘请10余位“长江学者”、“杰青”等教授、副教授为兼职教师;中心先后建立了反映物理学发展前沿的、高水平教学实验室:核磁共振成像实验室、微波实验室等;中心出版了纳入“十一五”国家规划的系列教材,等等,所有这些联合构成了强大的软硬件支撑,确保实验教学保持高水平。 中心自主建立的实验中心维基网站将课堂从实验室拓展至无限空间,并创造了3年另2个月的时间,页面点击量破400万次的神话,在这里,教学资源应有尽有,互动交流随时随刻,是名副其实的物理实验教学第二课堂;给学生充分自主权,鼓励其大胆尝试的教育理念更为学生创造了无限发展的可能;教师们不惧挑战,也时刻挑战学生;坚持开展的实验教学校庆专场报告会、选派学生在全国物理实验教学研讨会上作报告,为学生提供了充分展示的舞台。 先进的理念和不拘泥于形式、讲究实效的各项举措,形成了显明的复旦特色: 1.建立了一个从低到高、从基础到前沿、从传授知识到培养综合能力,逐渐提高的近代物 理实验教学课程体系,注重学生知识、能力和素质的全面培养。 2.加强基础训练的前提下,开设物理学现代发展中的“新技术、新现象、新材料、新应用” 相关的教学实验。 3.科研教师参与实验教学,在教学中加入科研元素;采用多种形式的师生互动,引进多元 化教学;给学生更多自由探索的可能,满足学生求知和创新的欲望。 不竭的创造力源自中心和谐的氛围与科学的管理。平等民主的管理体制让中心的每一位老师尽展其才;每周一次固定时间的教学研讨会让彼此互帮互促、共同提高;鼓励进修和对外交流的激励机制让老师们的视野日渐开阔,年轻教师出国考察学习,让老师们的学习热情不断高涨;和谐而温馨的工作氛围更让中心每一位成员的心紧紧凝聚。 很多学生经过物理实验课程的学习,表现出强烈的求知欲望和无限的想象力和创造性。他们的能力和才华得到了释放,真正体现了实验课程的价值。“对于我们来说是非常有挑战的…,这也是在别的课程中所没有经历过的。全部取决于你的态度,你的信心和你的努力。不得不说在这一个学期中,我们经历了很多困难,但是我们学到了更多。”学生们如是评述他们在中心的学习经历。学生的口碑是对中心工作最高的嘉奖,也是引领中心不断超越的源动力。在这动力的推动下,复旦大学物理教学实验中心的未来,精彩在继续……

固体物理教学大纲2018

《固体物理》课程教学大纲 一、课程简介: 固体物理学融汇了力学、热力学与统计物理学、电动力学、量子力学和晶体学等多学科的知识,在现代科学技术中起着非常重要的作用,是物理学的重要组成部分,是物理专业的必修基础课。 二、教学目的 本课程主要介绍固体物理学的基础知识和基本理论,为进一步学习和研究固体物理学各种专门问题及相关领域的内容建立初步的理论基础。在课程教学过程中,进一步培养学生的现代科学意识,提高分析问题与解决问题的综合能力及创新思维的能力。 三、教学要求 1.了解固体物理学发展的主要历程及固体物理对现代物理学与现代科学技术发展的作用。 2.了解固体物理学及凝聚态领域的当代前沿概况。 3.掌握固体物理学的基本概念与基础理论。 4.掌握固体物理学分析与处理问题的基本手段和思想方法。 5.掌握固体的结构及其组成粒子(原子、离子、电子)之间的相互作用、运动规律,晶体结构与物质力学、热学、光学性质的之间的关系。重点是晶体结构、晶体结合、晶格振动、金属自由电子论、能带论等。 四、课程重点与难点 课程重点:一是晶格理论,二是固体电子理论。晶格理论包括:晶体结构的基本特点和类型及对称性质;确定晶体结构的X射线衍射方法;晶体的结合类型与特点;晶格振动与晶体的热学性质。固体电子论包括:固体中电子的能带理论;金属自由电子理论和电子的输运性质。 课程难点:倒点阵的性质及其与正点阵的关系;晶体X射线衍射的分析;晶格振动的色散关系与模式密度;布洛赫定理及推论;晶体中电子的准经典运动与有效质量。 五、选用教材及参考书目 1.使用教材

基泰尔,《固体物理导论》,化学工业出版社,2013年6月第8版; 2.教学参考书目 (1)方俊鑫,陆栋,《固体物理学》(上册),上海科学技术出版社,1980年12月第1版; (2)阎守胜,《固体物理基础》,北京大学出版社2003年8月第二版; (3)陆栋,蒋平,徐至中,《固体物理学》,上海科学技术出版社,2003年12月第1版; (4)胡安,章维益,《固体物理学》,高等教育出版社,2005年6月第1版; (5)黄昆原著,韩汝琦改编,《固体物理学》,高等教育出版社,1988年10月第1版。 六、课程内容: 基本内容有两大部分:一是晶格理论,二是固体电子理论。晶格理论包括:晶体的基本结构;晶体中原子间的结合力和晶体的结合类型;晶格的热振动及热容理论;晶格的缺陷及其运动规律。固体电子论包括:固体中电子的能带理论;金属中自由电子理论。 教学时间分配表 第1章晶体结构 第一节原子的周期性阵列 第二节晶格的基本类型 第三节晶面指数系统 第四节简单晶体结构 第五节原子结构的直接成像 第六节非理想晶体结构 第七节晶格结构的有关数据

电子衍射现象的发现

电子衍射现象的发现 发现的背景 20世纪20年代中期是物理学发展的关键时期。波动力学已经由薛定谔在德布罗意的物质波假说的基础上建立了起来,和海森伯从不同途径创立的矩阵力学,共同形成微观体系的基本理论。这一巨大变革的实验基础自然成了人们关切的课题,这就激励了许多物理学家致力于证实粒子的波动性。 人物介绍 图10.1 戴维森 戴维森 Clinton Joseph Davisson G.P.汤姆生 Sir George Paget Thomson 1881-1958 1892-1975 美国贝尔电话实验室实验物理学家 英国阿伯登大学实验物理学家 电子衍射的发现者 电子衍射的发现者 1937年诺贝尔物理学奖 1937年诺贝尔物理学奖 -因用晶体对电子衍射所作出的实验发 -因用晶体对电子衍射所作出的实验发现 戴维森 1881年10月22日出生在美国伊利诺斯州的布鲁明顿(Bloomington ),早年在布鲁明顿公立学校读书。 l902年中学毕业后,由于他的数学和物理成绩优异而获得芝加哥大学的奖学金,于当年9月进入芝加哥大学,在那里受教于密立根,曾一度当过密立根的助手,后来戴维森到普林斯顿(Princeton )大学工作,从事电子物理学的研究实习。 1917年转入西部电气公司的工程部(后来叫贝尔电话实验室)从事研究工作,成绩卓著。 1921年,他和助手康斯曼(C.H.Kunsman )在用电子束轰击镍靶的实验中偶然发现,镍靶上发射的“二次电子”竟有少数具有与轰击镍靶的一次电子相同的能量,显然是在金属反射时发生了弹性碰撞,他们特别注意到“二次电子”的角度分布有两个极大值,不是平滑的曲线。戴维森抓住这一现象,持续研究了五六年。 图10.2 G.P.汤姆生

电子衍射实验

电子衍射实验 电子衍射实验是物理教学中的一个重要实验,通过观察电子衍射现象,加深对微观粒子波粒二象性的认识;掌握电子衍射的基本理论,验证德布罗意假设。本文尝试在实际实验的基础上,通过对实验结果和相关物理参数的处理,利用计算机技术和网络技术,虚拟电子衍射实验现象,并利用于实际教学。 1.电子衍射实验 1)德布罗意假设及电子波长公式及电子波长公式: 德布罗意认为,对于一个质量为m 的,运动速度为v 的实物粒子,从粒子性方面来看,它具有能量E 和动量P ,而从波动性方面来看,它又具有波长λ和频率h ,这些量之间应满足下列关系: 2/E mc hv P mv h λ ==== 式中h 为普朗克常数,c 为真空中的光速,λ为德布罗意波长,自上式可以得到: h h P mv λ== 这就是德布罗意公式。 根据狭义相对论理论,电子的质量为:h m mv = = o m 为电子的静止质量,则电子的德布罗意波长可表示为: h m mv = = 若电子在加速电压为V 的电场作用下由阴极向阳极运动,则电子的动能增加 等于电场对电子所做的功 21)k o E m c eV == 由式(5-2-6)可得: V =将式(5-2-7)代入式(5-2-5) 得到: λ= 当加速电压V 很小,即 2 01e m c 时,可得经典近似公式:

v h λ?'=?? '=??将346.62610h -=??焦秒,319.11010m -=?千克,191.60210e -=?库仑, 82.99810/c =?米秒,代入(5-2-8), (5-2-9),得到 80.48910)V λ-= =-? (5-2-10) λ'= 加速电压的单位为伏特,电子波长λ的单位为0 A ,即0.1um 。根据式(5-2-10可算出不同加速电压下电子波长的值。 2)布拉格方程(定律) 根据晶体学知识,晶体中的粒子是呈规则排列的,具有点阵结构,可以把晶体看作三维衍射光栅,这种光栅的光栅常数要比普通人工刻制的光栅小好几个数量级(810cm -有序结构)。当高速电子穿过晶体薄膜时所发生的衍射现象,与X 射线穿过多晶体所发生的衍射现象相类似。它们衍射线的方向,以单晶体为例: 当反射线满足2sin d n θλ= (Bragg 公式) n = 0,1,2,... 则加强,其它方向抵消。方程中的几何因子可用仪器的尺寸确定, 方程变为 λ= 222()m h k l =++, 其中 h 、k 、l 为晶面指数,晶格常数 0 4.0786A a = 3)多晶衍射花样

复旦固体物理讲义-32缺陷问题及电子态特征

本讲要解决的问题及所涉概念 ?缺陷(点缺陷、面缺陷)问题的特点 *晶体的平移周期性在某区域内被破坏 *但大部分区域原子排列仍然有序 #点缺陷除了点之外 #面缺陷(表面、界面)如把垂直于面的方向看作 一维,那也相当于点缺陷 ?缺陷的电子态特征 *束缚态 *共振态 http://10.107.0.68/~jgche/缺陷及其电子态特征1

第32讲、缺陷及其电子态特征 1.周期性破缺问题 *缺陷(点缺陷、表面和界面) 2.定性描写——周期性破缺体系电子态特征 *束缚态(bound states) *共振态(resonances) 3.定量描写 *模型方法 #集团模型(cluster) #薄片模型(slab),超原胞模型(supercell) *微扰(格林函数)方法 4.方法比较 http://10.107.0.68/~jgche/缺陷及其电子态特征2

1、周期性破缺问题 ?Bloch定理在固体物理学基础理论中的重要地位——能带理论,晶格动力学,… *Bloch定理基础——晶体的三维平移周期性 ?点缺陷、表面、界面等周期性破缺体系*无序也是周期性被破坏 *点缺陷、表面、界面,虽然三维周期性已经被破 坏,但并不是完全无序 *与完整周期性体系相比,三维平移周期性仅在一个 较小的范围内被破坏——其余部分仍然有序 #点缺陷:除了点,其他地方仍然有序 #表面、界面问题:除了垂直面方向,平行于面的 二维周期性仍保持 http://10.107.0.68/~jgche/缺陷及其电子态特征3

2、定性描写——周期性破缺体系电子态特征 ?缺陷引起的电子态有什么特征? ?局域态,定域在缺陷附近! *束缚态 *共振态 *通过表面这个周期性破缺系统(对称性在垂直于表 面方向被破坏)的例子来认识这个问题 http://10.107.0.68/~jgche/缺陷及其电子态特征6

实验教学示范中心建设规划

沈阳化工学院 实验教学示范中心建设规划 为了进一步改善我校基础课教学实验室条件,推进实验室管理体制改革,促进教育资源共享,努力探索实验教学改革新机制和人才培养新模式,根据教育部《新世纪高等教育教学改革工程》和《关于开展高等学校实验教学示范中心建设和评审工作的通知》精神,结合我校实验室建设工作的实际情况,特制定沈阳化工学院实验教学示范中心(以下简称示范中心)建设规划。 一、建设目的 建设校级基础课实验教学示范中心旨在建设一批具有辐射、示范作用的高层次实验教学基地,合理配置教学资源,加大实验教学投入,高标准、高起点进行实验教学改革与实验室建设,全面提高实验教学质量与实验室使用率,提高我校基础课实验教学、实验室建设与管理的层次和水平,为培养新世纪国家经济建设与社会发展需要的高素质人才创造条件,使我校基础课教学实验室水平在合格评估基础上再上一个新台阶,为保证人才培养质量提供条件保障。 二、建设思路 1、在学校和上级有关部门的领导和支持下,进一步整合目前我校的基础课实验室(无机化学、有机化学、物理化学、分析化学、生物、化工原理、电工电子、物理、金工、力学、零件)所承担的所有实验课程,在此基础上逐步成立基础化学实验教学中心、化工原理实验教学中心、电工电子实验教学中心、物理实验教学中心、机械基础实验教学中心。 2、加大投入,高质量、高起点改善实验中心的硬件条件。 3、制定优化一系列规章制度并坚决执行,保证中心的正常运行。 4、改革更新实验内容,实验手段,实验方法,增加综合性、设计性、应用性、创新性、研究性实验数量,提高教学水平与质量。 5、引进、培养综合素质能力较高的人才,提高实验技术人员的理论和实验仪器的维护、维修水平,保证仪器的运转效率。 6、建立实验室信息化管理运行平台,实现实验教学、基本工作信息和仪器设备的计算机网络化管理,建设成数字化、网络化、智能化和开放化的实验教学示范中心。 三、建设范围 校级示范中心的建设范围暂定为:物理、化学、生物、电子、力学、机械、计算机、语言等8大类。

实验三 电子衍射实验

实验三 电子衍射实验 1924年法国物理学家德布罗意在爱因斯坦光子理论的启示下,提出了一切微观实物粒子都具有波粒二象性的假设。1927年戴维逊与革末用镍晶体反射电子,成功地完成了电子衍射实验,验证了电子的波动性,并测得了电子的波长。两个月后,英国的汤姆逊和雷德用高速电子穿透金属薄膜的办法直接获得了电子衍射花纹,进一步证明了德布罗意波的存在。1928年以后的实验还证实,不仅电子具有波动性,一切实物粒子,如质子、中子、α粒子、原子、分子等都具有波动性。 一、实验目的 1、通过拍摄电子穿透晶体薄膜时的衍射图象,验证德布罗意公式,加深对电子的波粒二象性的认识。 2、了解电子衍射仪的结构,掌握其使用方法。 二、实验仪器 WDY-V 型电子衍射仪。 三、实验原理 1、 德布罗意假设和电子波的波长 1924年德布罗意提出物质波或称德布罗意波的假说,即一切微观粒子,也象光子一样, 具有波粒二象性,并把微观实物粒子的动量P 与物质波波长λ之间的关系表示为: mv h P h = = λ (1) 式中h 为普朗克常数,m 、v 分别为粒子的质量和速度,这就是德布罗意公式。 对于一个静止质量为m 0的电子,当加速电压在30kV 时,电子的运动速度很大,已接近光速。由于电子速度的加大而引起的电子质量的变化就不可忽略。根据狭义相对论的理论,电子的质量为: c v m m 2 2 10 -= (2) 式中c 是真空中的光速,将(2)式代入(1)式,即可得到电子波的波长: 22 01c v v m h mv h -==λ (3) 在实验中,只要电子的能量由加速电压所决定,则电子能量的增加就等于电场对电子 所作的功,并利用相对论的动能表达式: )111( 222 02 02 --=-=c v c m c m mc eU (4) 从(4)式得到

电子衍射实验讲义

电子衍射实验讲义 一 实验目的 1 验证电子具有波动性的假设; 2 了解电子衍射和电子衍射实验对物理学发展的意义; 3 了解电子衍射在研究晶体结构中的应用; 二 实验仪器 电子衍射,真空机组,复合真空计,数码相机,微机 三 实验原理 (一)、电子的波粒二象性 波在传播过程中遇到障碍物时会绕过障碍物继续传播,在经典物理学中称为波的衍射,光在传播过程表现出波的衍射性,光还表现出干涉和偏振现象,表明光有波动性;光电效应揭示光与物质相互作用时表现出粒子性,其能量有一个不能连续分割的最小单元,即普朗克1900年首先作为一个基本假设提出来的普朗克关系 hv E = E 为光子的能量,v 为光的频率,h 为普朗克常数,光具有波粒二象性。电子在与电磁场相互作用时表现为粒子性,在另一些相互作用过程中是否会表现出波动性?德布罗意从光的波粒二象性得到启发,在1923-1924年间提出电子具有波粒二象性的假设, k p E r h r h ==, ω E 为电子的能量,p r 为电子的动量,v πω2=为平面波的圆频率,k r 为平面波的波矢量,π 2/h =h 为约化普朗克常数;波矢量的大小与波长λ的关系为λπ/2=k ,k p r h r =称为德布罗意关系。电子具有波 粒二象性的假设,拉开了量子力学革命的序幕。 电子具有波动性假设的实验验证是电子的晶体衍射实验。电子被电场加速后,电子的动能等于电子的电荷乘加速电压,即 eV E k = 考虑到高速运动的相对论效应,电子的动量 )2(1 2mc E E c p k += λ 由德布罗意关系得 ) 2/1(22 2 mc E E mc hc k k += λ 真空中的光速,电子的静止质量,普朗克常数 ,当电子所受的加速电压为V 伏特,则电子的动能 ,电子的德布罗意波长 s A c o /10 99793.218 ×=26/10511.0c eV m ×=eV A hc eVs h o 4 15 1023986.1,10 13571.4×=×=?VeV E k =o A V V )1089.41(1507 ?×?≈λ, (1)

电子衍射实验

电子衍射实验 一.实验目的 1. 了解波粒二象性的实验表现; 2. 了解电子衍射实验对物理学发展的意义; 3. 初步掌握电子衍射在表面结构分析中的应用方法。 二.实验原理 1.德布罗意假设和波粒二象性 1924年德布罗意从光的波粒二象性得到启发,提出了电子具有波粒二象性的假设。光在传播过程表现出波的衍射、干涉和偏振现象,表明光有波动性——关于这一点我们在《普通物理实验》中已经观察、学习过,而爱因斯坦利用普朗克的量子理论成功的解释了光电效应,充分揭示了光的粒子性。鉴于此,德布罗意大胆假设微观粒子也具有类似的性质,即对于能量为E ω=(v πω2=为平面波的圆频率)的微观粒子,其动量 k p = (5-1) k 为平面波的波矢量,π2/h = 为约化普朗克常数;波矢量的大小与波长λ的关系为 λπ/2=k ,则动量与波长的关系为 p h = λ (5-2) 式(5-1)就称为德布罗意关系。这一假设对现代物理学的支柱之一——量子力学的发展具有深远的影响。 当然,这一假设在没有被证实之前式(5-2)是没有指导意义的。要证实它,在理论上并不困难。如果电子也具有波动性,那么它的波长是可由使(5-2)给出的,考虑到电子是微观粒子,其相对论效应较明显,它的动量p 应由下式计算 c c m E E p k k ) 2(20+= (5-3) 式中E k =eV ,e 为电子所带电量,V 为加速电压,c=2.99792×108m·s -1为真空中的光速,m 0=0.511eV /c 2是电子的静质量。假设一个电子被110V 的电压加速(典型的低能电子束其加速电压定义为20V~200V),其波长利用(5-2)、(5-3)式,即可算出,约为11.15nm 。对于这么小的波长要让它产生明显的衍射,那么衍射用的光栅的光栅常数也必须与这一波长接近。但普通的投射及反射式光栅要做到这么小的光栅常数是不可想象的。 我们知道,物质晶体具有周期性的晶格结构,它们的间距也在10nm 量级,那么可不可以用晶体晶格作为衍射光栅呢?1927年戴维森和其助手革末用单晶体做实验,汤姆孙用多晶体做实验,均发现了电子在晶体上的衍射。戴维森和GP·汤姆孙由于对电子衍射的实验研究,因证明了德布罗意的物质波理论和电子的波粒二象性,获得1937年的诺贝尔物理奖。 2.晶格电子衍射原理 晶体对电子的衍射原理遵从劳厄方程,即衍射波相干条件为出射波矢1k 与入射波矢量0k 之差等于晶体倒易矢量hkl K 的整数倍:10hkl k k nK -=。设倒易空间的 基矢为a b c 、、 ,则倒易矢量为:hkl K ha kb lc =++。 晶格倒易矢量的方向为晶面的法线方向,大小为晶面间距hkl d 的倒数的π2倍hkl hkl d K π 2= 。

电子衍射

电子衍射 电子衍射实验对确立电子的波粒二象性和建立量子力学起过重要作用。历史上在认识电子的波粒二象性之前,已经确立了光的波粒二象性.德布罗意在光的波粒二象性和一些实验现象的启示下,于1924年提出实物粒子如电子、质子等也具有波性的假设。当时人们已经掌握了X射线的晶体衍射知识,这为从实验上证实德布罗意假设提供了有利因素.1927年戴维孙和革末发表他们用低速电子轰击镍单晶产生电子衍射的实验结果。两个月后,英国的汤姆逊和雷德发表了用高速电子穿透物质薄片的办法直接获得电子花纹的结果。他们从实验测得电子波的波长与德布罗意波公式计算出的波长相吻合,证明了电子具有波动性,验证了德布罗意假设,成为第一批证实德布罗意假说的实验,所以这是近代物理学发展史上一个重要实验。 利用电子衍射可以研究测定各种物质的结构类型及基本参数.本实验用电子束照射金属银的薄膜,观察研究发生的电子衍射现象。 一 实验目的 1 拍摄电子衍射图样,计算电子波波长。 2 验证德布罗意公式。 二 实验原理 电子衍射是以电子束直接打在晶体上面而形成的。在本仪器中我们在示波器的电子枪和荧光屏之间固定一块直径约为2.5cm 的圆形金属膜靶,电子束聚焦在靶面上,并成为定向电子束流。电子束由13KV 以下的电压加速,通过偏转板时,被引向靶面上任意部位。玻壳上有足够大的透明部分,可以观察内部结构,电子束采用静电聚焦及偏转。 若一电子束以速度ν通过极薄的晶体膜,这些电子束的德布罗意波的波长为: p h = 'λ (1) 式中普朗克常数,p 为动量。设电子初速度为零,在电位差为U 的电场中作加速运动。在电位差不太大时,即非相对论情况下,电子速度c <<ν(光在真空中的速度),故02201/m c m m ≈-=ν,其中0m 为电子的静止质量。它所达到的速度ν可由电场力所作 的功来决定: m p m eU 22122==ν (2) 将式(2)代入(1)中,得: U em h 1 2= 'λ (3) 式中e 为电子的电荷,m 为电子质量,h 为普朗克常量,然后将0m 、h 、e 代入(3)得 U 225 .1= 'λ (4) 其中加速电压U 的单位为V ,λ的单位为1010-米。由式(4)可计算与电子德布罗意平面单色波的波长。而我们知道,当单色X 射线在多晶体薄膜上产生衍射时,可根据晶格的结构参数和衍射环纹大小来计算X 射线的波长。所以,类比单色X 射线,也可由电子在多晶体薄膜上产生衍射时测出电子的波长λ。如 λ'与λ在误差范围内相符,则说明德布罗 意假设成立。下面简述测量λ的原理。 晶体是由原子(或离子)有规则地排 列而组成的,如图1所示,晶体中有许多晶

复旦固体物理讲义-18能带计算方法简介

上讲回顾 ?金属、绝缘体和半导体 *电子如何填充能带→可用原胞内电子填充判断? *满带、空带、禁带。满带不导电! ?结构因子与布里渊边界能级简并的分裂*物理原因同X射线衍射的消光现象→原胞内等价原 子波函数在布里渊区边界反射相干 ?三维空晶格模型的能带结构 *为何发生能带重叠?能带简约图如何得到?由于3D 布里渊区的复杂结构,与1D不同,高布里渊区能带 E(k+K)并不一定比低布里渊区能带高,例子 *如何给出能带结构?沿B区边界高对称轴,因为能 带在布里渊区边界上简并被打开,发生畸变。可反 映能带特征。特别对金属,除此外与自由电子类似http://10.107.0.68/~jgche/能带计算方法简介1

本讲要解决的问题及所涉及的相关概念?如何从3D空晶格模型过渡到典型的金属能带? *布里渊区边界简并是否打开? ?典型的半导体能带结构? *半导体能带特征 *直接带隙、间接带隙、直接跃迁、带间跃迁 ?能带结构如何得到?→计算→如何计算能带? #对相互作用的合理地截断与近似 #对基函数的合理地取舍与近似 ?两种主要的能带结构计算方法物理思想*赝势方法 *紧束缚方法 http://10.107.0.68/~jgche/能带计算方法简介2

第18讲、能带计算方法简介 1.空晶格能带过渡到典型的金属能带 2.半导体能带结构 3.能带计算方法的物理思想 4.近自由电子近似——平面波方法 5.举例——只取两个平面波 6.平面波方法评论 7.赝势 http://10.107.0.68/~jgche/能带计算方法简介3

1、空晶格能带过渡到金属能带http://10.107.0.68/~jgche/能带计算方法简介4

“固体物理Ⅰ”课程教学大纲

北京工业大学 “固体物理Ⅰ”课程教学大纲 英文名称:Solid State Physics 课程编号: 课程类型:专业限选课 学时:32 学分:2 面向对象:材料科学与工程专业及相关专业 先修课程:普通物理、材料科学基础 一、课程性质和目的(任务) 《固体物理Ⅰ》是材料科学与工程专业的专业限选课。其任务是让学生掌握固体物理的基本规律、基本概念和处理固体物理学问题的特有方法,为后续课程的学习奠定必要的理论基础,同时培养学生综合所学知识分析问题和解决问题的能力。 二、课程教学内容及要求 总体目的和要求: (1)了解固体物理学发展的基本情况,以及固体物理学对于近代物理和近代科技的发展起的作用。 (2)掌握固体物理学的基本概念和基本规律,培养掌握科学知识的方法。 (3)熟悉应用固体物理学理论分析和处理问题的手段方法。 章节要求 第一章绪言(1学时) 要求了解固体物理的发展过程和当前固体物理研究进展,了解固体物理理论与材料性能与应用之间的关联性。 第二章晶体结构(5学时)

要求学生掌握晶体的宏观特性、晶体的微观结构、常见的晶体结构、晶体的对称性和晶面与晶向的概念;了解倒格子与布里渊区的概念 [1] 了解晶格基矢,晶格的周期性、空间点阵的概念,掌握原胞、晶胞,晶列、晶面指数的表示方法 [2] 理解晶体结构的对称性 [3] 理解密堆积、配位数 [4] 了解倒易点阵,倒格子(布里渊区) 第三章晶体结合(6学时) 要求学生掌握晶体结合的普遍特性;熟悉离子键,共价键,金属键,分子键,氢键和的特性;理解晶体结合类型与原子负电性的关系。 [1] 掌握晶体结合的一般性描述 [2] 理解晶体结合的基本类型及特性 [3] 了解晶体结合与原子的负电性 第四章晶格振动(6学时) 要求学生重点掌握一维单原子链的振动方程与格波解的形式,理解一维双原子链振动和三维晶格振动;掌握声子的概念与特性;理解模式密度的概念;理解晶格热容与晶格振动的关系;了解晶格中的热传递。 [1] 掌握一维晶格振动 [2] 了解三维晶格振动 [3] 掌握声子的概念 [4] 理解晶格振动的模式密度和晶格热容 [5] 了解晶格热传导

复旦固体物理讲义-13晶体结构衍射实验

上讲回顾 ?晶体结构衍射理论 *Bragg定律 *von Laue方程 *结构因子(消光条件) 注意区分是晶面指数还是密勒指数 http://10.107.0.68/~jgche/晶体结构实验方法1

本讲内容 ?晶体结构实验方法,晶体结构实验方法原理及其适用范围 *倒易空间 *实空间 ?准晶 *不满足平移对称,比如具有五度转动对称 *但可以看作是高维格子在低维的投影 即,虽然不满足平移周期性,但也有一定的规律http://10.107.0.68/~jgche/晶体结构实验方法2

第13讲、晶体结构实验方法 1.晶体结构衍射实验 *原理:Ewald球 *方法:von Laue方法、转动晶体法 2.晶体结构其他实验方法 *倒空间:电子衍射,中子衍射 *实空间:FIM,STM *计算机(模拟)实验 3.准晶——另类有序 4.第二章小结 5.例题 http://10.107.0.68/~jgche/晶体结构实验方法3

1、晶体衍射实验方法 ?原理 *Ewald球构造法 ?实验 *von Laue方法 *转动单晶法 http://10.107.0.68/~jgche/晶体结构实验方法4

Ewald construction 反射球 ?衍射斑点与衍射条件 *可根据观察到的斑点与 推断晶体结构的特征 *理解衍射方法原理 ?CO= 2π/λ,入射方 向,在C以CO为半径作圆,球面上的倒格点P满足衍射条件,将产生衍射,在PC方向可得衍射极大 *K的两端都是倒格点o c p http://10.107.0.68/~jgche/晶体结构实验方法5

复旦固体物理讲义-30专题五:超导电性 (优选.)

h t t p ://10.107.0.68/~j g c h e / 超导电性 1 本讲目的 ?超导电现象及物理原因

h t t p ://10.107.0.68/~j g c h e / 超导电性 2 第30讲、超导电性 I .传统超导现象及其微观理论 1.低温超导现象 2.临界温度、电流、磁场 3.M e i s s n e r 效应 4.超导体是否理想导体? 5.C o o p e r 对 6.单电子隧穿效应和B C S 的验证 7.J o s e p h s o n 效应 I I .铜氧化物高温超导 1.氧化物超导的发现 2.结构共性与超导电性 I I I .铁基高温超导

h t t p ://10.107.0.68/~j g c h e / 超导电性 3 I 、传统超导现象及其微观理论 ?1911年, H . K . O n n e s (1913得诺贝尔奖)?1957年, J . B a r d e e n , L . N . C o o p e r a n d J . R . S c h r i e f f e r (B C S 理论,1972得诺贝尔奖) ?1962年, B . D . J o s e p h s o n (1973得诺贝尔奖)

h t t p ://10.107.0.68/~j g c h e / 超导电性 5 O n n e s 发现超导现象 ?与新技术有密切联系 *1908年荷兰物理学家O n n e s 成功液化氦气,T <4.2K ,开创了低温物理研究 ?1911年 *为观察杂质电阻,选择当时可提纯最高的水银*发现4.15K 附近水银电阻突然消失*这条曲线是可逆*O n n e s 因此而获1913年的N o b e l 物理奖

电子衍射实验

电子衍射实验 [引言] 早在二十世纪初,人们就知道光具有波粒二象性。1924年法国物理学家德布罗意首先提出了一切微观粒子都具有波粒二象性的设想。1927年戴维孙和革末合作完成了用镍晶体对电子反射的衍射实验,验证了电子的波动性。同时汤姆逊独立完成了用电子穿过晶体薄膜得到衍射纹的实验,进一步证明了德布罗意的波粒二象性的论点,并且测出德布罗意波的波长。目前电子衍射技术已成为研究固体薄膜和表面层晶体结构的先进技术。 [实验装置] DF-8型电子衍射仪 [实验原理] 电子衍射是以电子束直接打在晶体上而形成。在本仪器中,我们在衍射管的电子枪和荧光屏之间固定了一块直径为15㎜的圆形金属薄膜靶。电子束聚焦在靶面上,并成为定向电子束流。电子束由20KV以下的电压加速,通过偏转板时,被引向靶面上任意部位。电子束采用静电聚焦和偏转。 若一电子束以速度V通过晶体膜,这些电子束的德布罗意波的波长为: h h λ==⑴ p mv 其中h为普朗克常数,p mv =为运动电子的动量。 由于电子的动能:

2 12 mv ev = (v 为电子的加速电压) ⑵ 所以电子束的德布罗意波的波长: λ= ⑶ 1 2 150v λ?? = = ??? ⑷ 式中:m 为电子的质量,e 为电子的电量。 原子在晶体中是有规则排列的,形成各种方向的平行面,每一族平行面可以用密勒指数(h k l )来表示。现在考虑电子波射在原子构成的一族平行面上(如图一所示), 若入射波束和平面之间的夹角为θ,两相邻平面间的距离为d ,则强波束射出的条件为: 2sin n d λθ= ⑸ 当θ角很小时,sin θ可用D r 2=θ代替。其中,r 为衍射环半径,D 为金属薄靶到荧光屏的距离。

相关文档
相关文档 最新文档