文档库 最新最全的文档下载
当前位置:文档库 › 导数在实际生活中的应用

导数在实际生活中的应用

导数在实际生活中的应用
导数在实际生活中的应用

导数在实际生活中的应用

导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率和解决一些物理问题等等的有力工具。

导数知识是学习高等数学的基础,它是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不仅在天文、物理、工程领域有着广泛的应用。而且在工农业生产及实际生活中,也经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决。接下来就导数在实际生活中的应用略微讨论。

1.导数与函数的极值、最值解读

函数的极值是在局部围讨论的问题,是一个局部概念,函数的极值可能不止一个,也可能没有极值。

函数()y f x =在点0x 处可导,则'0()0F x =是0x 是极值点的必要不充分条件,但导数不存在的点也有可能是极值点。

最大值、最小值是函数对整个定义域而言的,是整体围讨论的问题,是一个整体性的概念,函数的最大值、最小值最多各有一个。函数最值在极值点处或区间的断点处取得。

2.导数在实际生活中的应用解读

生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。

例1:在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?

思路:设箱底边长为x cm ,则箱高602

x h -=cm ,得箱子容积V 是箱底边长x 的函数:23

2

60()(060)2x x r x x h x -==<<,从求得的结果发现,箱子的高恰好是原正方形边长的

16

,这个结论是否具有一般性?

变式:从一块边长为a 的正方形铁皮的各角截去相等的方块,把各边折起来,做一个无盖的箱子,箱子的高是这个正方形边长的几分之几时,箱子容积最大?

提示:()2()2(0)2

a V x x a x x =-<< 答案:6

a x =。

评注:这是一道实际生活中的优化问题,建立的目标函数是三次函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧。而运用导数知识,求三次目标函数的最值就变得非常简单,对于实际生活中的优化问题,如果其目标函数为高次多项式函数,简单的分式函数,简单的无理函数,简单的指数、对数函数,或它们的复合函数,均可用导数法求其最值。可见,导数的引入,大大拓展了中学数学知识在实际优化问题中的应用空间。

例2: 已知某商品生产成本C 与常量q 的函数关系式为1004C q =+,价格p 与产量q

的函数关系式1258

p q =-。求产量q 为何值时,利润L 最大。 分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格。由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润。

解:收入211252588R q p q q q q ??=?=-=- ??

? 利润()212510048L R C q q q ??=-=--+ ??

? ()212110002008

q q q =-+-<< '1214

L q =-+ 令'0L =,即12104

q -+= 求得唯一的极值点84q = 因为L 只有一个极值点,所以它是最大值。

答:产量为84时,利润L 最大。

点评:上题主要也是考查利用导数研究函数的最值的基础知识,运用数学知识解决利润问题,在实际生活中应用也很广泛。

例3:烟囱向其周围地区散落烟尘而污染环境。已知落在底面某处的烟尘浓度与该处至烟囱距离的平方成反比,而与该烟囱喷出的烟尘量成正比,现有两座烟囱相距20km ,其中一座烟囱喷出的烟尘量是另一座的8倍,试求出两座烟囱连线上的一点,使该点的烟尘浓度最小。

解:不失一般性,设烟囱A 的烟尘量为1,则烟囱B 的烟尘量为8.

并设AC=x (020)x << ∴CB=20x -,

于是点C 的烟尘浓度为:228(20)

k k y x x =

+- (020)x <<, 其中k 为比例系数。 则32'33332162(96012008000)(20)(20)k k x x x y k x x x x -+-=-+=?--

令'0y =,有32960120080000x x x -+-=,

即2(320)(3400)0x x -+=。

解得在(0,20)惟一驻点203

x =。 由于烟尘浓度的最小值客观上存在,并在(0,20)取得, ∴在惟一驻点203x =

处,浓度y 最小,即在AB 间距A 处203

km 处的烟尘浓度最小。

例4:统计表明,某种型号的汽车的匀速行驶中每小时的耗油量为y (升),关于行驶速度x (千米/小时)的函数解析式可以表示为: 313812800080

y x x =-+ (0120)x <≤。已知甲、乙两地相距100千米。 (1) 当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?

(2) 当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

解:(1)当x =40时,汽车从甲地到乙地行驶了

100 2.540=小时, 要耗油313(40408) 2.517.512800080

?-?+?= (升)。 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。

(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x

小时,设耗油为()h x 依题意:3213100180015()(8)1280008012804

h x x x x x x =-+?=+- (0120)x <≤ 33

'

2280080()640640x x h x x x -=-= (0120)x <≤. 令'

()0h x =,得80x =。

当(0,80)x ∈时,'()0h x <,()h x 是减函数;

当(80,120)x ∈时,'()0h x >,()h x 是增函数。

∴当80x =时,()h x 取到极小值(80)11.25h =。

因为()h x 在(0,120]上只有一个极值,所以它是最小值。

答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。

点评:以导数知识为工具研究函数单调性对函数单调性的研究,导数座位强有力的工具提供了简单、程序化的方法,具有普遍的可操作方法。

总之,导数座位一种工具,在解决显示生活中的很多问题时使用非常方便,尤其是可以使用导数解决生活中的很多优化组合的问题,这些问题转化为求函数的最值问题,运用导数求解,很大程度上简化了我们的过程,缩短了步骤,起着非常重要的作用。还可以解析几何相联系,可以在知识网络交汇处设计问题。因此,在实际生活中,药学会应用导数的作用。

导数在实际生活中的应用

导数在实际生活中的应用 导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率和解决一些物理问题等等的有力工具。 导数知识是学习高等数学的基础,它是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不仅在天文、物理、工程领域有着广泛的应用。而且在工农业生产及实际生活中,也经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决。接下来就导数在实际生活中的应用略微讨论。 1.导数与函数的极值、最值解读 函数的极值是在局部范围内讨论的问题,是一个局部概念,函数的极值可能不止一个,也可能没有极值。 函数()y f x =在点0x 处可导,则'0()0F x =是0x 是极值点的必要不充分条件,但导数不存在的点也有可能是极值点。 最大值、最小值是函数对整个定义域而言的,是整体范围内讨论的问题,是一个整体性的概念,函数的最大值、最小值最多各有一个。函数最值在极值点处或区间的断点处取得。 2.导数在实际生活中的应用解读 生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。 例1:在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少? 思路:设箱底边长为x cm ,则箱高602 x h -=cm ,得箱子容积V 是箱底边长x 的函数:23 2 60()(060)2x x r x x h x -==<<,从求得的结果发现,箱子的高恰好是原正方形边长的

导数在经济学中的应用

引言 近年来,随着市场经济的不断发展、经济的不断繁荣,经济活动中的实际问题也愈加复杂,简单的分析已经不足以满足企业管理者对经济分析的需求。因此,有必要将高等数学应用于简单的数学函数所不能解决的实际经济问题中,对其进行定量分析,这使得高等数学在解决经济问题中占据重要地位。而导数作为高等数学中的重要概念,同样也是解决经济问题的一个有力工具。在高等数学中,导数通常被用于判断函数的单调性,求函数的最值、极值等。在实际经济问题中,导数可作为经济分析的工具,广泛地应用到经济研究和企业管理之中,促进经济理论朝着更加精确的方向发展。本文从边际分析,弹性分析,优化分析三个方面论述导数在经济分析方面的应用。 1、导数的概念 2、经济分析中常用的函数 由于导数主要应用于探究经济领域中出现的一些函数关系问题,所以,我们必需对经济分析中的一些常用的函数具有一定的了解,以便更好的理解和使用它们。经济分析中常用的函数主要有以下四类: 2.1需求函数 需求函数指在特定的时间内,各种可能的价格条件下,消费者愿意并且能够购买该商品的数量。(出处?)为了使问题简单化,我们一般假设需求函数的诸

多自变量中除价格外其他均为常量,则函数表示为()P f Q d =,其中,P 为商品的价格,Q d 为商品的需求量。这个函数表示一种商品的需求量与价格之间存在 一一对应的关系,并且通过观察可以知道商品(除某些抵挡商品、某些炫耀性商品、某些投资性商品除外)的需求量与价格成反方向变动关系,即商品本身价格上升,需求量随之减少,反之亦然。 例1:服装店销售某种衬衫的件数Q 与价格P 是线性关系,当价格为100元一件时,可销售120件,当价格为80元时,可销售200件,求需求函数。 解:设衬衫的件数与价格的函数关系为:b aP Q += 则b a +=100120;b a +=80200 解得4-=a ;520=b 所以需求函数为5204+-=P Q 。 2.2供给函数 一种商品的供给函数,是指单个生产者在一定时期内在各种可能的价格下,愿意且能够提供出售的该种商品数量。[3]我们通常通过将除价格外的其他因素看成常量以达到化简问题的目的。所以,供给函数可以用()P f Q s =表示,其中,P 为商品的价格,Q S 为商品的供给量。可以看出,商品(除单个劳动力商品、古董商品、某些投资性商品外)的价格与供给量之间成同方向变动的关系。 例2:已知大蒜的收购价为每千克4元,每星期能收购2000千克,若收购价每千克提高0.5元,每星期可收购2500千克,求大蒜的供给函数。 解:设大蒜的线性供给函数为:b aP Q += 则b a +=42000;b a +=5.42500 得1000=a ;2000-=b 所以供给函数为为:20001000-=P Q 2.3成本函数 产品成本一般情况下是用货币的形式来表现的企业生产和出售产品的所用度支出。成本函数所表示的是企业成本总额与产出总量之间关系的公式。产品成

【精编_推荐】导数在经济学中的应用

导数与微分在经济中的简单应用 一、边际和弹性 (一)边际与边际分析 边际概念是经济学中的一个重要概念,通常指经济变量的变化率,即经济函数的导数称为边际。而利用导数研究经济变量的边际变化的方法,就是边际分析方法。 1、总成本、平均成本、边际成本 总成本是生产一定量的产品所需要的成本总额,通常由固定成本和可变成本两部分构成。用c(x)表示,其中x表示产品的产量,c(x)表示当产量为x时的总成本。 不生产时,x=0,这时c(x)=c(o),c(o)就是固定成本。 平均成本是平均每个单位产品的成本,若产量由x0变化到,则: 称为c(x)在内的平均成本,它表示总成本函数c(x)在内的平均变化率。 而称为平均成本函数,表示在产量为x时平均每单位产品的成本。 例1,设有某种商品的成本函数为: 其中x表示产量(单位:吨),c(x)表示产量为x吨时的总成本(单位:元),当产量为400吨时的总成本及平均成本分别为: 如果产量由400吨增加到450吨,即产量增加=50吨时,相应地总成本增加量为:这表示产量由400吨增加到450吨时,总成本的平均变化率,即产量由400吨增加到450吨时,平均每吨增加成本13.728元。 类似地计算可得:当产量为400吨时再增加1吨,即=1时,总成本的变化为: 表示在产量为400吨时,再增加1吨产量所增加的成本。 产量由400吨减少1吨,即=-1时,总成本的变化为: 表示产量在400吨时,减少1吨产量所减少的成本。

在经济学中,边际成本定义为产量增加或减少一个单位产品时所增加或减少的总成本。即有如下定义: 定义1:设总成本函数c=c(x),且其它条件不变,产量为x0时,增加(减少)1个单位产量所增加(减少)的成本叫做产量为x0时的边际成本。即: 其中=1或=-1。 由例1的计算可知,在产量x0=400吨时,增加1吨的产量时,边际成本为13.7495;减少1吨的产量时,边际成本为13.7505。由此可见,按照上述边际成本的定义,在产量x0=400吨时的边际成本不是一个确定的数值。这在理论和应用上都是一个缺点,需要进一步的完善。 注意到总成本函数中自变量x的取值,按经济意义产品的产量通常是取正整数。如汽车的产量单位“辆”,机器的产量单位“台”,服装的产量单件“件”等,都是正整数。因此,产量x是一个离散的变量,若在经济学中,假定产量的单位是无限可分的,就可以把产量x 看作一个连续变量,从而可以引人极限的方法,用导数表示边际成本。 事实上,如果总成本函数c(x)是可导函数,则有: 由极限存在与无穷小量的关系可知: (1) 其中,当很小时有: (2) 产品的增加=1时,相对于产品的总产量而言,已经是很小的变化了,故当=1时(2)成立,其误差也满足实际问题的需要。这表明可以用总成本函数在x0处的导数近似地代替产量为x0时的边际成本。如在例1中,产量x0=400时的边际成本近似地为,即:误差为0.05,这在经济上是一个很小的数,完全可以忽略不计。而且函数在一点的导

导数在实际生活中的应用

导数在实际生活中的应用 1.(江苏省启东中学高三质量检测)曲线y =1 3 x 3+x 在点????1,43处的切线与坐标轴围成的 三角形面积为________. 解析:曲线y =1 3x 3+x 在点????1,43处的切线斜率为y ′|x =1=????13x 3+x ′x =1=(x 2+1)|x =1 =2,所以切线的方程为y -43=2(x -1),即y =2x -2 3 ,与x 轴的交点和y 轴的交点为 ????13,0,????0,-23,所求面积为S =12×13×23=19 . 答案:1 9 2.(江苏省高考命题研究专家原创卷)设m ∈R ,若函数y =e x +2mx ,有大于零的极值 点, 则m 的取值范围是________. 解析:因为函数y =e x +2mx ,有大于零的极值点,所以y ′=e x +2m =0有大于零的实 根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图象可得-2m >1, 即m <-1 2. 答案:m <-1 2 3.(江苏省高考名校联考信息优化卷)已知f (x )=x 2+2x +a ln x ,若f (x )在区间(0,1]上恒 为单调函数,则实数a 的取值范围为________. 解析:由题意知,f ′(x )=2x +2+a x =2x 2 +2x +a x , ∵f (x )在区间(0,1]上恒为单调函数,∴f ′(x )在区间(0,1]上恒大于等于0或恒小于等于0, ∴2x 2+2x +a ≥0或2x 2+2x +a ≤0在区间(0,1]上恒成立,即a ≥-(2x 2+2x )或a ≤-(2x 2 +2x ),而函数y =-2x 2-2x 在区间(0,1]的值域为[-4,0),∴a ≥0或a ≤-4. 答案:a ≥0或a ≤-4 4.已知f (x )为奇函数,且当x >0时,f (x )>0,f ′(x )>0,则函数y =xf (x )的递增区间 是________. 解析:当x >0时,y ′=[xf (x )]′=f (x )+xf ′(x )>0,∴y =xf (x )在(0,+∞)上递增. 又f (x )为奇函数,∴y =xf (x )为偶函数,∴y =xf (x )在(-∞,0)上递减. 答案:(0,+∞) 5.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元, 已知总收益R 与年产量x 的关系是

导数在微观经济学中边际问题的应用

导数在微观经济学中边际问题的应用 云南农业大学 关键词:导数;变化率;边际;边际分析。 前言:导数在现代经济领域中的应用非常广泛,特别是在微观经济学中有着很多具体的例子。掌握和应用导数的基本概念和经济中常见函数的概念非常重要。把经济学中很多现象进行分析和归纳到数学领域中,用我们所学的数学知识进行解答对很多经营决策者起了非常重要的作用。 高等数学的主要内容是微积分,微分学则是微积分的重要组成部分,而导数又是微分学中的基本概念之一,所以学习导数的概念并熟练掌握导数的应用尤为重要。导数的应用范围非常广泛,比如在物理学中的应用,在工程技术上的应用,在经济学中的应用等等,今天我就导数在经济中边际问题的应用略做讨论。 一、导数的概念 从数量关系而言,导数反映函数的自变量在变化时,相应的函数值变化的快慢程度——变化率(瞬时变化率)。从数学表达式而言,研究的是函数的增量与自变量的增量比的极限问题。 二、经济学中常用的函数 导数在经济领域中的应用,主要是研究在这一领域中出现的一些函数关系,因此必须了解一些经济分析中常见的函数。 (一)价格函数 一般说来,价格是销售量的函数。生活中随处可见。例如:当购买的东西越多,消费者的消费额度就可以小些。 (二)成本函数 成本包括固定成本和变动成本两类. 固定成本是指厂房、设备等固定资产的折旧、管理者的固定工资等,记为X。变动成本是指原材料的费用、工人的工资等,记为Y。这两类成本的总和称为总成本,记为Z,即 Z=X+Y 假设固定成本不变(X为常数),变动成本Y是产量Q的函数(Y=C(Q)),则成本函数为Z=X+C(Q)。 (三)需求函数 作为市场上的一种商品,其需求量受到很多因素影响,如商品的市场价格、消费者的喜好等. 为了便于讨论,我们先不考虑其他因素,假设商品的需求量Q仅受市场价格x的影响。即

导数在经济学的应用

第七节 导数在经济学中的应用 本节讨论导数概念在经济学中的两个应用——边际分析和弹性分析. 内容分布图示 ★ 引言 ★ 边际函数 ★ 边际成本 ★ 例1 ★ 边际收入与边际利润 ★ 例2 ★ 例3 ★ 例4 ★ 函数的弹性 ★ 需求弹性 ★ 例5 ★ 用需求弹性分析总收益的变化 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题3-7 ★ 返回 内容要点: 一、边际分析 在经济学中,习惯上用平均和边际这两个概念来描述一个经济变量y 对于另一个经济变量x 的变化. 平均概念表示在x 在某一范围内取值y 的变化. 边际概念表示当x 的改变量x ?趋于0时,y 的相应改变量y ?与x ?的比值的变化,即当x 在某一给定值附近有微小变化时,y 的瞬时变化. 边际函数: 根据导数的定义, 导数)(0x f '表示)(x f 在点0x x =处的变化率, 在经济学中, 称其为)(x f 在点0x x =处的边际函数值. 边际成本:成本函数)(x C C =(x 是产量)的导数)(x C '称为边际成本函数. 边际收入与边际利润:在估计产品销售量x 时, 给产品所定的价格)(x P 称为价格函数, 可以期望)(x P 应是x 的递减函数. 于是, 收入函数 )()(x xP x R = 利润函数 )()()(x C x R x L -=()(x C 是成本函数) 收入函数的导数)(x R '称为边际收入函数; 利润函数的导数)(x L '称为边际利润函数. 二、 函数弹性 函数弹性的概念:在边际分析中所研究的是函数的绝对改变量与绝对变化率, 经济学中常需研究一个变量对另一个变量的相对变化情况, 为此引入下面定义. 定义1 设函数)(x f y =可导, 函数的相对改变量

导数在实际生活中的应用1教案

导数在实际生活中的应用1 教学目标 1、使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用 2、提高将实际问题转化为数学问题的能力 教学重点 理利用导数解决生活中的一些优化问题 教学难点 利用导数解决生活中的一些优化问题 教学过程 一.创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.新课讲授 1、导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方 面: (1)与几何有关的最值问题; (2)与物理学有关的最值问题; (3)与利润及其成本有关的最值问题; (4)效率最值问题。 2、解决优化问题的方法: 首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域, 通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 3三.例题讲解 4、学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张 贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。如何设计海报的 尺寸,才能使四周空心面积最小? 解:设版心的高为xdm ,则版心的宽为 128x dm,此时四周空白面积为 128512()(4)(2)12828,0S x x x x x x =++-=++> 求导数,得'2512()2S x x =-。 令'2512()20S x x =-=,解得16(16x x ==-舍去)。 于是宽为128128816x ==。

导数在实际中的应用的简单举例【最新】

答:关于导数,我们知道,它是微积分的核心概念。它有着及其丰富的背景和广泛的应用。我们的教材,通过大量的实例,引导同学们经历由平均变化率到瞬时变化率刻画现实问题的过程,体会导数的思想,理解导数的含义,并且通过用导数研究函数的单调性,极值等性质和解决各种最优化问题,让我们的学生充分体会到导数在解决数学问题和实际问题中的广泛应用和强大力量。 例如,使利润最大、用料最省、效率最高等优化问题,都能够引领我们的学生深刻体会到导数在解决实际问题中的重大作用.具体说来,总结如下 1.研究函数性质 导数作为研究函数问题的利刃,常用来解决极值、最大(小)值、单调性等三类问题.在求解这些函数问题时,要结合导数的思想与理解性质的基础上,掌握用导数方法求解的一般步骤.在熟练运用导数工具研究函数的性质同时,我们要注意比较研究函数的导数方法与初等方法,体会导数方法在研究函数性质中的一般性和有效性. 2.证明不等式成立 证明不等式的方法有许多,导数作为研究一些不等式恒成立问题的工具,体现了导数应用上的新颖性以及导数思想

的重要性. 由导数方法研究不等式时,一般是先构造一个函数,借助对函数单调性或最大(小)值的研究,经历某些代数变形,得到待证明的不等式. 3.求解参数范围 给定含有参数的函数以及相关的函数性质,求解参数的值或范围,需要我们灵活运用导数这一工具,对问题实施正确的等价转化,列出关于参数的方程或不等式. 在此类含参问题的求解过程中,逆向思维的作用尤其重要. 4.研究曲线的切线问题 导数的几何意义表现为曲线的切线斜率值,从而利用导数可求曲线的切线,并进一步将导数融合到函数与解析几何的交汇问题中. 解决此类相切问题,一般先求函数的导数,依据曲线在处的切线斜率为而进行研究. 由于切点具有双重身份,既在切线上,又在函数图象上,从而对切点的研究可作为解决问题的纽带,特别是在不知道具体切点的情况下,常常设切点坐标并联立方程组而求解. 5.解决实践问题

导数在实际问题中的应用

导数的实际应用 命题:王长德 审核:朱效利 2012.2.17 能运用导数方法求解有关利润最大,用料最省,效率最高等最优化问题, 1、在生活中经常会遇到求利润________、用料_________、效率_______等问题,这些问题通常称为_______________。 2、利用导数解决生活中的最优化问题的一般步骤: (1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的_________,根据实际意义确定定义域。 (2)求函数()y f x =的导数f '(x ),解方程f '(x )=0在定义域内的根,确定_______. (3)比较函数在区间短点和极值点处的函数值,获得所求的最大(小)值。 (4)还原到原实际问题中作答。 小结:解应用题的基本程序是: 读题 建模 求解 反馈 (文字语言) (数学语言) (导学应用) (检验作答) 3、常见的函数模型是: (1)二次函数型__________________ (2)三次函数型___________________ (3)分式型函数型c x b ax y ++= (4)指数函数型____________________ (5)对数函数型____________________ 某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加 100元,已知总收益R 与年产量x 的关系是:21400(0400)()280000(400)x x x R x x ?-≤≤?=??>? ,则总利润最大时,每年生产的产品是________个单位。

例1、有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器,为使其容积最大,截下的小正方形边长应为多少? 例2、做一个容积为216mL的圆柱形封闭容器,高与底面直径为何值时,所用材料最省?

导数在解决实际问题中的应用

导数在解决实际问题中的应用 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题; 3、与利润及其成本有关的最值问题; 4、效率最值问题。 解决实际问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 例1在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 解法一:设箱底边长为x cm ,则箱高602x h -= cm ,得箱子容积 2 60)(32 2x x h x x V -== )600(<

x x x V 2)260()(-=)300(<

用导数处理实际问题中的最优化问题

教学过程 一、复习预习 复习1:函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________ 复习2:函数()sin f x x x =-在[0,]2π 上的最大值为_____;最小值为_______. 二、知识讲解 创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 新课讲授 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。 解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:

考点/易错点1注意实际问题中的定义域 将实际问题抽象成数学问题之后,往往容易忽略函数的定义域,比如实际问题的人数必须是正整数等等。 三、例题精析 【例题1】 【题干】汽油的使用效率何时最高 我们知道,汽油的消耗量w (单位:L )与汽车的速度v (单位:km/h )之间有一定的关系,汽油的消耗量w 是汽车速度v 的函数.根据你的生活经验,思考下面两个问题: (1) 是不是汽车的速度越快,汽车的消耗量越大? (2) “汽油的使用率最高”的含义是什么? 【答案】因为 w w g t G s s v t === 这样,问题就转化为求g v 的最小值.从图象上看,g v 表示经过原点与曲线上点的直线的斜率.进一步发现,当直线与曲线相切时,其斜率最小.在此切点处速度约为90/km h . 因此,当汽车行驶距离一定时,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此时的车速约为90/km h .从数值上看,每千米的耗油量就是图中切线的斜率,即()90f ',约为 L . 【解析】研究汽油的使用效率(单位:L/m )就是研究秋游消耗量与汽车行驶路程的比值.如果用G 表示每千米平均的汽油消耗量,那么w G s =,其中,w 表示汽油消耗量(单位:L ),s 表示汽油行驶的路程(单位:km ).这样,求“每千米路程的汽油消耗量最少”,就是求G 的最小值的问题. 通过大量的统计数据,并对数据进行分析、研究, 人们发现,汽车在行驶过程中,汽油平均消耗率g (即每小时的汽油消耗量,单位:L/h )与汽车行驶的平均速度v (单位:km/h )之间有如图所示的函数关系()g f v =. 从图中不能直接解决汽油使用效率最高的问题.因此,我们首先需要将问题转化为汽油平均消耗率g (即每小时的汽油消耗量,单位:L/h )与汽车行驶的平均速度v (单位:km/h )之间关系的问题,然后利用图像中的数据信息,解决汽油使用效率最高的问题. 【例题2】

导数在经济学中的应用

龙源期刊网 https://www.wendangku.net/doc/d22649040.html, 导数在经济学中的应用 作者:刘君泽 来源:《文理导航》2017年第23期 【摘要】作为高等数学的基础,在经济学中也有广泛重要的作用。本文借用典型例子以导数为基础,初步介绍其在边际分析、弹性分析方面的应用,详细讨论了导数在经济分析问题中的最优化应用。 【关键词】导数;经济学;边际分析 1.导数的概念 导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x 上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a 如果存在,a即为在x 处的导数,记作f′(x )或df(x )。 2.导数概念的经济学解释 f′(x )实际上刻画了函数y=f(x)在x0的变化率,当自变量在x 处有一个单位的变化,则函数y=f(x)在f(x )处有f′(x )个单位的变化。 假设市场上某种商品的需求函数为d=d(P),其中P为商品的价格,d为市场上该商品的需求量。d′(P )表示当价格在P 处有一个单位的变化,则该商品的需求量将会有d′(P )个单位的变化。同样对于供给函数、总成本函数总收入函数、总利润函数等函数导数意义的理解,都可以仿照,这里就不一一展开说明了。下面以一例具体解释其意义。 3.分析 边际成本的定义是产量增加一个单位时所增加的总成本。现假设产品数量是连续变化的,于是单位产品可以无限细分。如果产量已经是x在此水平上若产量从x增至x+x,那么总成本c(x)相应的增量是△c=c(x+x)-c(x),它与△x的比为 = 。这表示在x和x+x之间总成本的平均变化率。若令,取极限就可以得到边际成 本c′(x)= 。显然,它近似地表示若已经生产了x个单位产品,再增加一个单位产品总 成本的增加量。同样道理我们可以利用导数定义边际收入、边际利润、边际需求等。 4.导数在最值问题上的应用 4.1最小平均成本问题

导数在实际生活中的应用

选修2-2 第1章导数及其应用 §1.4导数在实际生活中的应用第1课时(总第58教案) 一、【教学目标】 1、通过生活中优化问题的学习,体会导数在解决设计问题中的作用; 2、通过对实际问题的研究,促进学生分析问题、解决问题以及建模能力的提高。 二、【教学重点】如何建立数学模型来解决实际问题。 三、【知识点】 1、导数在实际生活中有着广泛的应用,例如,用料最省、利润最大、效率最高等问题,常 常可以归结为函数的最值问题,从而可用导数来解决;(求最值的又一新方法:导数)2、导数在实际生活中的应用主要是解决有关最大(小)值问题,一般应先认真读题,建立 目标函数后,然后用导数求解。解题中应注意实际意义; 3、解决实际应用问题时,要把问题中所涉及的几个变量转化函数关系式,这需要通过分析, 联想,抽象和转化完成,函数的最值要由极值和端点的函数值确定,当定义域是开区间且函数只有一个极值时,这个极值就是它的最值,切记,切记。 四、【典型例题】 例1、在边长为60 cm的正方形铁片的四角切去边长相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底铁皮箱子,当箱底的边长是多少时,箱底的 容积最大?最大容积是多少? 例2、某种圆柱形饮料罐的容积一定时,它的高与底底面半径应怎样选取,才能使所用的材料最省?

例3、在如图所示的电路中,已知电源的内阻为r ,电动势为E 。当外电阻R 多大时,才能使 电功率最大?最大电功率是多少? 例题4、强度分别为b a ,的两个光源A,B 间的距离为d ,试问:在连结两光源的线段AB 上, 何处照度最小?试就3,1,8===d b a 时回答上述问题。(照度与光的强度成正比,与光源距离的平方成反比) 例5、在经济学中,生产x 单位产品的成本称为成本函数,记为C(x),出售x 单位产品的收 益称为收益函数,记为R(x),R(x)-C(x)称为利润函数,记为P(x)。 (1)若C(x)=10005003.0102 36++--x x x ,则生产多少单位产品时,边际成本 )(x C ' 最低? (2)如果C (x)=50x +10000,产品的单价P =100-0.01x ,那么怎样定价,可使利润最 大?

毕业导数在经济学中的应用

1 引言 对经济学家来说,对其经济环节进行定量分析是非常必要的,而将数学作为分析工具,不仅可以给企业经营者提供客观、精确的数据,而且在分析的演绎和归纳过程中,可以给企业经营者提供新的思路和视角,也是数学应用性的具体体现[1]。因此,在当今国内外,越来越多地应用数学知识,使经济学走向了定量化、精密化和准确化。 导数的概念是从良多现实的科学问题抽象而发生的,在经济剖析、经济抉择妄想、经济打点中,有着普遍的应用意义[2]。其作为数学剖析课程中最主要的根基概念之一,反映了一个变量对另一个变量的转变率。在经济学中,也存在转变率问题,如:边际问题和弹性问题。运用导数可以对经济活动中的实际问题进行边际分析、需求弹性分析和最值分析,从而为企业经营者科学决策提供量化依据。导数在经济领域中的应用非常之泛,其中“边际”和“弹性”是导数在经济分析应用中的两个重要概念。随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,而导数是高等数学中的重要概念,是经济分析的重要工具。把经济活动中一些现象归纳到数学领域中,用数学知识进行解答,对很多经营决策起了非常重要的作用。 数学在现代经济学中的作用越来越重要,导数作为高等数学中的一个重要概念,是经济学应用的一个重要工具[3]。导数在经济学中有许多应用,其中边际分析、弹性分析是导数在经济学中的两个重要应用。如今许多企业在判断一项经济活动对企业的利弊时,仅仅依据它的全部成本。而我认为还应当依据它所引起的边际收益与边际成本的比较。在讨论经济问题时绝对数分析问题常常被作为首要因素考虑。我认为应当进一步研究相对变化率。 总而言之,当代研究文学中分别研究了弹性和边际函数对经济的影响,缺乏从总体上深入研究经济过程中每个环节中导数的应用情况。在商品经济活动中进行编辑分析和弹性分析是非常重要的,导数作为边际分析与弹性分析的工具,可以为企业决策者做出合理的决策。 在此我想用导数作为分析工具,对每个经济环节进行定量分析。通过研究成本所引起的边际收益与边际成本的的比较,分析绝对数相对变化率的经济问题,特别具体分析因缺乏弹性的商品和富有弹性的商品的价格变动所产生的影响。同时将弹性分析与边际分析有机结合,衡量出如何确定最优的价格,获得最大的利润。从而帮助企业做出更精明的决策,为其提供精确的数值和创新思路。 导数的概念:设函数y=f (x )在点0x 的某个邻域内有定义,当自变量 x 在点0x 处取得增量x ?(点0x +x ?仍在该邻域内)时,相应地函数y 取得增量y ?=f (0x +x ?)-f (0x );如果y ?与x ?之比当x ?→0时的极限存在,则称函数y=f (x )在点0x 处可

导数在实际问题中的应用

第 1 页 共 2 页 导数在实际问题中的应用 教学目标: 1、在实际问题中,进一步理解导数的概念,能分析实际问题中导数的意义 2、能建立实际问题的数学模型,并用导数解决实际问题中的最优化问题; 3、掌握解决实际问题的基本步骤,并体会算法思想 教学重点:实际问题中的导数的意义,利用导数解决实际生活中的最优化问题。 教学难点:不同的实际问题背景中辨析导数的实际意义,建立实际问题的函数模型,并利用导数求最值。 教学过程: 一、回顾旧知: 前面我们研究过实际问题中,与导数有关的问题:如:位移问题,速度问题,线密度问题、边际成本问题等都与导数有关;今天我们继续探究实际问题中与导数有关的事例。 二、探究新课: 1、功与功率: 例1、某人拉动一个物体前进,他所做的功W (单位:J )是时间t (单位s )的函数,设这个函数可以表示为t t t t W W 166)(23+-== (1)求t 从1s 变化到3s 时,功W 关于时间t 的平均变化率,并解释它的实际意义; (2)求)2(),1(W W '',并解释它的实际意义; 解释:)2(),1(W W ''分别表示s t s t 2,1==时,这个人每秒做的功,在物理学中通常称为功率。 2、降雨强度: 例2、如图为一次降雨过程中一段时间记录下的降雨量的数据:

第 2 页 共 2 页 显然,降雨量是时间t 的函数,用)(t f y =表示 (1)分别计算当t 从0变化到10,50变化到60时,降雨量y 关于时间t 的平均变化率,比较它们的大小,并解释它们的实际意义; (2)假设得到降雨量y 关于时间t 的函数的近似表达式为()f t =求)40(f '并解释它的实际意义; 解释:)40(f '表示:40=t 时的降雨强度。 3、边际成本: 例3、设某企业每季度生产某个产品q 个单位时,总成本函数为 C (q ) = aq 3-bq 2 + cq ,(其中a >0,b >0,c >0), 求:(1)使平均成本最小的产量. (2)最小平均成本及相应的边际成本. 4、最优化问题: 例4、一个企业生产某种产品,每批生产q 单位时的总成本为C (q ) = 3+q (单位:百元),可得的总收入为R (q ) = 6q -q 2(单位:百元),问:每批生产该产品多少单位时,能使利润最大?最大利润是多少? 例5、矩形横梁的强度与它断面的高的平方与宽的积成正比例,要将直径为d 的圆木锯成强度最大的横梁,断面的宽和高应为多少? 例6、在曲线)0,0(12≥≥-=y x x y 上找一点(00,y x ),过此点作一切线,与x 轴、y 轴构成一个三角形,问:0x 为何值时,此三角形面积最小? 例7、一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10千米/时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以多大速度航行时,能使行驶每千米的费用总和最少? 三、小结:导数在实际生活中运用比较多,上面我们研究结果特殊事例,在现实生活中还有许多都属于和导数有关的问题。

导数在经济生活中的应用

导数在经济生活中的应用 经济学算不上是一门古老的学问。人类经过漫长的自然经济时代,逐渐出现了专业化生产和分工,出现了交换和货币。在这个时候,社会的经济现象才被人注意,并开始成为研究的对象。如果将英国十六世纪关于东印度公司与重金主义之间的争论作为研究经济现象的开始,则经济学的历史到今还不到四百年;亚当·斯密出版他的不朽巨著《国富论》,从而为经济学的系统研究奠定基础,至今也刚满二百年。我们知道牛顿和莱布尼茨于一六七○年前后几乎同时发明了微积分,开创了一个自然科学飞速发展并取得灿烂成就的时代。经济学的进展似乎没有那么顺利,虽然出现过像亚当·斯密和卡尔·马克思这样的天才,但经济学中很多最基本的概念直到上个世纪末才逐渐确立起来。任何一门科学都要用到抽象和逻辑的思维方法,但经济学应用抽象和逻辑却比起一般的自然科学格外困难。在上个世纪以前,经济学虽然普遍地使用归纳、比较和分析的方法,但基本上没有脱离以对历史现象的陈述和对规律的推测为主的论述。或者说,它一直不具备我们一般称之为科学形态的形式。直到大约一百年以前,因为自然科学思维方法的巨大成就的影响,经济学开始转变了。十九世纪七十年代初期,英国的杰文斯、奥地利的门格尔和瑞士的瓦尔拉独立地将微分方法导入经济学,引起了经济学的边际革命。最近一百年来,数学和推理的方法持续渗入经济学,形成了作为经济理论基础的数理经济学。一向被认为属于社会科学的经济学,在数学工具的应用上,在其理论框架的条理化、逻辑化上,在其假定前提的简单明了上,越来越多地带上了传统上被认为只有自然科学才具有的特色。这种自然科学与社会科学的融合,或许能够看作是人类理解史上一个重要的转折。偏导数、全导数、全微分公式在数理经济学中是一些最基本的手段,当这些表达一旦被赋予经济学的含义时,复杂的事物就变得如此之清晰可辨,以致用不着任何多余的文字说明。尤其是数学规划理论能够说就是为了经济学而创立的。它研究在满足一系列约束之下能够获得极值的条件。经济学的基本任务也正是在遵守资源约束、生产技术约束的条件下,求得消费者使用价值的极大化。经济学之应用数学,有两个不同的领域:研究经济量之间的关系和确定经济量的数值。前者是一门定性的科学,称为数理经济学,后者则是一门定量的科学,称为计量经济学。研究此量与彼量之间的消长关系,确定在达到最佳经济效果时必须满足什么条件,这些是数理经济学最经常的任务。计量经济学则以数理经济学的理论为指导,应用统计学的方法对各种经济量实行测算,这在制订经济政策,评价过去某一经济政策的效果,乃至检验数理经济的理论是否准确,都是经常用得到的。

导数在经济学中的一些简单的应用

导数在经济学中的一些简单的应用 摘要:数学的理论知识在各个领域都有很多的应用,在经济学中的应用也非常广泛,本文主要介绍导数在经济学中的一些简单的应用。首先,介绍了导数在弹性方面的应用;其次,介绍了导数在边际量方面的应用;最后,介绍了导数在生产领域中的应用。本文还列举了一些具体的例子,通过这些例子使我们更深刻的理解导数在经济学中的应用,同时还总结了一些常用的计算公式和解决经济问题时所需要的具体步骤。 关键词:导数极大值拉格朗日乘数偏导数 Derivative in Economics of Some Simple Application Abstract:Mathematical theory knowledge in various fields has lots of applications.The application in economics is very extensive.This paper mainly introduces some of the economics derivative simple application.Firstly,Introduces the application in the elastic derivative.Secondly,Introduced the derivative application in marginal quantity.Finally,Introduces the application in production field derivative.Through these examples make us more profound understanding of derivative, and the application in economics also summarized some common calculation formula and solve an economic problem need concrete steps. Key words:Derivative Maximum value Lagrange's multiplier Partial derivative 1.导数在弹性方面的应用 在物理学中,如果我们知道两个变量路程和时间的函数关系,运用导数的概念就可以求出速度和时间的关系。同理,在经济学中如果知道两个经济变量之间的函数关系,我们就可以通过导数这一数学工具来推导出弹性在这方面的应用。 1.1 弹性的定义 如果给了我们两个经济变量之间的函数关系为) T ,则点弹性公式为: f (I

导数在经济分析中的应用

导数在经济分析中的应用 一、 边际分析与弹性分析 1、边际分析 例1 某小型机械厂主要生产某种机器配件,其最大生产能力为每日100件,假设日产品的成本C (元)是日产量x (件)的函数 21()602050.4 C x x x =++ 求:(1)日产量为75件时的成本和平均成本; (2)当日产量由75件提高到90件时,成本的平均增量; (3)当日产量为75件时的平均成本。 例 2 设某糕点厂生产某种糕点的成本函数和收入函数分别是2()10020.02C x x x =++和2()70.01.R x x x =+ 求边际利润函数和当日产量分别为200公斤、250公斤和300公斤时的边际利润,并说明其经济意义。 2、弹性 例3 某日用消费品的需求量Q (件)与单价p (元)的函数关系为 31()()()2 p Q p a a =是常数, 求:(1)需求的价格弹性函数; (2)当单价为4元,5元时的需求弹性。 二、函数最值在经济中的应用 1、平均成本最小 例4 某工厂生产产量为x (件)时,生产成本函数(元)为 2()9000400.001,C x x x =++ 问该厂生产多少件产品时,平均成本达到最小?并求出最小平均成本和边际成本. 2、最大利润 例5 某商家销售某种商品的价格满足关系70.2(/)p x =-万元吨,且x 为销售量(单位:吨),该商品的成本函数为()31C x x =+(万元)。 (1) 若每销售1吨商品政府要征税t (万元),求该商家获得最大利润时的销售量; (2) t 为何值时,政府税收总额最大。 3、最佳批量和批数 例6 某厂年需某种零件8000个,需分期分批外购,然后均匀投入使用(此时平均库存量为批量的一半)。若每次订货的手续费为40元,每个零件的库存费为4元。试求最经济的订货批量和进货批数。 4、最佳时间决策

相关文档
相关文档 最新文档