文档库 最新最全的文档下载
当前位置:文档库 › 计算方法各章作业答案

计算方法各章作业答案

计算方法各章作业答案
计算方法各章作业答案

计算方法作业

第二章插值

1.

(1

(2)用二次Lagrange插值多项式求当X=0.15时Y的近似值。

(3)写出余项R(x)=f(x)-P

n

(x)的表达式。

解:(1)P

n (x) =

k

n

k

n

k

j

j j

k

j y

x

x

x

x

)

(

00

∑∏

=

=

-

-

n=3

P 3(x)=

3

2

1

3

2

1

)

)(

)(

(

)

)(

)(

(

y

x

x

x

x

x

x

x

x

x

x

x

x

-

-

-

-

-

-

+

1

3

1

2

1

1

3

2

)

)(

)(

(

)

)(

)(

(

y

x

x

x

x

x

x

x

x

x

x

x

x

-

-

-

-

-

-

+

2

3

2

1

2

2

3

1

)

)(

)(

(

)

)(

)(

(

y

x

x

x

x

x

x

x

x

x

x

x

x

-

-

-

-

-

-

+

3

2

3

1

3

3

2

1

)

)(

)(

(

)

)(

)(

(

y

x

x

x

x

x

x

x

x

x

x

x

x

-

-

-

-

-

-

x 0=0.0 x

1

=0.1 x

2

=0.2 x

3

=0.3

y 0=0.0000 y

1

=0.0998 y

2

=0.1987 y

3

=0.2955

P 3(x)=0000

.0

)3.0

0.0

)(

2.0

0.0

)(

1.0

0.0(

)3.0

)(

2.0

)(

1.0

(

?

-

-

-

-

-

-x

x

x

+0998

.0

)3.0

1.0

)(

2.0

1.0

)(

0.0

1.0(

)3.0

)(

2.0

)(

0.0

(

?

-

-

-

-

-

-x

x

x

+1987

.0

)3.0

2.0

)(

1.0

2.0

)(

0.0

2.0(

)3.0

)(

1.0

)(

0.0

(

?

-

-

-

-

-

-x

x

x

+2955

.0

)2.0

3.0

)(

1.0

3.0

)(

0.0

3.0(

)2.0

)(

1.0

)(

0.0

(

?

-

-

-

-

-

-x

x

x

(2) y(0.15) = P

2

(0.15) = 0.1494

(3)R(x) = f(x)-P

n (x)=

)!

1

(

)

()1

(

+

+

n

f nξn

k0=

∏(x - x k)

=

!4)

(4ξ

f

(x – 0.0) (x – 0.1)(x – 0.2)(x – 0.3)

第三章 方程求根

5.求解方程12-3x+2cosx=0的迭代法n n x x cos 3

2

41+=+

(1)证明对于任意的x 0€R 均有*lim x x n x =∞

→ (x *为方程的根)

(2)取x 0=4,用此迭代法求方程根的近似值,误差不超过10-3,列出各次的迭代值。

(3)此迭代的收敛阶是多少?试证明你的结论。 (1)证明:因为迭代函数

Cosx x 324)(+=? , Sinx x 32

)(-='?

而对一切X, 均有1)(<'x ?

故迭代过程收敛,即R x ∈?0,均有*lim x x n n =∞

(2) 取40=x , 代如迭代式计算有:

56424.3432

41=+=Cos x

391996.356424.332

42=+=Cos x

354125.3391996.332

43=+=Cos x

34833.3354125.332

44=+=Cos x

3475299.334833.33

2

45=+=Cos x

取*x ≈5x = 3.347即可使误差不超过310-。

(3) 因Sinx x 32)(-='?, 0*3

2

*)(≠='Sinx x ?

∴此迭代格式只具线性收敛性.

13.对于迭代函数g(x)=x+C(x 2-2),试讨论当C 为何值时,x k+1=g(x k ) (k=0,1,2,3,…)产生的序列{ x k }收敛于2?

如果迭代格式 ??

?=-+==+)(2,1,0),2()(0

2

1给定x k x C x x x k k k k

?

是局部收敛的话, 设迭代序列的极限值为*x , 则有

Cx

x x x x C x x 21)(2*2*)

2*(**2+='-==-+=?或

当1)2(<'? , 即1221<+C 或02

1<<-C 时, 则迭代格式局部收敛于2。

当0)2(='?, 即0221=+C

C 取2

21-

时收敛最快, 为平方收敛。

第四章 数值积分

1.

(1)用复化梯形法计算积分的近似值。 (2)用复化辛卜生法计算积分的近似值。

(3)用柯特斯法计算积分的近似值。

解:(1)T n = dx x f b

a )(? = h

2 [f(a) + 2∑-=1

1

)(n k k x f + f(b)]

= 0.2

2 [3.12014 + 2×(4.42569 + 6.04241 + 8.03014) + 10.46675]

= 5.058337

(2) S n = h

6 [f(a) + 4∑-=+

10

2

1)(n k k x f +2∑-=1

1)(n k k x f +f(b)]

= 0.4

6 [f(a) + 4×4.42569 + 2×6.04241 + 4×8.03014 + 10.46675]

= 5.033002 )

(3) C n = h

90 [7f(a) + 32∑-=+104

1)(n k k x f + 12∑-=+102

1)(n k k x f + 32∑-=+

10

4

3)(n k k x f + 14∑-=11)(n k k x f +

7f(b)]

= 0.8

90 [7×3.12014 + 32×4.42569 + 12×6.04241 + 32×8.03014 + 7×10.46675] = 5.032922

2.

(1)用复化梯形法计算积分的近似值。

(2)用复化辛卜生法计算积分的近似值。 (3)用柯特斯法计算积分的近似值。 解:(1)T n = ?

b

a

dx x f )( = h

2 [f(a) + 2∑-=1

1

)(n k k x f + f(b)]

=

2

1

.0[1.00000 + 2×(0.90909 + 0.83333 + 0.76923 + 0.71429 + 0.66667 + 0.62500 +0.58824) + 0.55556]

= 0.588363

(2)S n = )]()(2)(4)([6)(1

1102

1b f x f x f a f h

dx x f n k k n k k b

a

+++=∑∑?

-=-=+

=

6

2

.0[1.00000 + 4×0.90909 + 2×0.83333 + 4×0.76923 + 2×0.71429 + 4×0.66667 + 2×0.62500 + 4×0.58824 + 0.55556]

= 0.5877906

(3)C n = h

90 [7f(a) + 32∑-=+104

1)(n k k x f + 12∑-=+102

1)(n k k x f + 32∑-=+

1

4

3)(n k k x f

+ 14∑-=1

1

)(n k k x f + 7f(b)]

=

904

.0[7×1.00000 + 32×0.90909 + 12×0.83333 + 32×0.76923 + 14×0.71429

+ 32×0.66667 + 12×0.62500 + 32×0.58824 + 7×0.55556]

= 0.587788

第五章 常微分方程数值解

1.列出求解下列初值问题的欧拉格式:

(1)y ′=x 2-y 2,(0≤x≤0.4),y(0)=1,取h=0.2

(2)y ′=(y/x )2+y/x,(1≤x ≤1.2),y(1)=1,取h=0.1 解:

(1))(*2.02

21n n n n y x y y -+=+

(2)))((

*1.021n

n

n n n n x y y x y y ++=+ 第六章 线性方程组的迭代法

1. 已知方程组???????=+-=++=-++=++1

84325211942108

8-23214214

3214321x x x x x x x x x x x x x x

(1)写出用简单迭代法和高斯-塞迭尔迭代法求解此方程组的迭代格式。 (2)讨论上述两个迭代格式的收敛性,说明是否收敛及其原因。 解:(1)原方程组可转化为:

??????

?=+-+=+-=-++=++8

821843942102

521143213214

321421x x x x x x x x x x x x x x ?????

???

??

?

+

+--=++-=++--=+--=8881828181

848310

9

10410210111

211511232142

134

312421

x x x x x x x x x x x x x x 简单迭代格式:

???????????++--=+

+-=++--=+--

=++++1

81828181848310

9104102101112115112)(3)(2)(1)1(4)(2)(1)1(3)(4)(3)(1)1(2)(4)(2)

1(1k k k k k k k k k k k k k k x x x x x x x x x x x x x x

高斯-塞德尔迭代格式:

?????

??????++--=+

+-=++--=+--

=++++++++++1

81828181848310

9104102101112115112)1(3)1(2)1(1)1(4)1(2)1(1)1(3)(4)(3)1(1)1(2)(4)(2)1(1k k k k k k k k k k k k k k x x x x x x x x x x x x x x

(2)因为方程组的系数矩阵为主对角线占优阵,即满足

n i a a

ii n

i

j j ij

,3,2,1,1 =<∑≠=

由定理5 可知上述两个迭代格式均收敛。

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

计算方法 第5章 数值积分

第五章数值积分 §5.0 引言 §5.1 机械求积公式 §5.2 Newton-Cotes公式 §5.3 变步长求积公式及其加速收敛技巧§5.4 Gauss公式 §5.5 小结

§5.0 引 言 1. 定积分的计算可用著名的牛顿-莱布尼兹公式来计算: ()()()b a f x dx F b F a =-? 其中F (x )是f (x )的原函数之一,可用不定积分求得。 然而在实际问题中,往往碰到以下问题: (a) 被积函数f (x )是用函数表格提供的; (b) 被积函数表达式极为复杂,求不出原函数,或求出原函数后,由于形式复杂不利于计算; (c) 大量函数的原函数不容易或根本无法求出,例如 2 1 0x e dx -?,概率积分 1 0sin x dx x ?, 正弦型积分 2 22 2 2 4()1sin Ir x H x d r x r π θθ?? =- ?-?? ? 回路磁场强度公式 等根本无法用初等函数来表示其原函数,因而也就无法精确计算其定积分,只能运用数值积分。 2 所谓数值积分就是求积分近似值的方法。 而数值积分只需计算 ()f x 在节点(1,2,,)i x i n = 上的值,计算方便 且适合于在计算机上机械地实现。

§5.1 机械求积公式 1 数值积分的基本思想 区间[a ,b ]上的定积分()b a f x dx ? ,就是在区间[a,b]内取n+1个点 01,,,n x x x ,利用被积函数f (x )在这n+1个点的函数值的某一种线性组合 来近似作为待求定积分的值,即 ()()n b k k a k f x dx A f x =≈∑? 右端公式称为左边定积分的某个数值积分公式。 其中,x k 称为积分节点,A k 称为求积系数。 因此,一个数值积分公式关键在于积分节点x k 的选取和积分系数A k 的决定,其中A k 与被积函数f(x)无关。称为机械求积公式。 1.1 简单算例说明 例1 求积分1 ()x x f x dx ? 此积分的几何意义相当于如下图所示的曲边梯形的面积。 解:(1) 用f (x )的零次多项式00()()y L x f x == 来近似代替()f x ,于是, 110 0001()(()))(x x x x f x dx f x dx f x x x ≈ =-? ? (为左矩公式)

计算方法上机作业

计算方法上机报告 姓名: 学号: 班级: 上课班级:

说明: 本次上机实验使用的编程语言是Matlab 语言,编译环境为MATLAB 7.11.0,运行平台为Windows 7。 1. 对以下和式计算: ∑ ∞ ? ?? ??+-+-+-+=0681581482184161n n n n S n ,要求: ① 若只需保留11个有效数字,该如何进行计算; ② 若要保留30个有效数字,则又将如何进行计算; (1) 算法思想 1、根据精度要求估计所加的项数,可以使用后验误差估计,通项为: 1421114 16818485861681 n n n a n n n n n ε??= ---<< ?+++++??; 2、为了保证计算结果的准确性,写程序时,从后向前计算; 3、使用Matlab 时,可以使用以下函数控制位数: digits(位数)或vpa(变量,精度为数) (2)算法结构 1. ;0=s ?? ? ??+-+-+-+= 681581482184161n n n n t n ; 2. for 0,1,2,,n i =??? if 10m t -≤ end; 3. for ,1,2,,0n i i i =--??? ;s s t =+

(3)Matlab源程序 clear; %清除工作空间变量 clc; %清除命令窗口命令 m=input('请输入有效数字的位数m='); %输入有效数字的位数 s=0; for n=0:50 t=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)); if t<=10^(-m) %判断通项与精度的关系break; end end; fprintf('需要将n值加到n=%d\n',n-1); %需要将n值加到的数值 for i=n-1:-1:0 t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)); s=s+t; %求和运算 end s=vpa(s,m) %控制s的精度 (4)结果与分析 当保留11位有效数字时,需要将n值加到n=7, s =3.1415926536; 当保留30位有效数字时,需要将n值加到n=22, s =3.14159265358979323846264338328。 通过上面的实验结果可以看出,通过从后往前计算,这种算法很好的保证了计算结果要求保留的准确数字位数的要求。

(完整版)计算方法习题第一、二章答案

第一章误差 1问3.142, 3.141, 22分别作为n 的近似值各具有几位有效数字? 7 分析 利用有效数字的概念可直接得出。 解 n =3.141 592 65 … =3.141 59 …-3.142 85…=-0.001 26 …知 2 10 3 | 22| 1 10 2 因而X 3具有3位有效数字。 2 已知近似数X*有两位有效数字,试求其相对误差限。 分析本题显然应利用有效数字与相对误差的关系。 解 利用有效数字与相对误差的关系。这里 n=2,a 1是1到9之间的数字。 分析本题利用有效数字与相对误差的关系。 解 a 1是1到9间的数字。 * (X)0.3 % 1000 2 102 2 (9 1) ? 2(a? 1) 10' 设x*具有n 位有效数字,令-n+仁-1,则n=2,从而x*至少具有2位有效数字。 4计算sin 1.2,问要取几位有效数字才能保证相对误差限不大于 0.01%。 分析本题应利用有效数字与相对误差的关系。 解 设取n 位有效数字,由sin 1.2=0.93…,故a 1=9。 *(x) | 悩盍 10n1 o.。1% 104 解不等式丄 10 n 1 10 4知取n=4即可满足要求。 2ai 5 计算盂盘,视已知数为精确值,用4位浮点数计算。 因而 因而 记 X 1=3.142, X 2=3.141 , X 3= ^2 . 由 n - X 1=3.141 59 …-3.142=-0.000 40 …知 1 103 | 2 X 1具有4位有效数字。 由 n - X 2=3.141 59…-3.141=-0.000 59 …知 1 103 I X 2| X 2具有3位有效数字。 104 10 2 22 7 I *(x)| | X X* I |X*| 1 1 10n1 1021 5 % 已知近似数的相对误差限为 0.3%,问X*至少有几位有效数字?

西工大计算方法作业答案

参考答案 第一章 1 *1x =1.7; * 2x =1.73; *3x =1.732 。 2. 3. (1) ≤++)(* 3*2*1x x x e r 0.00050; (注意:应该用相对误差的定义去求) (2) ≤)(*3*2*1x x x e r 0.50517; (3) ≤)/(*4*2x x e r 0.50002。 4.设6有n 位有效数字,由6≈2.4494……,知6的第一位有效数字1a =2。 令3)1()1(1* 102 1 102211021)(-----?≤??=?= n n r a x ε 可求得满足上述不等式的最小正整数n =4,即至少取四位有效数字,故满足精度要求可取6≈2.449。 5. 答:(1)*x (0>x )的相对误差约是* x 的相对误差的1/2倍; (2)n x )(* 的相对误差约是* x 的相对误差的n 倍。 6. 根据******************** sin 21)(cos 21sin 21)(sin 21sin 21)(sin 21)(c b a c e c b a c b a b e c a c b a a e c b S e r ++≤ =* *****) ()()(tgc c e b b e a a e ++ 注意当20* π < >c tgc ,即1 *1 * )() (--

7.设20= y ,41.1*0 =y ,δ=?≤--2* 00102 1y y 由 δ1* 001*111010--≤-=-y y y y , δ2*111*221010--≤-=-y y y y M δ10*991*10101010--≤-=-y y y y 即当0y 有初始误差δ时,10y 的绝对误差的绝对值将减小10 10-倍。而110 10 <<-δ,故计算过程稳定。 8. 变形后的表达式为: (1))1ln(2--x x =)1ln(2-+-x x (2)arctgx x arctg -+)1(=) 1(11 ++x x arctg (3) 1ln )1ln()1(ln 1 --++=? +N N N N dx x N N =ΛΛ+-+- +3 2413121)1ln(N N N N 1ln )11ln()1(-++ +=N N N N =1)1ln()1 1ln(-+++N N N (4)x x sin cos 1-=x x cos 1sin +=2x tg

2020年奥鹏吉大网络教育《计算方法》大作业解答

2020年奥鹏吉大网络教育《计算方法》大作业解答 (说明:前面是题目,后面几页是答案完整解答部分,注意的顺序。) 一、解线性方程 用矩阵的LU分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用高斯消去法求解线性方程组 用高斯消去法求解线性方程组 用主元素消元法求解线性方程组 用高斯消去法求解线性方程组 利用Doolittle分解法解方程组Ax=b,即解方程组 1、用矩阵的LU分解算法求解线性方程组 X1+2X2+3X3 = 0 2X1+2X2+8X3 = -4 -3X1-10X2-2X3 = -11 2、用矩阵的Doolittle分解算法求解线性方程组 X1+2X2+3X3 = 1 2X1– X2+9X3 = 0 -3X1+ 4X2+9X3 = 1 3、用矩阵的Doolittle分解算法求解线性方程组 2X1+X2+X3 = 4 6X1+4X2+5X3 =15 4X1+3X2+6X3 = 13 4、用高斯消去法求解线性方程组

2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 5、用无回代过程消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 6、用主元素消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 7、用高斯消去法求解线性方程组 123123123234 4272266 x x x x x x x x x -+=++=-++= 8、利用Doolittle 分解法解方程组Ax=b ,即解方程组 12341231521917334319174262113x x x x -? ????? ???? ??-??????=? ? ????--?????? --???? ??

计算方法-习题第一、二章答案

第一章 误差 1 问3.142,3.141,7 22分别作为π的近似值各具有几位有效数字? 分析 利用有效数字的概念可直接得出。 解 π=3.141 592 65… 记x 1=3.142,x 2=3.141,x 3=7 22. 由π- x 1=3.141 59…-3.142=-0.000 40…知 3411110||1022 x π--?<-≤? 因而x 1具有4位有效数字。 由π- x 2=3.141 59…-3.141=-0.000 59…知 223102 1||1021--?≤-

西安交通大学计算方法B大作业资料

计算方法上机报告 姓名: 学号: 班级: 目录 题目一----------------------------------------------------------------- 4 - 1.1题目内容-------------------------------------------------------- 4 - 1.2算法思想-------------------------------------------------------- 4 -

1.3Matlab 源程序----------------------------------------------------- 5 - 1.4计算结果及总结------------------------------------------------- 5 - 题目二----------------------------------------------------------------- 7 - 2.1题目内容-------------------------------------------------------- 7 - 2.2算法思想-------------------------------------------------------- 7 - 2.3 Matlab 源程序---------------------------------------------------- 8 - 2.4计算结果及总结------------------------------------------------- 9 - 题目三--------------------------------------------------------------- -11- 3.1题目内容----------------------------------------------------------- 11 - 3.2算法思想----------------------------------------------------------- 11 - 3.3Matlab 源程序--------------------------------------------------- -13 - 3.4计算结果及总结----------------------------------------------------- 14 - 题目四--------------------------------------------------------------- -15 - 4.1题目内容----------------------------------------------------------- 15 - 4.2算法思想----------------------------------------------------------- 15 - 4.3Matlab 源程序--------------------------------------------------- -15 - 4.4计算结果及总结----------------------------------------------------- 16 - 题目五--------------------------------------------------------------- -18 - -18 - 5.1题目内容 5.2算法思想----------------------------------------------------------- 18 - 5.3 Matlab 源程序--------------------------------------------------- -18 -

计算方法习题第一、二章答案

第一章 误差 1 问,,7 22分别作为π的近似值各具有几位有效数字? 分析 利用有效数字的概念可直接得出。 解 π= 592 65… 记x 1=,x 2=,x 3=7 22. 由π- x 1= 59…= 40…知 34111 10||1022 x π--?<-≤? 因而x 1具有4位有效数字。 由π- x 2= 59…= 59…知 223102 1||1021--?≤-

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

计算方法作业2

《计算方法》上机指导书

实验1 MATLAB 基本命令 1.掌握MATLAB 的程序设计 实验内容:对以下问题,编写M 文件。 (1) 生成一个5×5矩阵,编程求其最大值及其所处的位置。 (2) 编程求∑=20 1!n n 。 (3) 一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下。求它在 第10次落地时,共经过多少米?第10次反弹有多高? 2.掌握MATLAB 的绘图命令 实验内容:对于自变量x 的取值属于[0,3π],在同一图形窗口画出如下图形。 (1)1sin()cos()y x x =?; (2)21 2sin()cos()3 y x x =-;

实验2 插值方法与数值积分 1. 研究人口数据的插值与预测 实验内容:下表给出了从1940年到1990年的美国人口,用插值方法推测1930年、1965年、2010年人口的近似值。 美国人口数据 1930年美国的人口大约是123,203千人,你认为你得到的1965年和2010年的人口数字精确度如何? 2.最小二乘法拟合经验公式 实验内容:某类疾病发病率为y ‰和年龄段x (每五年为一段,例如0~5岁为第一段,6~10岁为第二段……)之间有形如bx ae y =的经验关系,观测得到的数据表如下 (1)用最小二乘法确定模型bx ae y =中的参数a 和b 。 (2)利用MATLAB 画出离散数据及拟合函数bx ae y =图形。 3. 复化求积公式 实验内容:对于定积分? +=1 02 4dx x x I 。 (1)分别取利用复化梯形公式计算,并与真值比较。再画出计算误差与n 之间的曲线。 (2)取[0,1]上的9个点,分别用复化梯形公式和复化辛普森公式计算,并比较精度。

第五章结构力学的方法

第五章结构力学的方法 1、常用的计算模型与计算方法 (1)常用的计算模型 ①主动荷载模型:当地层较为软弱,或地层相对结构的刚度较小,不足以约束结构茂变形时,可以不考虑围岩对结构的弹性反力,称为主动荷载模型。 ②假定弹性反力模型:先假定弹性反力的作用范围和分布规律、然后再计算,得到结构的内力和变位,验证弹性反力图形分布范围的正确性。 ③计算弹性反力模型:将弹性反力作用范围内围岩对衬砌的连续约束离散为有限个作用在衬砌节点巨的弹性支承,而弹性支承的弹性特性即为所代表地层范围内围岩的弹性特性,根据结构变形计算弹性反力作用范围和大小的计算方法。 (2)与结构形式相适应的计算方法 ①矩形框架结构:多用于浅埋、明挖法施工的地下结构。 关于基底反力的分布规律通常可以有不同假定: a.当底面宽度较小、结构底板相对地层刚度较大时假设底板结构是刚性体,则基底反力的大小和分布即可根据静力平衡条件按直线分布假定求得(参见图5.2.1 ( b )。 b.当底面宽度较大、结构底板相对地层刚度较小时,底板的反力与地基变形的沉降量成正比。若用温克尔局部变形理论,可采用弹性支承法;若用共同变形理论可采用弹性地基上的闭合框架模型进行计算。此时假定地基为半无限弹性体,按弹性理论计算地基反力。 矩形框架结构是超静定结构,其内力解法较多,主要有力法和位移法,并由此法派生了许多方法如混合法、三弯矩法、挠角法。在不考虑线位移的影响时,则力矩分配法较为简便。由于施工方法的可能性与使用需要,矩形框架结构的内部常常设有梁、板和柱,将其分为多层多跨的形式,其内部结构的计算如同地面结构一样,只是要根据其与框架结构的连接方式(支承条件),选择相应的计算图式。 ②装配式衬砌 根据接头的刚度,常常将结构假定为整体结构或是多铰结构。根据结构周围的地层情况,可以采用不同的计算方法。松软含水地层中,隧道衬砌朝地层方向变形时,地层不会产生很大的弹性反力,可按自由变形圆环计算。若以地层的标准贯入度N来评价是否会对结构的变形产生约束作用时,当标准贯入度N>4时可以考虑弹性反力对衬砌结构变形的约束作用。此时可以用假定弹性反力图形或性约束法计算圆环内力。当N<2时,弹性反力几乎等于零,此时可以采用白由变形圆环的计算方法。 接头的刚度对内力有较大影响,但是由于影响因素复杂,与实际往往存在较大差距,采用整体式圆形衬砌训算方法是近似可行的。此外,计算表明,若将接头的位置设于弯矩较小处,接头刚度的变化对结构内力的影响不超过5%。 目前,对于圆形结构较为适用的方法有: a.按整体结构计算。对接头的刚度或计算弯矩进行修正;

计算方法大作业非线性方程求根的新方法

计算方法大作业 题目:非线性方程求根的新方法 班级:xxx 学号:xxx 姓名:xxx

非线性方程求根的新方法 一、问题引入 在计算和实际问题中经常遇到如下非线性问题的求解: F(x)=0 (1) 我们经常采用的方法是经典迭代法: 经典迭代方法 不动点迭代方法是一种应用广泛的方法,其加速方法较多,如Stiffensen加速方法的局部收敛阶(以下简称为收敛阶)为2阶;牛顿迭代方法的收敛阶亦为2阶,且与其相联系的一些方法如简化牛顿法、牛顿下山法、弦截法的收敛阶阶数介于1和2之间;而密勒法的收敛阶与牛顿法接近,但计算量较大且涉及零点的选择问题,同时收敛阶也不够理想。 因此本文介绍一种新的迭代方法 从代数角度看,牛顿法和密勒法分别是将f(x)在xk附近近似为一线性函数和二次抛物插值函数,一种很自然的想法就是能否利用Taylor展开,将f(x)在xk附近近似为其他的二次函数?答案是肯定的.其中的一种方法是将f(x)在Xk处展开3项,此时收敛阶应高于牛顿法,这正是本文的出发点. 二、算法推导 设函数f(x)在xk附近具有二阶连续导数,则可将f(x)在xk处进行二阶Taylor展开,方程(1) 可近似为如下二次方程: f(xk)+f’(xk)(x-xk)+2^(-1)f’’(xk)(x-xk)^2=0,(2) 即 2^(-1)f’’(xk)x^2+(f’(xk)-xkf’’(xk))x+2^(-1)f’’(xk)xk^2-xkf’(xk)+f(xk)=0(3) 利用求根公式可得 X=xk-(f’’(xk))^(-1)(f’(xk))-sqrt((f’(xk)^2±2f’’(xk)f(xk)))(4) 其中±符号的选取视具体问题而定,从而可构造迭代公式 X k+1=xk-(f’’(xk))^(-1)(f’(xk))-sqrt((f’(xk)^2±2f’’(xk)f(xk)))(5) 确定了根号前正负号的迭代公式(5),可称为基于牛顿法和Taylor展开的方法,简记为BNT 方法. 为描述方便起见,以下将f(xk),f’(xk),f’’(xk)分别记为f,f’,f’’.首先,二次方程(3)对应于一条抛物曲线,其开口方向由f’’(xk),x∈U(xk)的符号确定,其中U(xk)为xk的某邻域,其顶点为 P(xk-(f’’)^(-1)f’,fk-(2f’’)^(-1)(f’)^2).为使(5)式唯一确定x k+1,须讨论根式前正负号的取舍问题.下面从该方法的几何意义分析(5)式中正负号的取舍. 1)当f(xk)=o时,z。即为所求的根. 2)当f(xk)>O时,根据y=f(x)的如下4种不同情形(见图1)确定(5)式中根号前的符号. (a)当f’’(xk)o时,“±”取为“一”;(b)当f’’(xk)o,f(xk)>o时,“±”取为“一”;(d)当f’’(xk)>o,f(xk)o时,“±”取为“+”;(b)当 f’’(xk)o,f(xk)>o时,“±”取为“+”;(d)当f’’(xk)>o,f(xk)

黄云清版数值计算方法习题解答.docx

第一章 引论(习题) 2. 明 : f ( x) x , x x * x x * x x x * 1 E r ( f ) x x( x x * )xx * x 2 E r ( x) . 3. 明: 令: (a b) fl (a b) fl (a b) 可估 : | fl (a b) | c 1 ( c a b ), 故: | | 1 c t c 1 1 1 t 2 2 于是: fl ( a b) (a b) (1 ) . 4. 解 (1) 2x 2 (1 x) (1 2x) . (2) 2 x . ( x 1 x x 1 x ) 1 cos x sin 2 x sin x . (3) x x(1 cos x) 1 cos x 6.解 a 的相 差:由于 | E( x) | x a 1 10 3 . E r ( x) x a , 2 x E r (x) 1 10 2 1 10 2 . ( Th1) 2 9 18 f (a) 于 f (x) 的 差和相 差 . | E( f ) | | 1 x 1 a |= a x 21 10 3 =10 3 x 1 a 2 0.25 1 | E r ( f ) | 10 3 1 a 4 10 3 . 9. 解 推关系: y n 1 100.01 y n y n 1 (1) 取初 y 0 1, y 1 0.01 算 可得: y 2 100.01 10 2 1 1.0001 1 10 4 y 3 10 6 , y 4 10 8 , y 5 10 10 , ?

(2) 取初值 y 0 1 10 5 , y 1 10 2 , 记: n y n y n , 序列 n ,满足递推关系,且 10 5 , 1 0 n 1 100.01 n n 1 , 于是: 2 10 5 , 3 100.01 10 5 , 4 (100.01) 2 10 5 10 5 , 5 (100.01)3 10 5 200.02 10 5 , 可见随着 n 的主项 (100.01)n 2 10 5 的增长,说明该递推关系式是不稳定的 . 第二章 多项式插值 ( 习 题) 1. 方法一 . 由 Lagrange 插值公式 L 3 ( x) f 0 l 0 ( x) f 1 l 1 (x) f 2 l 2 ( x) f 3 l 3 ( x) l 0 (x) x(x 21 )( x 1) 1 1 1) , ( 1)( 23 )( 2) x( x 2 )( x 3 (x 1)( x 21 )( x 1) 2(x 2 1)( x 21 ) , l 1 (x) 1 2 l 2 (x) (x !1) x( x 1) 8 2 1) x , l 3 ( x 1)x( x 21 ) 1 3 1 1 3 ( x ( x) 1 ( x 1)x( x 2 ) . 2 2 ( 2 ) 2 1 2 可得: L 3 ( x) x 2 ( x 1 2) 方法二 . 令: L 3 (x) x( x 1 2) (Ax B) 由 L 3 ( 1) 3 1 , L 3 (1) , 定 A , B (称之为待定系数法) 2 2 2. 证明 (1) 由于 l i ( x j ) i , j 故: L n ( x) n x i k l i (x) x k j , j 0,1, i 0 ,当 x x j 时 有: L n ( x j ) , n L n ( x) 也即为 x k 的插值多项式,由唯一性,有: n x i k l i (x) x k , k 0,1, , n i 0

工程计算方法及软件应用--本科生考查大作业

工程计算方法与软件应用 本科生大作业 考核方式:考查(成绩按各软件的课外作业成绩综合给出)。 各软件讲完后1~2星期内上交作业。 一、CAD/CAE软件作业(每个学生完成下列任意一题) 题目一: 一端固定支撑,一端集中力的梁,横截面为10x10cm,长为150cm,受集中载荷作用,P=50N。弹性模量E=70GPa,泊松比r=0.2。用ABAQUS 软件建模并计算最大应力和最大位移的位置和大小。 (1)二维;(2)三维 图1梁受力简图

题目二: 图中所示为一个连接件,一端焊接到设备母体上,一端在圆柱销子作用下的圆孔,圆孔下半周受到30 kN的均布载荷作用,用ABAQUS 软件建模并计算最大应力和最大位移的位置和大小。 图2 连接件受力简图 题目三: 如图3所示为一薄壁圆筒,在圆筒中心受集中力F作用,对此进行受力分析,并给出应力、位移云图,并求A、B两点位移。 圆筒几何参数:长度L=0.2m;半径R=0.05m壁厚t=2.5mm。 材料参数:弹性模量E=120Gpa;泊松比0.3 载荷:F=1.5kN。

图3薄壁管受力简图 题目四: 如图4所示为一燃气输送管道截面及受力见图,试分析管道在内部压力作用下的应力场。 几何参数:外径0.6m,内径0.4m,壁厚0.2m 材料参数:弹性模量E=120Gpa;泊松比0.26 载荷P=1Mpa。 图4燃气管受力简图

题目五: 如图5为一三角桁架受力简图,途中各杆件通过铰链链接,杆件材料及几何参数见表1和表2所示,桁架受集中力F1=5kN、F2=2.5kN 作用,求桁架各点位移及反作用力。 图5 三角桁架受力简图 表1 杆件材料参数 表2 杆件几何参数

计算方法作业第一章

习题二 1. 用二分法求方程0134=+-x x 在区间【0.3,0.4】内的根,要求误差不超过2102 1-?。 3.方程0123=--x x 在1.5附近有根,把方程写成4种不同的等价形式,并建立相应的迭代公式。 (1)231x x +=,32 11n n x x +=+ (2)211x x + =,=+1n x 211n x + (3)1 1 2 -= x x ,=+1n x 1 1-n x

(4)132-=x x ,= +1n x 13-n x 4.用迭代法求02.05 =--x x 的正根,要求准确到小数点后第5位 解:迭代公式:512.0+=+x x n 7.用迭代-加速公式求方程x e x -=在x=0.5附近的根,要求准确到小数点后第4位 解:迭代公式:x n e x -+=1,n n x q q x q x ---= +1111 8用埃特金加速法求方程13 -=x x 在区间【1,1.5】内的根,要求准确到小数点后第4位 解:迭代公式:13 1-=+x x n ,13 12-=++n n x x ,n n n n n n n x x x x x x x +--= ++-++122 1 212

9.用牛顿法求方程0133=--x x 在20=x 附近的根,要求准确到小数点后第3位 解:迭代公式:3 31 32 31 ----=+n n n n n x x x x x 11.分别用单点和双点弦截法求方程013 =--x x 在【1,1.5】内的根,要求 51102 1 ||-+?≤ -n n x x 解:单点:)111() 111()1(1 13 1--------- =+n n n n x x x x 双点:)1() 1()1(3 13 1311--------- =---+n n n n n n n n n n x x x x x x x x x x

数值计算方法第五章

第五章 数值拟合及最小二乘法 一、最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数; 二是误差绝对值的和 ∑=m i i r ,即误差向量r 的1—范数; 三是误差平方和∑=m i i r 2 的算术平方根,即误差向量r 的2—范数;前两种方 法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方, 因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 2 [] ∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线 )(x p y =(图6-1)。函数)(x p 称为拟合函数或最小二乘解,求拟合 函数p(x)的方法称为曲线拟合的最小二乘法。 合中,函数类Φ可有不同的选取方法 .

5—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m), Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0)(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。特别地,当n=1 时,称为线性拟合或直线拟合。 显然 ∑∑==-=m i n k i k i k y x a I 0 2 0)( 为n a a a ,,10的多元函数,因此上述问题即为求),,(10n a a a I I =的极值 问题。由多元函数求极值的必要条件,得 n j x y x a a I m i j i n k i k i k j ,,1,0,0)(200 ==-=??∑∑== (2) 即 n j y x a x n k m i i j i k m i k j i ,,1,0, )(0 ==∑∑∑===+ (3) (3)是关于n a a a ,,10的线性方程组,用矩阵表示为 ???? ?? ???? ??????????=????????????????????? ??????????? +∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n m i n i m i n i m i n i m i n i m i i m i i m i n i m i i y x y x y a a a x x x x x x x x m 00010020 10 102000 1 (4) 式(3)或式(4 )称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。从式(4)中解出k a (k=0,1,…,n) ,从而可得多项式

相关文档
相关文档 最新文档