文档库 最新最全的文档下载
当前位置:文档库 › 在线监测与误差补偿技术

在线监测与误差补偿技术

测球半径补偿误差.

三坐标测量机测头的测球半径补偿误差 1950年英国FERRANTI公司制造出第一台数字式测头移动型三坐标测量机、1973年前西德OPTON公司完成三维测头设计并与电子计算机配套推出第一个三坐标测量系统以来,经过几十年的快速发展,坐标测量技术已臻成熟,测量精度得到极大提高,测量软件功能更加强大,操作界面也日益完善,生产厂家遍布全球,开发出了适于不同用途的三坐标测量机型。几十年的发展充分证明,现代三坐标测量系统打破了传统的测量模式,具有通用、灵活、高效等特点,可以通过计算机控制完成各种复杂零件的测量,符合机械制造业中柔性自动化发展的需要,能够满足现代生产对测量技术提出的高精度、高效率要求。 除用于空间尺寸及形位误差的测量外,应用坐标测量机对未知数学模型的复杂曲面进行测量,提取复杂曲面的原始形状信息,重构被测曲面,实现被测曲面的数字化,不仅是坐标测量机应用的一个重要领域,也是反求工程中的关键技术之一,近年来也得到快速发展。 1 测头的分类 测量头作为测量传感器,是坐标测量系统中非常重要的部件。三坐标测量机的工作效率、精度与测量头密切相关,没有先进的测量头,就无法发挥测量机的卓越功能。坐标测量机的发展促进了新型测头的研制,新型测头的开发又进一步扩大了测量机的应用范围。按测量方法,可将测头分为接触式(触发式)和非接触式两大类。触发式测量头又分为机械接触式测头和电气接触式测头;非接触式测头则包括光学显微镜、电视扫描头及激光扫描头等。本文讨论的重点为触发式测头。 (1)机械接触式测头 接触式测头又称为“刚性测头”、“硬测头”,一般用于“静态”测量,大多作为接触元件使用。这种测头没有传感系统,无量程、不发讯,只是一个纯机械式接触头。机械接触式测头主要用于手动测量。由于人工直接操作,故测头的测量力不易控制,只适于作一般精度的测量。由于其明显的缺点,目前这种测头已很少使用。 (2)电气接触式测头 电气接触式测头又称为“软测头”,适于动态测量。这种测头作为测量传感器,是唯一与工件接触的部件,每测量一个点时,测头传感部分总有一个“接触—偏转—发讯—回复”的过程,测头的测端与被测件接触后可作偏移,传感器输出模拟位移量的信号。这种测头不但可用于瞄准(即过零发讯),还可用于测微(即测出给定坐标值的偏差值)。因此按其功能,电气接触式测头又可分为作瞄准用的开关测头和具有测微功能的三向测头。电气接触式测头是目前使用最多的测头。 2 测球半径补偿误差 (1)测针的选择 正确选择和使用测头是影响三坐标测量机的测量精度的重要因素。测针安装在测头上,是测量系统中直接接触工件的部分,它与测头的通讯式连接渠道称作触发信号。如何选用合适的测针类型和规格取决于被测工件的特征,但是在任何情况下,测针的刚性和测球的球度都是不可或缺的。 工业用红宝石是高硬度的陶瓷材料,红宝石测球具有很好的球度,测量时红宝石测球的球头磨损可忽略不计。测针针杆一般用非磁性的不锈钢针杆或碳钨纤维针杆,以保证测针的刚性。测

GPS主要误差源及补偿方法

GPS主要误差源及补偿方法 学院:电子信息工程 专业年级:自动化1306 :熊宇豪 学号:13212054 时间:2016年04月11日 小组:熊峰、熊宇豪、张丹 GPS主要误差源及补偿方法 摘要 GPS测量误差按其生产源可分3大部分:与卫星有关的误差,包括卫星时钟误差、卫星星历误差和相对论效应误差;与信号传播有关的误差,包括电离层折射误差、对流层折射误差和多路径效应误差;与接收机有关的误差,主要包括接收机时钟误差、接收机位置误差、接收机天线相位中心位置误差。 关键词:GPS,误差源。 一、G PS观测中的误差分类 1)与卫星有关的误差:卫星时钟误差、卫星星历误差、相对论效应误差; 2)与信号传播有关的误差:电离层折射误差、对流层折射误差、多路径效应误差; 3)与接收机有关的误差:接收机时钟误差、接收机位置误差、接收机天线相位中心位置误差。 另外在进行高精度GPS测量定位时(进行地球动力学等方面的研究),通常还应该考虑与地球整体运动有关的误差,如地球自转和地球潮汐的影响等。按误差的性质进行区分,上述各种误差有的属于系统误差、有的属于偶然误差。例如,卫星星历误差、卫星时钟误差、接收机时钟误差和大气折射误差等都属于系统误差,而多路径效应误差等是属于偶然误差。其中系统误差比偶然误差无论是从误差本身的大小或是其对测量定位结果影响程度来讲都要大得多,所以说系统误差应该是进行GPS 测量定位时的主要误差源。 二、消除或消弱上述误差影响的基本方法和措施

1. 建立误差改正模型对观测值进行改正,误差改正模型通常有理论模型、经验模型和综合模型。理论模型是通过对误差产生的原因、性质及其对测量定位影响的规律进行研究和分析,并从理论上进行严格的推导而建立起来的误差改正模型。经验模型则是通过对大量的观测数据进行统计分析和研究,并经过拟合而建立起来的误差改正模型。而综合模型则是综合以上两种方法建立起来的误差改正模型。 2. 选择较好的硬件和良好的观测条件,在GPS测量定位中,有的误差是无法利用误差改正模型进行改正的。例如,多路径效应误差的影响是比较复杂的,这与观测站周围的环境有很大的关系。要削弱多路径效应误差的影响,一是选择功能完善的接收机天线:二是在选择GPS点位时远离信号源和反射物。 3. 利用同步观测的方法,并对相应的同步观测值求差分,研究和分析误差对观测值或平差结果的影响情况,制定合理的观测方案和采取有效的数据处理方法。通过对相应的观测值求差分来消除或削弱一些误差的影响。 4. 引入相应的参数,在GPS测量定位中。将某些参数设为未知参数,而将卫星提供的参数值作为未知参数的初始值。在数据处理中与其他未知参数一起进行解算,从而达到削弱误差的影响,提高测量定位结果精度的目的。 三、各种误差对导航和测量定位的影响以及消除措施 3.1与卫星有关的误差 与卫星有关的误差包括卫星时钟误差、卫星星历误差和相对论效应误差。 3.1.1卫星时钟误差 1. 卫星时钟误差通常是指卫星时钟的时间读数与GPS标准时间之间的偏差。虽然在每颗GPS 卫星上都装备有原子钟(艳原子钟和钏原子钟),但是随着时间的积累,这些原子钟与GPS标准时间也会有难以避免的偏差和漂移。通常卫星时钟的偏差总量约在1ms以内(该项误差通常也称为物理同步误差),由此产生的等效距离误差可达300km左右。对于卫星时钟的这种偏差,GPS系统是利用地而监控系统对卫星时钟运行状态进行连续的监测而精确确定的,并以二阶多项式的形式予以表示,A/ = % 3(f)+。心f):+ [y(')d%o为to时刻卫星的钟差、ai为切时刻钟速,az为钟速的变化率,这些参数是由地而监控系统的主控站测定,并通过卫星的导航电文提供给用户使用。计算卫星时钟读数的改正数并加以改正,改正后通常能保证卫星时钟与GPS标准时间的同步误差在20ns 以内(该项误差通常也称为数学同步误差),由此产生的等效距离误差不会超过6m。要想进一步削弱卫星时钟残差对测量定位的影响,可以在不同的观测站上对同一颗卫星进行同步观测,并将相应

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

第五章 装配工艺过程 1、 填空 1.误差补偿方法是 。 人.

第五章装配工艺过程 一、填空 1.误差补偿方法是。 人为地在系统中加入一种新的原始误差去减少、抵消原有的原始误差。 2.加工盘类工件端面时出现中凸、中凹现象是由于。 刀具(刀架)进给方向与主轴(工件回转中心)轴线不垂直 3.调整法保证装配精度时,又有法、法和法。 固定调整法可动调整法误差抵消调整法 4.机器的质量最终是通过保证的。 装配 5.是组成机器的最小单元。 零件 6.在装配工艺规程制订过程当中,表明产品零、部件间相互关系及装配流程的示意图 称为。 装配系统图 7.装配精度包括的内容是精度、精度和精度。 相互位置相对运动相互配合 8.零件的精度特别是(次要、关键)零件的精度直接影响相应的装配精度。 关键 9.装配精度(封闭环)是零件装配后(最后、最初)形成的尺寸或位置关系。 最后 10.选择装配法有三种不同的形式:法、法和复合选配法。 直接选配分组装配 二、选择题 1.将装配尺寸链中组成环的公差放大到经济可行的程度,然后按要求进行装配,以保证装配精度。这种装配方法是。 (1)完全互换法(2)修配装配法(3)调整装配法(4)选择装配法

(4)选择装配法 2.机械结构的装配工艺性是指机械结构能保证装配过程中是相互联结的零件不用或少用(1)机械加工(2)修配(3)修配和机械加工 (3)修配和机械加工 3.所谓划分成独立的装配单元,就是要求 (1)机械加工车间能有独立的装配区间(2)机械结构能划分成独立的组件、部件等(2)机械结构能划分成独立的组件、部件等 4.在机械结构设计上,采用调整装配法代替修配法,可以使修配工作量从根本上 (1)增加(2)减少 (2)减少 5.装配所要保证的装配精度或技术要求,是装配尺寸链的 (1)组成环(2)封闭环 (2)封闭环 6.采用大数互换法装配时计算,装配尺寸链的公差公式是 (1)统计公差公式(2)极值公差公式 (1)统计公差公式 7.采用完全互换法装配时计算,装配尺寸链的公差公式是 (1)统计公差公式(2)极值公差公式 (2)极值公差公式 8.装配尺寸链的最短路线(环数最少)原则,即 (1)“一件一环”(2)“单件自保” (1)“一件一环” 9.由一个零件的精度来保证某项装配精度的情况,称为 (1)“一件一环”(2)“单件自保” (2)“单件自保” 10.在绝大多数产品中,装配时各组成环不需挑选或改变其大小或位置,装配后即能达到装配精度的要求,但少数产品有出现废品的可能性,这种装配方法称为 (1)完全互换法(2)大数互换法 (1)完全互换法

数控机床误差实时补偿技术总结

数控机床实时误差补偿技术的学习总结 第1章绪论 制造业的高速发展和加工业的快速提高,对数控机床加工精度的要求日益提高。一般来说,数控机床的不精确性是由以下原因造成: [1]机床零部件和结构的几何误差; [2]机床热变形误差; [3]机床几何误差; [4]切削力(引起的)误差; [5]刀具磨损误差; [6]其它误差源,如机床轴系的伺服误差,数控插补算法误差。 其中热变形误差和几何误差为最主要的误差,分别占了总误差的45%、20%。提高机床加工精度有两种基本方法:误差防止法和误差补偿法(或称精度补偿法)。 误差防止法依靠提高机床设计、制造和安装精度,即通过提高机床本书的精度来满足机械加工精度的要求。由于加工精度的提高受制于机床精度,因此该方法存在很大的局限性,并且经济上的代价也很昂贵。 误差补偿法是认为地造出一种新的误差去抵消当前成为问题的原始误差,以达到减小加工误差,提高零件加工精度目的的方法。误差补偿法需要投入的费用很小,误差补偿技术是提高机床加工精度的经济和有效的手段,其工程意义非常显著。 误差补偿技术(Error Compensation Technique,简称ECT)是由于科学技术的不断发展对机械制造业提出的加工精度要求越来越高、随着精密工程发展水平的日益提高而出现并发展起来的一门新兴技术。误差补偿技术具有两个主要特性:科学性和工程性。 1.机床误差补偿技术可分为下面七个基本内容: [1]误差及误差源分析; [2]误差运动综合数学模型的建立; [3]误差检测; [4]温度测点选择和优化布置技术; [5]误差元素建模技术; [6]误差补偿控制系统及实施; [7]误差补偿实施的效果检验。 2.数控机床误差补偿的步骤: [1]误差源的分析和检测; [2]误差综合数学模型的建立; [3]误差元素的辨识和建模; [4]误差补偿的执行; [5]误差补偿效果的评价。 3.数控机床误差补偿技术研究的现状: [1]过长的机床特性检测和辨识时间; [2]温度测点布置位置优化; [3]误差补偿模型的鲁棒性; [4]误差补偿系统及实施; [5]五轴数控机床多误差实时补偿问题。 4.数控机床误差补偿技术研究的发展趋势: [1]多误差高效检测方法;

. 三坐标测量机测头的测球半径补偿误差的计算

三坐标测量机测头的测球半径补偿误差的计算 2010-2-5 15:49:00 来源:《工具技术》阅读:161次我要收藏 【字体:大中小】 摘要:介绍了三坐标测量机的发展与测量头的分类,结合实例重点分析了触发式测头的测球半径补偿误差的产生原因、计算方法和预防措施。 1 引言 从1950年英国FERRANTI公司制造出第一台数字式测头移动型三坐标测量机、1973年前西德OPTON公司完成三维测头设计并与电子计算机配套推出第一个三坐标测量系统 以来,经过几十年的快速发展,坐标测量技术已臻成熟,测量精度得到极大提高,测量软件功能更加强大,操作界面也日益完善,生产厂家遍布全球,开发出了适于不同用途的三坐标测量机型。几十年的发展充分证明,现代三标测量系统打破了传统的测量模式,具有通用、灵活、高效等特点,可以通过计算机控制完成各种复杂零件的测量,符合机械制造业中柔性自动化发展的需要,能够满足现代生产对测量技术提出的高精度、高效率要求。 除用于空间尺寸及形位误差的测量外,应用坐标测量机对未知数学模型的复杂曲面进行测量,提取复杂曲面的原始形状信息,重构被测曲面,实现被测曲面的数字化,不仅是坐标测量机应用的一个重要领域,也是反求工程中的关键技术之一,近年来也得到快速发展。 2 测头的分类 测量头作为测量传感器,是坐标测量系统中非常重要的部件。三坐标测量机的工作效率、精度与测量头密切相关,没有先进的测量头,就无法发挥测量机的卓越功能。坐标测量机的发展促进了新型测头的研制,新型测头的开发又进一步扩大了测量机的应用范围。按测量方法,可将测头分为接触式(触发式)和非接触式两大类。触发式测量头又分为机械接触式测头和电气接触式测头;非接触式测头则包括光学显微镜、电视扫描头及激光扫描头等。本文讨论的重点为触发式测头。

FANUC的进给运动误差补偿方法

无锡职业技术学院毕业设计说明书 机械技术学院 毕业设计论文 FANUC的进给运动误差补 偿方法 学生姓名: 指导教师姓名: 所在班级所在专业 论文提交日期论文答辩日期 答辩委员会主任主答辩人 系 年月日

FANUC的进给运动误差补偿方法 目录 毕业设计任务书 (1) 开题报告 (2) 第一章进给运动误差补偿方法 (6) 1.1常见进给运动误差 (7) 1.1.1反向间隙误差补偿 (8) 1.1.2螺距误差补偿 (9) 1.1.3摩擦补偿 (11) 第二章进给误差数据采集与补偿参数的设置 (12) 2.1激光干涉仪 (12) 2.1.1单频激光干涉仪 (12) 3.1 双频激光干涉仪 (13) 3.1.1 雷尼绍激光校准系统 (14) 3.1.2 测量误差分析 (19) 3.2误差补偿参数的设置 (20) 毕业设计总结 (23) 参考文献 (24) 致谢 (25) 外文翻译 (26) 2

无锡职业技术学院毕业设计说明书 机械技术学院 毕业设计任务书 课题名称FANUC的进给运动误差补偿方法 指导教师王小平职称高级技师 专业名称数控设备应用与维护班级数控设备10832 学生姓名尹耀强学号1061083237 课题需要完成的任务: 1.根据课题调研查阅资料,了解国内外现状、进展,编写调研报告。 2.收集技术资料、图纸进行设计或分析探讨。 3.对不同类型设计的分析, 进行方案论证,确定总体方案。 4.完成毕业设计的论文。 5. 3000单词量的外文资料的翻译(专业相关科技类)。 课题计划: 2月21日—2月25日;确定毕业设计课题。 2月28日—3月 4日;收集整理英文翻译资料。 3月 7日—3月11日;查阅技术资料,完成课题的前期调研工作,完成英文翻译。3月14日—3月18日;完成课题相关资料收集,进行毕业论文构思。 3月21日—3月25日;完成毕业论文初稿。 3月28日—4月01日;完成毕业论文初稿。 4月04日—4月08日;修改、完善毕业论文,定稿。 4月11日—4月20日;整理打印毕业设计资料,完成答辩 计划答辩时间: 4月20日 数控技术系(部、分院) 2011 年3月 1 日 1

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

三坐标测量机球头测针补偿技术

三坐标测量机球头测针补偿技术* 李君波 助理工程师(第七一七研究所) 摘 要: 介绍了手动三坐标测量机测头跟踪原理,并分几种情况探讨了使用球头测针进行点位 测量时,被测点坐标值的补偿方法及实现途径。 关键词: 三坐标测量机 球头测针 补偿 * 收稿日期:1999-11-20。 1 引 言 在使用手动三坐标测量机对工件进行多点位测量时,由于被测物体形状各异,工作量很大。因此,提高硬件测量速度、改进操作流程、增强软件容错性及软件智能性等是提高测量效率的主要手段。 2 测头跟踪机制 测头跟踪机制是一种增强软件智能性的技术。其工作原理如下 : 图1 链队列示意图 图2 循环队列示意图 每次测量一个点位,无论是重测还是新测,测针都需要运动一段距离,因此可在软件中设置跟踪机制,自动追踪测针的运动轨迹,根据采集到的测针碰触被测点位之前一段距离的坐标值集C OOR-SE T ={node 1,node 2, ,node n}(node n 为跟踪的最后一个坐标值)。可分析测针从何方位碰触被测点位,再在使用球头测针时自动补偿,而不必在测量之前手动指定测量方位,增强了测量的智能化程度,提高了工作效率。 因为必须保存坐标值集COOR-SET 并且需在测针运动时不断更新数据、加入最新的坐标值、去除最老的坐标值,因此,坐标值集COOR-SE T 构成一个先进先出的队列。可采用两种方式实现,即链队列和循环队列。 若采用链队列的方式,当加入新的结点P 同时删除最老的队头结点时,进行如下操作: new(P); 申请新结点; p->data=xyz data;p->next=NI L; 填入数据域,指针域置空;

数控加工误差主动补偿方法

第16卷第9期计算机集成制造系统 Vol.16No.92010年9月 Computer Integrated Manufacturing Systems Sep.2010 文章编号:1006-5911(2010)09-1902-06 收稿日期:2009-11-17;修订日期:2010-02-26。Received 17Nov.2009;accepted 26Feb.2010. 基金项目:总装备部预研基金资助项目(51318020202)。Fou nda tion item:Project supported by the Gen eral Arm am ent Department Pre -research Foundation,China(No.51318020202). 数控加工误差主动补偿方法 周 静1,陈蔚芳1,曲绍朋2 (1.南京航空航天大学机电学院,江苏 南京 210016;2.北京航空精密机械研究所,北京 100076)摘 要:为提高零件的加工精度,提出了基于公差的局部误差补偿法,并通过修正数控程序主动补偿加工误差。分析零件加工表面误差的特点,根据实际公差要求找出超出公差范围的变形关键区域,修正其切削深度以实现误差的局部补偿。得到刀位控制点修正的切深后,重新规划带有误差补偿值的刀具轨迹。结合实际加工精度确定走刀步距和行距,经过后置处理生成零件修正的数控代码。通过实例验证了上述方法的可行性。 关键词:误差补偿;数控编程;数控加工;薄壁零件中图分类号:T H 164 文献标志码:A Active error compensation methods for numerical control machining ZH O U J ing 1,CH EN Wei -f ang 1,Q U Shao -p eng 2 (1.Colleg e o f M echanical &Electr ical Eng ineer ing,Nanjing U niv er sity of A eronautics &A stro nautics, N anjing 210016,China; 2.China P recision Engineering Inst itute for Aircraft Industr y,Beijing 100076,China) Abstract:T o improv e machining accuracy of w orkpieces,a local er ror compensation method based on to ler ance w as pr oposed.A nd the machining erro rs w ere compensated act ively by mo dif ying Numerical Contro l(NC)codes.Err or values of parts surface wer e analyzed,and acco rding to to lerance r equirements,the cr itical deflectio n areas beyond tolerance r ang e wer e obtained,and actual cutt ing depth of t he ar eas w as amended to com pensat e local err or s.T o ol path w ith err or compensated v alues w as re -planned when actually modified cutting depth w as decided.A nd then step and ro w spacing w ere determ ined accor ding to actual machining accur acy.By post -pro cessing ,modified N C codes wer e achiev ed for wo rkpiece machining.A n ex ample w as used to demo nstr ate the feasibility of this approach.Key words:er ro r compensation;numer ical co nt rol prog ramming ;numerical co nt ro l machining ;t hin -w alled par ts 0 引言 数控加工过程通常分为离线零件编程(加工前)、在线加工与监控(加工中)和检验处理(加工后) 三个阶段。目前,对数控加工质量保证的研究主要侧重于中后期两个阶段[1] 。对于零件加工质量的保证,其主要矛盾是加工过程中的工件由于切削力、夹紧力、切削热和残余应力而产生了变形,薄壁件加工因刚度低,加工变形现象则更为显著。为了加工出合格的薄壁零件,可以在数字控制(Num er ical Co n -trol,NC)加工的前期阶段采取相应的措施控制工 件的变形,如通过修正NC 程序克服薄壁件对基于零件理想几何形状所生成的数控刀具轨迹代码的有效性的限制等。在对薄壁件进行误差主动补偿之前,应充分分析加工变形预测量,采取合理的补偿方法,以达到有效改进加工质量的目的。 目前,国内外有关误差补偿技术的研究成果很多,也存在一些不足。DE p PINCE p P 等人针对刀具加工时受力变形引起工件加工误差的问题,提出考虑公差的镜像补偿法[2];KRIS M Y L 等人研究了

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

数控机床误差补偿技术的研究

数控机床误差补偿技术的研究

目录 摘要 (iv) Abstract (v) 第一章概述........................................................... - 1 - 1.1数控技术的基本概念 (1) 1.1.1 数控技术和数控机床 .......................................... - 1 - 1.1.2数控机床的特点............................................... - 1 - 1.1.3 数控机床的分类 .............................................. - 1 - 1.2误差补偿技术的研究 (1) 1.2.1误差补偿现状................................................. - 2 - 1.3本论文的研究目的意义和研究内容 (3) 1.3.1研究的目的和意义............................................. - 3 - 1.3.2研究的主要内容............................................... - 3 - 1.3.3研究的基本思路和基本方法..................................... - 3 - 第二章数控机床的进给传动系统 ......................................... - 4 - 2.1数控机床对进给传动系统的要求.. (4) 2.2数控机床进给传动装置的结构 (4) 2.2.1滚珠丝杠螺母机构的结构....................................... - 4 - 2.2.2 进给传动误差................................................ - 5 - 2.2.3 电机与丝杠的联接、传动方式 .................................. - 6 - 2.3数控系统的三种控制方式.. (6) 第三章数控机床的精度及可靠性分析 ..................................... - 8 - 3.1数控机床误差的分类 (8) 3.2误差模型简介 (8) 3.2.1 几何误差.................................................... - 8 - 3.2.2 热误差...................................................... - 9 - 3.2.3 运动控制误差................................................- 10 - 3.2.4 其它误差....................................................- 10 - 3.3数控机床的精度 .. (10) 3.4数控机床的精度检查 (11) 3.4.1 机床几何精度的检查 ..........................................- 11 - 3.4.2 机床定位精度的检查 ..........................................- 11 - 3.5数控机床的可靠性 (12)

三坐标测量机测量误差分析及补偿方法的研究

三坐标测量机测量误差分析及补偿方法的研究 发表时间:2019-07-03T11:27:05.697Z 来源:《防护工程》2019年第6期作者:林强[导读] 让测量人员了解三坐标测量过程中的误差来源及如何消除误差,使测量值更接近于实际值,具有较强的工程实践意义。 中车沈阳机车车辆有限公司辽宁省沈阳市 110142 摘要:20世纪60年代初,三坐标测量机(CoordinateMeasuringMachine,简称CMM)首次面市,这是一种精密的高效测量仪器。三坐标测量级的技术基础是计算机,数控,电子技术的极大发展。需求来源是由于数控机床以及零件形状复杂化而产生的配套测量设备的需求。时至今日,三坐标测量机已经由简单的配套设备转变为加工控制设备。在现如今的航天航空、汽车、机加工等行业中被广泛应用。已成为现代工业 检测和质量控制不可缺少的测量设备。因此,使用好CMM,使其在生产中发挥其应有的作用,显得至关重要。测量误差在工程实践中不可避免,让测量人员了解三坐标测量过程中的误差来源及如何消除误差,使测量值更接近于实际值,具有较强的工程实践意义。 关键词:三坐标测量机;测量误差;补偿方法 作为精密测量仪器,三坐标测量机在产品设计、加工制造、检测等领域得到广泛的应用与推广。但在实际的测量过程中,仍然会有测量误差的产生,如测头测针磨损、测量路径选择不当等因素。因此,分析误差源并采取合适的补偿方法,是提高测量精度行之有效的途径。 1三坐标测量机误差分类 根据误差特性的不同,可将误差分为准静态误差和动态误差。准静态误差是指由于外界因素和自身结构引起的误差,而动态误差引起的原因是多方面的,会随时间变化而变化。 2三坐标测量机误差源分析 2.1准静态误差源分析 三坐标测量机静态误差的原因是多方面的,如测量环境的温度、湿度、振动、机导向机构的运动、测头磨损,以及测量方法等不确定因素造成的。 2.2动态误差源分析 三坐标测量机是一个由机体、驱动部分、控制系统、导轨支承、侧头部分、计算机及软件等组成的整体。测量速度会随着测量任务的变化而经常性的变化,在测量过程中,会受到较大的惯性力。由于三坐标测量机的运动部件和导轨是弱刚度性,因此运动部件会在惯性力的作用下产生偏转,测针会偏离正交位置并产生动态误差。 由于三坐标测量机的导轨支承的运动精度会随着三轴的移动速度变化而变化,在此过程中会伴随着测头接触力、测头等效半径和冲击力的变化,导致三坐标测量机的移动速度和逼近距离产生偏差,动态误差随之产生。 3三坐标测量机误差补偿方法 3.1三坐标测量机温度补偿方法 三坐标测量机温度补偿主要由三部分组成:标温下结构参数标定、温度实时采集系统和误差补偿系统。首先测量机利用自身系统获得标准温度下的结构参数,并作为标准结构参数。温度采集系统将采集到的实时温度与当前环境下的温度进行对比和计算,将温度偏差值按照温度热变形误差公式进行实时补偿,反过来,提高了三坐标测量机的测量精度。 3.2动态误差补偿方法 3.2.1软件修正法补偿 根据三坐标测量机的动态误差产生时间节点不同,可分为实时误差与非实时误差。实时误差的补偿方法是对现场的误差数据即时地进行误差补偿,这种方法误差修正精度较高,但需要系统具有伺服驱动,成本较高。非实时误差补偿是对系统采集到的误差数据进行分析校正,这种方法成本低,应用较为广泛。本文采用软件修正的方法对三坐标测量机的动态误差进行非实时误差补偿。该软件使用三次样条原理对误差进行插值计算,并绘出误差曲线图。根据样条函数理论,离散误差点样条函数的节点即是误差点,在三次样条函数拟合后,可以得到误差曲线的模型,拟合精度高,适用性强。 3.2.2测量力误差补偿 测量机在测量过程中,由于受测量力的影响会产生弯曲变形,导致测杆偏离测量理论准确位置,导致测量误差的产生。根据三坐标测量机测头和测杆的结构,建立测杆的弯曲变形模型。 分析上述模型,可得到测量力对测量杆产生的横向位移ωY和压缩ωZ,其计算公式: 根据上式可得到测量力与横向位移、压缩位移的关系。根据上述关系,可按照测量力的大小对测杆的横向位移和压缩位移进行补偿。 3.3确保测头校正的准确性 测头校正的目的,是校正出测杆的红宝石球的直径,进行测量点测头修正,并得出不同测头位置的位置关系。在测头校正时,产生的误差,将全部加入到测量中去。因此,要保证头校正的准确。使用不同测头位置时,在校正完所有测头位置后,要通过测量标准球球心点坐标的方法,来检查校验精度。如果对测量精度的要求比较高,需要重新校正测头,以确保数值精确。 3.4采取正确的测量方法 三坐标测量仪的测针,越短越好。根据测量经验,测针越短,测量结果越准确。对于比较精密的测量,一定要使用比较短的测针进行测量。尽量的减少接头与长杆,也可以提高测量的精度。在使用三坐标测量仪进行测量的时候,要尽量的做到侧头的直径范围尽量的大。因为使用三坐标测量仪进行测量,测头是最重要的一个测量配件,会直接的对测量的结果造成影响。 3.5减小三坐标测量机测量同轴度误差

三坐标测量机的测头半径补偿与曲面匹配

三坐标测量机的测头半径补偿与曲面匹配 李 春 刘书桂 (天津大学精密测试技术与仪器国家重点实验室 天津 300072) 摘要 在非均匀双三次B—样条函数的基础上,导出自由曲面任意点的法矢量通用算法,进而提出自由曲面测头半径补偿公式;为了更好的消除自由曲面测量中的定位误差,提出了应用单纯形法,对测量原始点进行坐标平移和旋转变换,从而较好的解决了曲面匹配问题。 关键词 自由曲面 测头补偿 曲面匹配 The Probe Radius Compensation of Free-form Surface and Surface Matching Li Chun Liu Shugui (State K ey L abor atory of Pr ecision M easur ing T echnology and I nstr ument, T ianj in Univ er sity,T ianj in300072,China) Abstract Based on non-uniform B-splines,a new current algorit hm w it h normal vect or of random f ree-form surf ace's point is deduced,and more,a formula w it h probe compensation is proposed.We offer a arit hmet ic named simplex met hod in order t o eliminat ing orient at ion error in the process of free-form surface measurement.It can sett le surface mat ching well by shif ting and rotating the measuring coordinat e syst em. Key words Free-f orm surf ace Probe compensat ion Surf ace matching 1 引 言 三坐标测量机由于其测量精度和智能化程度较 高,广泛应用于制造业的CAD/CAM、产品检测和质 量控制[1]。用三坐标测量机的球形测头测量自由曲面 时,得到的数据是测头中心轨迹,由于测头总有一定的 半径r,因此测得的是与被测曲面相距r的包络面。为 了得到所需的测量表面,需要求出球心轨迹面所构成 的包络面,这个过程被称为测头半径补偿。在实际测量 过程中,并不能做到实际曲面和标准曲面完全重合,需 要将被测曲面进行旋转、平移等坐标变换,使被测曲面 与标准曲面大致重合,从而达到曲面检测的目的,这个 过程称之为曲面匹配。 2 测头半径补偿方法 用球形测头测量曲面时,测头与被测曲面为点接触, 测头半径补偿的关键是确定曲面在接触点处的法矢。球测头与被测曲面接触时,球心一定在被测点的法线上,而且被测点一定在球心轨迹面过球心点的法线上。因此不论能否得知被测面的法线方向或是球心面的法线方向,都能对测头半径进行补偿。 本文提出了一种新方法,不在测量过程中补偿测头半径,而只是收集测头中心坐标值,然后应用曲面建模理论,计算出球心各点的法矢量值,继而补偿测头半径。 (1)自由曲面的偏导数求法 首先,根据三坐标测量机所得的原始测量点,我们可以反求出双三次B—样条自由曲面的模型[2]: S(u,v)=∑ n i=0 ∑m j=0 N i,4(u)N j,4(v)P i,j(1) 其中N i,4 (u),N j,4 (v)为双三次B—样条基函数, P i,j为控制预点。 先求曲面沿u向的切矢量,即对S(u,v)求偏导: S u(u,v)= u S(u,v) =∑ m j=0 N j,4(v i, 第24卷第4期增刊 仪 器 仪 表 学 报 2003年8月

相关文档