文档库 最新最全的文档下载
当前位置:文档库 › 磁通量及其变化习题精选

磁通量及其变化习题精选

磁通量及其变化习题精选
磁通量及其变化习题精选

一.磁通量及其变化的分析和计算:

1. 磁通量Φ: ①物理意义:某时刻穿过磁场中某个面的磁感线条数,②大小计算: Φ=B ·S ,S 为与B 垂直的面积,不垂直时, 取S 在与B 垂直方向上的投影 ③穿过某个面有方向相反的磁场,则不能直接用Φ=B ·S ,应考虑相反方 向的磁通量抵消以后所剩余的磁通量

2. 磁通量变化量ΔΦ:①物理意义:穿过某个面的磁通量的差值 ②大小计算: ΔΦ= Φ2-Φ1要首先规定正方向 ③与磁场垂直的平面,开始时和转过180°时 穿过平面的磁通量是不同的,一正一负,|ΔΦ|=2BS 而不是零

思考 .磁通量变化有几种形式?

观察下面几个过程

特别提示

(1)磁通量是标量,但有正负之分,正负仅表示穿入或穿出某面,而且是人为规定.

(2)线圈为多匝时,不影响磁通量的计算,即Φ≠NBS ,因为穿过线圈的磁感线

的条数不受匝数影响.

(3)若线圈面积S1大于磁场区域面积S2,如图,那么Φ=BS 中的S 应指闭合

回路中处于磁场中的那部分有效面积S2.

二.感应电流产生的条件

1 电路为闭合电路

2 穿过电路的磁通量发生变化

思考1.只要磁通量变化就有感应电流吗?

2.闭合电路的部分导体只要做切割磁感线运动一定有感应电流吗?

习题1如图所示,一条形磁铁与导线环在同一平面内,磁铁的中心恰与导线环的圆心重合,为了在导线环中产生感应电流,磁铁应( )

A .绕垂直于纸面且过O 点的轴转动

B .向右平动

C .向左平动

D .N 极向外,S 极向里转动

2如图所示,在探究电磁感应现象的实验中,下列在闭合线圈中能产生感应电流的是

A .向线圈中快速插入条形磁铁

B .向线圈中匀速插入条形磁铁

C .把条形磁铁从线圈中快速拔出

D .把条形磁铁静止地放在线圈中

3匀强磁场区域宽为d ,一正方形线框abcd 的边长为L ,且L >d ,线框以速度v 匀速通

过磁场区域,如图所示,线框从进入到完全离开磁场的时间内,线框中没有感应电流的时间是( )

A.L +d v

B.L -d v

C.L +2d v

D.L -2d v

4如图所示,线框abcd 从有界的匀强磁场区域穿过,下列说法中正确的是( )

A .进入匀强磁场区域的过程中,abcd 中有感应电流

B .在匀强磁场中加速运动时,abcd 中有感应电流

C .在匀强磁场中匀速运动时,abcd 中没有感应电流

D .离开匀强磁场区域的过程中,abcd 中没有感应电流

5.如图所示,矩形线框abcd 放置在水平面内,磁场方向与水平方向成α

角,已知sin α=45

,回路面积为S ,磁感应强度为B ,则通过线框的磁通量为( )

A .BS B.4BS 5 C.3BS 5 D.3BS 4

6磁通量是研究电磁感应现象的重要物理量.如图所示,通有恒定电流的导线

MN 与闭合线框共面,第一次将线框由1平移到2,第二次将线框绕cd 边翻转

到2,设先后两次通过线框的磁通量变化分别为ΔΦ1和ΔΦ2,则( )

A .ΔΦ1>ΔΦ2

B .ΔΦ1=ΔΦ2

C .ΔΦ1<ΔΦ2

D .无法确定

7一磁感应强度为B 的匀强磁场,方向水平向右,面积为S 的矩形线圈abcd ,

如图所示放置,平面abcd 与竖直方向成θ角,将abcd 绕ad 轴转180°角,则穿过线圈平面的磁通量变化量为( )

A .0

B .2BS

C .2BS cos θ

D .2BS sin θ

8两个圆环A 、B 如图所示放置,且半径R A >R B ,一条形磁铁的轴线过两个圆环的圆心处,且与圆环平面垂直,则穿过A 、B 环的磁通量ΦA 和ΦB 的关系是( )

A .Φ

A >Φ

B B .ΦA =ΦB

C .ΦA <ΦB

D .无法确定

9.如图所示,两线圈绕在圆环铁芯上,则下列说法中正确的是( )

A .当S 闭合瞬间,小电灯由暗到亮,直至正常发光

B .当S 始终闭合时,小电灯就能正常发光

C .当S 断开瞬间,小电灯由原来的不亮到亮一下

D .上述说法都是错误的

10.金属矩形线圈abcd 在匀强磁场中做如下图所示的运动,线圈中有感应电流的是( )

8.如

图4所示,绕在铁芯上的线圈与电源、滑动变阻器

和电键组成 闭合回路,在铁芯的右端套有一个表面绝缘的铜环A ,下列各种情况中铜环A 中没有感应电流的是 ( )

A .线圈中通以恒定的电流

B .通电时,使滑动变阻器的滑片P 做匀速移动 图4

C .通电时,使滑动变阻器的滑片P 做加速移动

D .将电键突然断开的瞬间

9.如图所示,在竖直向下的匀强磁场中,有一闭合导体环,环面与磁

场垂直,当导体环在磁场中完成下述运动时,可能产生感应电流的是

A.导体环保持水平在磁场中向上或向下运动

B.B.导体环保持水平向左或向右加速平动

C.导体环以垂直环面,通过环心的轴转动

D.导体环以一条直径为轴,在磁场中转动

10.关于磁通量,下列说法中正确的是()

A.磁通量不仅有大小,而且有方向,所以是矢量B.磁通量越大,磁感应强度越大C.通过某一面的磁通量为零,该处磁感应强度不一定为零D.磁通量就是磁感应强度11.如图所示,用导线做成圆形或正方形回路,这些回路与一直导线构成几种位置组合(彼此绝缘),下列组合中,切断直导线中的电流时,闭合回路中会有感应电流产生的是()

12.如图所

示,线圈Ⅰ与电源、开关、滑动变阻器相连,线圈Ⅱ与电流计G相连,线圈Ⅰ与线圈Ⅱ

绕在同一个铁芯上,在下列情况下,电流计G中有示数的是()

A.开关闭合瞬间B.开关闭合一段时间后

C.开关闭合一段时间后,来回移动变阻器滑动端D.开关断开瞬间

13.面积为S的矩形线框abcd,处在磁感应强度为B的匀强磁场中,磁

场方向与线框平面成θ角(如图5所示),当线框以ab为轴顺时针转90°时,

穿过abcd面的磁通量变化量ΔΦ=________.

14匀强磁场的磁感应强度B=0.8 T,矩形线圈abcd的面积S=0.5 m2,共10

匝.开始时,B与S垂直,且线圈有一半在磁场中,如图所示.

(1)当线圈绕ab边转过60°角时,求此时线圈中的磁通量以及此过程中磁通量的变化量.

(2)当线圈绕dc边转过60°角时,求此时线圈中的磁通量以及此过程中磁通量的变化量.

磁通量及其变化量狂练习题

绝密★启用前 2013-2014学年度???学校2月月考卷 试卷副标题 题号 一 二 三 四 五 六 七 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、选择题(题型注释) 1.如图所示,矩形线框abMN 中,M 、N 之间串连着一个电压表,整个装置处于匀强磁场中,磁场的方向与线框平面垂直.当线框向右匀速平动时,下列说法中正确的是 A .MN 间无电势差,电压表无示数 B .MN 间无电势差,电压表有示数 C .MN 间有电势差,电压表无示数 D .MN 间有电势差,电压表有示数 【答案】C 【解析】线框向右匀速平动时,整个装置处于匀强磁场中,线框的磁通量不变,因而MN 间只有电势差,整个线框内没有电流,电压表无示数,C 正确。 2.穿过一个单匝线圈的磁通量始终保持每秒钟减少2Wb ,则 ( ) A .线圈中感应电动势每秒增加2V B .线圈中感应电动势每秒减少2V C .线圈中无感应电动势 D .线圈中感应电动势保持不变 【答案】D 【解析】由公式t E ??Φ = 得线圈中感应电动势保持不变为2V ,D 正确。 3.关于感应电动势大小的说法正确的是( ) A 、线圈中磁通量越大,产生的感应电动势大 B 、线圈中磁通量变化越大,产生的感应电动势大 C 、线圈中磁通量变化越快,产生的感应电动势大 D 、线圈中磁通量增加时感应电动势大,线圈中通量减小时感应电动时减小 【答案】C 【解析】法拉第电磁感应定律的内容是,回路中产生的感应电动势与穿过线圈的磁通量的变化率成正比,与磁通量的大小和磁通量的变化量无关,磁通量的变化率越大磁通量变化越快 4.如图:一条正弦曲线,横轴单位是秒,下列说法中正确的是

《磁感应强度磁通量》说课稿

《磁感应强度磁通量》 一、教材分析 《磁感应强度磁通量》一节是司南版选修3-1第5章《磁场》第3节的内容,这节课之前,第1节是磁场的基本知识,第2节是用磁感线定性描述磁场,这节将从定量的角度来描述磁场。本节内容是以后学习电磁感应的基础,也是电磁学的核心内容之一。 总之,本节内容在教材中具有承上启下的作用,既是前面所学知识的巩固和深化,又为后继内容的学习做出了铺垫。因此,本节是本章教学的重点。 二、学情分析 学生在前两节及初中已对磁场及其描述有了初步了解,已经知道了用磁感线定性描述磁场的方法,已经学习了电场可用电场线和电场强度来描述,这为本节课的类比教学奠定了基础。 三、教学目标 【知识与技能】 (1)理解磁感应强度的定义,知道它是描述磁场强弱的物理量; (2)会对磁感应强度进行合成与分解; (3)理解什么是磁通量,知道其与磁感应强度的关系,并能进行磁通量的计算,能初步判断磁通量的变化情况 【过程与方法】 通过“感受磁场的强弱”等实验,提高收集信息和处理信息、得出物理结论、分析和解决问题的能力。 【情感态度与价值观】 关注与磁相关的现代技术的发展状况与趋势,有将科学服务于人类的意识。 四、教学重点、难点 【重点】 理解磁感应强度的意义,知道磁通量与磁感应强度的关系 【难点】 1、磁感应强度概念的建立; 2、磁通量大小的影响因素及磁通量的正负。 原因: 1、学生尚未学习电流所受安培力,无法用F=BIL给出磁感应强度定义式,使得学生无 法对磁感应强度与电场强度进行公式上的比较;

2、学生空间想象能力不足,无法抽象出磁通量大小的影响因素尤其是角度,另外学生 尚未接触面矢量,故对磁通量的正负较难理解。 突破: 1、用演示实验和有关磁感线的基本知识层层设问的方法建立磁感应强度的概念; 2、淋浴花洒实验解决磁通量大小影响因素问题,通过与之前学过的功、矢量、势 能对比的方法,加深对磁通量正负的理解。 五、教法学法 教法:演示实验、启发、类比 学法:观察分析、类比推理、归纳总结 六、教学流程及操作 依据本节教材的编排,依据学生的认识规律,我设计了下面的教学流程和相 应的具体操作: 教学流程: 演示实验导入新课→层层设问课件演示得磁感应强度定义→类比得匀强磁场定义→磁 通量定义→例题训练→实验探究磁通量大小的影响因素→得φBS关系→指出磁通量变化含 义→例题训练→课堂练习→课堂小结→作业布置 具体操作: 【演示实验引入新课】(5分钟) 实验一:磁场中小磁针位置不同,指向不同; 结论:磁场有方向。 实验二:不同电磁铁能够吸引铁钉数目不同; 结论:磁场有强弱。 提出问题:怎样描述磁场的强弱和方向? 学生回答:磁感线。 继续提问: 1、如何用磁感线描述磁场的强弱和方向? 切线方向:磁场方向(小磁针静止时北极的指向) 疏密:磁场强弱 2、电场除了用电场线描述外,还可用哪个量来描述? 既然电场的强弱和方向可用电场强度来描述,那么类似地磁场的强弱和方向也可用一个

磁通量及磁通量的变化专题训练

磁通量及磁通量的变化专题训练 磁通量φ及磁通量Δφ的变化是磁场理论中一个很重要的基本概念 1、磁通量φ 磁感应强度B与垂直于磁场方向的面积S的乘积叫做穿过这个面积的磁通量,定义式为φ=BS。如果面积S与磁感应强度B不垂直,可将磁感应强度B向着垂直于面积S和平行于面积S和方向进行正交分解,也可以将面积向着垂直于磁感应强度B的方向投影[这两种方法的基本物理原理是:B∥S时,φ=0;B⊥S时,φ为最大(BS)]。 2、磁通量的变化Δφ 由公式:φ=BS可得 BΔS(实际面积的变化、与磁感应强度间夹角的变化,就是有效面积的变化)Δφ=SΔB(B是矢量,它的变化有三种情况) ΔSΔB(B是矢量,它的变化有三种情况) 可见磁通量φ是由B、S及角度θ共同决定的,磁通量的变化情况应从这三个方面去考虑 巩固练习 一、选择题 1、下列关于磁通量的说法中,正确的是 A.穿过一个面的磁通量等于磁感应强度与该面面积的乘积 B.在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C.穿过一个面的磁通量就是穿过该面单位面积的磁感线的条数D.穿过一个面的磁通量就是穿过该面的磁感线的条数 2、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa、φb的大小关系为A.φa>φb B.φa<φb C.φa=φb D.无法比较 3、一磁感应强度为B的匀强磁场方向水平向右,一面积为S的矩形线圈abcd如图所示放置,平面abcd与竖直方向成θ角。将abcd绕ad 轴转180°角,则穿过线圈平面的磁通量的变化量为 A.0 B.2BS C.2BScosθD.2BSSinθ 4、如图所示,矩形线框abcd的长和宽分别为2L和L,匀强磁场的磁感应强度为B,虚线为磁场的边界。若线框以ab边为轴转过60°的过程中,穿过线框的磁通量的变化情况是 A.变大B.变小 C.不变D.无法判断

高中物理选修3-2《磁通量》教案(人教版)

教学目标 知识目标 1、知道决定感应电动势大小的因素; 2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能对“磁通量的变化量”、“磁通量的变化率”进行区别; 3、理解法拉第电磁感应定律的内容和数学表达式; 4、会用法拉第电磁感应定律解答有关问题; 5、会计算导线切割磁感线时感应电动势的大小; 能力目标 1、通过学生实验,培养学生的动手能力和探究能力. 情感目标 1、培养学生对实际问题的分析与推理能力。培养学生的辨证唯物注意世界观,尤其在分析问题时,注意把握主要矛盾. 教学建议 教材分析 理解和应用法拉第电磁感应定律,教学中应该使学生注意以下几个问题: ⑴要严格区分磁通量、磁通量的变化、磁通量的变化率这三个概念. ⑵求磁通量的变化量一般有三种情况: 当回路面积不变的时候,;

当磁感应强度不变的时候,; 当回路面积和磁感应强度都不变,而他们的相对位置发生变化(如转动)的时候,(是回路面积在与垂直方向上的投影). ⑶E是时间内的平均电动势,一般不等于初态和末态感应电动势瞬时值的平均值,即: ⑷注意课本中给出的法拉第电磁感应定律公式中的磁通量变化率取绝对值,感应电动势也取绝对值,它表示的是感应电动势的大小,不涉及方向. ⑸公式表示导体运动切割磁感线产生的感应电动势的大小,是一个重要的公式.要使学生知道它是法拉第电磁感应定律的一个特殊形式,当导体做切割磁感线的运动时,使用比较方便.使用它计算时要注意B、L、v这三个量的方向必须是互相垂直的,遇到不垂直的情况,应取垂直分量. 建议在具体教学中,教师帮助学生形成知识系统,以便加深对已经学过的概念和原理的理解,有助于理解和掌握新学的概念和原理.在法拉第电磁感应定律的教学中,有以下几个内容与前面的知识有联系,希望教师在教学中加以注意: ⑴由“恒定电流”知识知道,闭合电路中要维持持续电流,其中必有电动势的存在;在电磁感应现象中,闭合电路中有感应电流也必然要存在对应的感应电动势,由此引出确定感应电动势的大小问题. ⑵电磁感应现象中产生的感应电动势,为人们研制新的电源提供了可能,当它作为电源向外供电的时候,我们应当把它与外电路做为一个闭合回路来研究,这和直流电路没有分别; ⑶用能量守恒和转化来研究问题是中学物理的一个重要的方法.化学电源中的电动势表征的是把化学能转化为电能的本领,感应电动势表征的是把机械能转化为电能的本领.

磁感应强度磁通量练习题

磁感应强度、磁通量 1. 关于磁通量的说法正确的是( ) A.磁通量是个反映磁场强弱和方向的物理量 B.某一面积上的磁通量可表示穿过此面积的磁感线的总条数 C.在磁场中所取的面积越大,该面上磁通量一定越大 D.穿过任何封闭曲面的磁通量一定为零 2. 下列有关磁感应强度及安培力的说法正确的有() A.若某处的磁感应强度为零,则通电导线放在该处所受安培力一定为零 B.通电导线放在磁场中某处不受安培力的作用时,则该处的磁感应强度一定为零 C.同一条通电导线放在磁场中某处所受的安培力是一定的 D.磁场中某点的磁感应强度与该点是否放通电导线无关 3.下列单位中,相当于特斯拉的是() A.韦伯/米2B.牛顿/安培·米C.牛顿/库仑·米D.伏特·米/秒2 4. 已知地磁场的水平分量为B,利用这一值可以测定某一弱磁场的磁感强度,如图所示为测定通电线圈中央一点的磁感强度.实验方法:①先将未通电线圈平面固定于南北方向竖直平面内,中央放一枚小磁针N极指向北方;②给线圈通电,此时小磁针N极指北偏东θ角后静止,由此可以确定线圈中电流方向(由东向西看)与线 圈中央的合磁感强度分别为( ) A.顺时针;B cos θB.顺时针;B sin θ C.逆时针;B cos θD.逆时针;B sin θ 5. 在xOy水平面中有一通电直导线,与y轴平行,导线中电流方向如图所示,该区域有匀强磁场,通电导线所受磁场力的方向与Oz轴正方向相同,该磁场的磁感应强度的方向是( ) A.沿x轴负方向且一定沿x轴负方向 B.一定沿y轴负方向 C.可能沿z轴正方向 D.可能沿x轴负方向 6.如图所示,为某磁场的一条磁感线,由此可以判定( ) A.a、b两点的磁感应强度大小一定相等 B.a、b两点的磁感应强度的方向可能相同 C.a处的磁感应强度大于b处磁感应强度 D.a、b两点的磁感应强度大小可能相等 7. 如图所示,一根有质量的金属棒MN,两端用细软导线连接后悬于 a、b两点,棒的中部处于方向垂直纸面向里的匀强磁场中,棒中通有电流,方向从M流向N,此时悬线上有拉力,为了使拉力等于零,可以() A.适当减小磁感应强度B.使磁场反向 C.适当增大电流D.使电流反向 8. 如图,长为2l的直导线折成边长相等,夹角为60°的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B.当在该导线中通以电流强度为I的电流时,该V形通电导线受到的安培力大小为( ) A.0 B.C.BIl D.2BIl a b B

磁通量不变也有感应电流(经典)

磁通量不变也有感应电流 在学习了电磁感应现象后,我们都知道,产生感应电流必须具备两个条件:①电路闭合。②磁通量发生变化。笔者认为不能死记这一结论。在遇到具体问题时,要灵活处理。举例如下: 例1. 如图1所示,一闭合的圆形导电线圈用一根绝缘的细杆挂在固定点O,线圈绕竖直线OP来回摆动的过程中穿过水平方向的匀强磁场区域,磁感线方向与竖直面垂直,不计空气阻力。则() A. 线圈进入和离开磁场区域时都有感应电流产生,而且感应电流的方向相反; B. 线圈进入磁场区域后越靠近竖直线OP时速度越大,产生的感应电流也越大; C. 线圈开始摆动后,摆角会越来越小,摆角小到某一数值后不再减小; D. 线圈在摆动过程中,机械能将完全转化为线圈中的电能。 解析:这道习题很多同学做错,他们认为:当线圈完全进入磁场后,磁通量不变,不产生感应电流,机械能保持不变。 事实上,当线圈完全进入磁场后摆动时,虽然不产生感应电流,但线圈左右两边在做切割磁感线运动,上下两端存在电势差。当线圈向右摆动时,线圈的上端聚集了正电荷,下端聚集了负电荷,上端的电势高于下端的电势;当线圈向左摆动时,线圈的上端聚集了负电荷,下端聚集了正电荷,下端的电势高于上端的电势。也就是说当线圈左右摆动时,其上下两端将出现交变电压,以及交变电压引起的瞬间的交变电流,这一交变电流的存在要消耗能量。由能量转化和守恒定律可知,线圈的机械能将不断减小,直到完全转化为线圈中产生的电能,线圈最终停止摆动。正确答案应为A、D。 例2. 某装置的俯视图如图2,均匀辐向分布的磁场中有一铝环自由下落(平动、环平面始终水平),若环所在处的磁感应强度为B、铝环的电阻率为、横截面为S。求:(1)铝环下落速度为v时,环中感应电流的表达式。(2)若铝的密度为D,不计空气阻力,求铝环下落的最大速度。

因磁通量变化产生感应电动势的现象

因磁通量变化产生感应电动势的现象,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应。闭合电路的一部分导体在磁场中做切割磁感线运动,导体中就会产生电流。这种现象叫电磁感应现象。产生的电流称为感应电流。这是初中物理课本为便于学生理解所定义的电磁感应现象,不能全面概括电磁感现象:闭合线圈面积不变,改变磁场强度,磁通量也会改变,也会发生电磁感应现象。所以准确的定义如下:因磁通量变化产生感应电动势的现象。 电感(inductance of an ideal inductor)是闭合回路的一种属性。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”。 电感是闭合回路的一种属性,即当通过闭合回路的电流改变时, 会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。 自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。 互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。 法拉第在西元1831年8月29日发明了一个“电感环”。这是第一个变压器,但法拉第只是用它来示范电磁感应原理,并没有考虑过它可以有实际的用途。

磁通量、磁通量的变化及磁通量变化率

1 磁通量、磁通量的变化专题训练 一、选择题 1、下列关于磁通量的说法中,正确的是 A .穿过一个面的磁通量等于磁感应强度与该面面积的乘积 B .在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C .穿过一个面的磁通量就是穿过该面单位面积的磁感线的条数 D .穿过一个面的磁通量就是穿过该面的磁感线的条数 2、如图所示,两个同心放置的共面金属圆环a 和b ,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa 、φb 的大小关系为 A .φa >φb B .φa <φb C .φa =φb D .无法比较 3、一磁感应强度为B 的匀强磁场方向水平向右,一面积为S 的矩形线圈abcd 如图所示放置,平面abcd 与竖直方向成θ角。将abcd 绕ad 轴转180°角,则穿过线圈平面的磁通量的变化量 为 A .0 B .2BS C .2BScos θ D .2BSSin θ 4、如图所示,矩形线框abcd 的长和宽分别为2L 和L ,匀强磁场的磁感应 强度为B ,虚线为磁场的边界。若线框以ab 边为轴转过60°的过程中, 穿过线框的磁通量的变化情况是 A .变大 B .变小 C .不变 D .无法判断 5、如图所示,两直导线中通以相同的电流I ,矩形线圈位于导线之间。将线圈 由实线位置移到虚线位置的过程中,穿过线圈的磁通量的变化情况是 A .向里,逐渐增大 B .向外,逐渐减小 C .先向里增大,再向外减小 D .先向外减小,再向里增大 6、如图所示条形磁铁竖直放置,闭合的金属线框水平地紧挨着磁铁从A 端移至B 端的过程中,穿过 线框的磁通量的变化情况是 A .变大 B .变小 C .先变大后变小 D .先变小后变大 7、如图所示,匀强磁场中放有平行的铜导轨,它与大线圈M 相连,小线圈N 放在大线圈M 内,裸金属棒ab 在导轨上做某种运动。则下列说法中正确的是 A .若ab 向右匀速运动,穿过小线圈N 的磁通量向里且增大 B .若ab 向左加速运动,穿过小线圈N 的磁通量向外且增大 C .若ab 向右减速运动,穿过小线圈N 的磁通量向里且减小 D .若ab 向左减速运动,穿过小线圈N 的磁通量向里且减小 8、如图所示,一水平放置的圆形通电线圈1固定,另有一个较小的圆形线圈2从1的正上方下落,在下 落过程中两线圈平面始终保持平行且共轴,则线圈2从1的正上方下落到1的正下方的过程中,穿过线圈 2的磁通量φ A .为零且保持不变 B .不为零且保持不变 C .先向上增大,再向上减小 D .先向上增大,再向下减小 c d I

磁场叠加磁通量习题

磁场叠加磁通量习题 1.如图所示,一水平放置的通电螺线管接通电源,电源的左端为正极,螺线管内部中心为O点,P为螺线管外一点,且位于O点正上方,Q为螺线管外靠右端的一点,则( ) A.O点磁场方向水平向左 B.P点磁场方向水平向右 C.P点磁感应强度比Q点大 D.Q点磁感应强度比O点小 2.如图所示电路连接中,当开关闭合时,下列说法正确的是 A.螺线管上端N极,滑片P向右移,弹簧测力计示数减小 B.螺线管上端S极,滑片P向右移,弹簧测力计示数增大 C.螺线管上端N极,滑片P向左移,弹簧测力计示数减小 D.螺线管上端S极,滑片P向左移,弹簧测力计示数增大 3.如图所示,互相平行的三根通电长直导线A、B、C,刚好穿过等边三角形的三个顶点,三根导线的电流大小相等,方向垂直纸面向外,则C受到的磁场力的方向是() A.平行C,指向x轴正方向 B.平行C,指向y轴正方向 C.垂直C,指向y轴负方向 D.垂直C,指向x轴负方向 4.图中a、b、c为三根与纸面垂直的长直导线,其横截面位于正三角形的三个顶点上,导线中通有大小相同的电流,方向如图所示。可以判断出a、b两长直导线在c导线处产生的磁感应强度方向是 A.向上B.向下 C.向左D.向右 5.纸面内有一个等边三角形PMN,在MN两顶点处可能有两个负点电荷,每个电荷在顶点P产生的电场强度大小均为E,也可能有两根通电直导线通有垂直于纸面向里的电流,每根导线中的电流在顶点P产生的磁感应强度大小均为B.关于P点的电场强度或磁感应强度,下列说法正确的是() A.电场强度为E,方向竖直向下 B.电场强度为,方向竖直向上 C.磁感应强度为,方向水平向右 D.磁感应强度为B,方向竖直向上 6.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相

磁通量公式使用条件备课讲稿

磁通量公式使用条件

磁通量公式使用条件 公式 Φ=BS,适用条件是B与S平面垂直。如图,当S与B的垂面存在夹角 θ时,Φ=B·S·cosθ。 单位 在国际单位制中,磁通量的单位是韦伯,是以德国物理学家威廉·韦伯的名字命名的。Weber,符号是Wb,1Wb=1T*m2=1V*S,是标量,但有正负,正负仅代表穿向。 韦伯可以用法拉第电磁感应定律来推导。1韦伯=108(1亿)麦克斯韦。 性质 通过某一平面的磁通量的大小,可以用通过这个平面的磁感线的条数的多少来形象地说明。在同一磁场中,磁感应强度越大的地方,磁感线越密。因此,B 越大,S越大,磁通量就越大,意味着穿过这个面的磁感线条数越多。过一个平面若有方向相反的两个磁通量,这时的合磁通为相反方向磁通量的代数和(即相反合磁通抵消以后剩余的磁通量)。 磁场的高斯定理指出,通过任意闭合曲面的磁通量为零,即它表明磁场是无源的,不存在发出或会聚磁力线的源头或尾闾,亦即不存在孤立的磁单极。以上公式中的B既可以是电流产生的磁场,也可以是变化电场产生的磁场,或两者之和。 磁通密度是通过垂直于磁场方向的单位面积的磁通量,它等于该处磁场磁感应强度的大小B。磁通密度精确地描述了磁力线的疏密。

通量概念是描述矢量场性质的必要手段,通量密度则描述矢量场的强弱。磁通量和磁通密度,电通量和电通密度都是如此。 通电导体与磁场方向垂直时,它受力的大小既与导线长度L成正比,又与导线中的电流I成正比,即与I和L的乘积IL成正比,公式是F=ILB,式中B是磁感应强度。 磁通量的定义为覆盖某面积的磁场的积分 其中Φ为磁通量,B为磁感应强度,S为面积。已知高斯磁场定律为: Φ=BS。 这条方程的体积积分,跟散度定理合用,给出以下的结果: 亦即是说,通过任何密闭表面的磁通量一定为零;自由“磁电荷”是不存在的。 对比下, 另一条麦克斯韦方程──高斯电场定律为:∫∫E.ds=Q/ε0 其中E为电场强度, ρ为自由电荷的密度(不包括在物料中被束缚的双极电动机原理图解电荷), ε0为真空介电常数。注意这指出了电单极的存在,也就是,自由的正或负电荷。 磁通量密度向量的方向定义为从磁南极到磁北极(磁铁里面)。在磁铁外,场线会由北到南。 若磁场通过能导电的电线环,而磁通量的改变的话,会引起电动势的生成, 并因此会产生电流(在环中)。其关系式可由法拉第定律得出,这就是发电机发电的原理。

磁通量及磁通量的变化专题训练

磁通量及磁通量的变化专题训练 一、选择题 1、下列关于磁通量的说法中,正确的是 A .穿过一个面的磁通量等于磁感应强度与该面面积的乘积 B .在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C .穿过一个面的磁通量就是穿过该面单位面积的磁感线的条数 D .穿过一个面的磁通量就是穿过该面的磁感线的条数 2、如图所示,两个同心放置的共面金属圆环a 和b ,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa 、φb 的大小关系为 A .φa >φ b B .φa <φb C .φa =φb D .无法比较 3、一磁感应强度为B 的匀强磁场方向水平向右,一面积为S 的矩形线圈abcd 如图所示放置,平面abcd 与竖直方向成θ角。将abcd 绕ad 轴转180°角,则穿过线圈平面的磁通量的变化量为 A .0 B .2BS C .2BScos θ D .2BSSin θ 4、如图所示,矩形线框abcd 的长和宽分别为2L 和L ,匀强磁场的磁感应强度为B ,虚线为磁场的边界。若线框以ab 边为轴转过60°的过程中,穿过线框的磁通量的变化情况是 A .变大 B .变小 C .不变 D .无法判断 5、如图所示,两直导线中通以相同的电流I ,矩形线圈位于导线之间。将线圈由实线位置移到虚线位置的过程中,穿过线圈的磁通量的变化情况是 A .向里,逐渐增大 B .向外,逐渐减小 C .先向里增大,再向外减小 D .先向外减小,再向里增大 6、如图所示条形磁铁竖直放置,闭合的金属线框水平地紧挨着磁铁从A 端移至B 端的过程中,穿过线框的磁通量的变化情况是 A .变大 B .变小 C .先变大后变小 D .先变小后变大 7、如图所示,匀强磁场中放有平行的铜导轨,它与大线圈M 相连,小线圈N 放在大线圈M 内,裸金属棒ab 在导轨上做某种运动。则下列说法中正确的是 A .若ab 向右匀速运动,穿过小线圈N 的磁通量向里且增大 B .若ab 向左加速运动,穿过小线圈N 的磁通量向外且增大 C .若ab 向右减速运动,穿过小线圈N 的磁通量向里且减小 D .若ab 向左减速运动,穿过小线圈N 的磁通量向里且减小 8、如图所示,一水平放置的圆形通电线圈1固定,另有一个较小的圆形线圈2从1的正上方下落,在下落过程中两线圈平面始终保持平行且共轴,则线圈2从1的正上方下落到1的正下方的过程中,穿过线圈2的磁通量φ A .为零且保持不变 B .不为零且保持不变 C .先向上增大,再向上减小 D .先向上增大,再向下减小 9、如图所示,螺线管CD 的绕法不明,当磁铁AB 分别以不同的速度V 1(A 端向下)和V 2(B 端向下)(V 1 <V 2)插入螺线管时,电路中有如图所示的感应电流。则下列说法中正确的是 A .两种情况下,穿过螺线管CD 的磁通量都是增大的 B .两种情况下,穿过螺线管CD 的磁通量的变化是相等的 C .以速度V 1插入时穿过螺线管C D 的磁通量的变化率比以速度V 2插入时小 D .以速度V 1插入时穿过螺线管CD 的磁通量的变化率比以速度V 2插入时大 10、一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强 c d C D A B

磁感应强度、磁通量练习题

第3节几种常见的磁场磁通量 1.关于磁感线说法正确的是( D)A.磁感线是磁场中实际存在的线B.条形磁铁磁感线只分布于磁铁外部 C.当空中存在几个磁场时,磁感线有可能相交 D.磁感线上某点的切线方向就是放在这里的小磁针N极受力的方向 2.如图,带负电的金属圆盘绕轴OO′以角速度ω匀速旋转,在盘左侧轴线上的小磁针最后平衡的位置是( C ) A.N极竖直向上B.N极竖直向下C.N极沿轴线向右D.N极沿轴线向左 2题 3题 4题 5题 3. 如图,螺线管中通有电流,如果在图中的a、b、c三个位置上各放一个小磁针,其中a在螺线管内部,则( BD ) A.放在a处的小磁针的N极向左B.放在b处的小磁针的N极向右 C.放在c处的小磁针的S极向右D.放在a处的小磁针的N极向右 4.如图,两个同样的导线环同轴平行悬挂,相隔一小段距离.当同时给两个线圈同方向电流时,两导线环将( A ) A.吸引 B.排斥 C.保持静止 D.边吸引边转动 5.如图,在线圈中心处挂上一个小磁针,且与线圈在同一平面内,则线圈中通以如图所示方向的电流时( A ) A.小磁针N极向里转B.小磁针N极向外转C.小磁针在纸面内向左摆动D.小磁针在纸面内向右摆动 6.假设一个电子在地球表面随地球自转,则( B ) A.它由东向西绕赤道运动能产生与地磁场相似的磁场 B.它由西向东绕赤道运动能产生与地磁场相似的磁场 C.它由南向北绕子午线运动能产生与地磁场相似的磁场 D.它由北向南绕子午线运动能产生与地磁场相似的磁场 解析:选B.形成地磁场的环形电流应该是自东向西,电子运动形成环形电流,它的绕行方向是自西向东. 7.如图,弹性线圈AB,当它通电时,正确的是( D ) A.当电流从A→B时,线圈长度增加,当电流反向后线圈长度减小 B.当电流从B→A时,线圈长度增加,当电流反向后线圈长度减小 C.不管电流方向如何,线圈长度都增加 D.不管电流方向如何,线圈长度都减小 8. 如图,直导线平行于通电螺线管的轴线放置在螺线管的上方,如右图所示,如果直导线可以自由地运动,且通以从a 到b的电流,则导线ab受磁场力后的运动情况( C ) A.从上向下看,顺时针转动并靠近螺线管 B.从上向下看,顺时针转动并远离螺线管 C.从上向下看,逆时针转动并远离螺线管 D.从上向下看,逆时针转动并靠近螺线管 9.如图,两根互相绝缘、垂直放置的直导线ab和cd,分别通有方向如图的电流,若通电导线ab固定小动,导线cd能 自由运动,则它的运动情况是( C ) A. 顺时针转动,同时靠近导线ab B. 顺时针转动,同时远离导线ab C. 逆时针转动,同时靠近导线ab D. 逆时针转动,同时远离导线ab 10.如图,三条长直导线都通以垂直于纸面向外的电流,且I1=I2=I3,则距三导线等距的A点的磁场 方向为( B )A.向上 B.向右C.向左 D.向下 11.关于磁现象的电本质,说法正确的是(AD ) A.一切磁现象都起源于运动电荷,一切磁作用都是运动电荷通过磁场而发生的 B.除永久磁铁外,一切磁场都是由运动电荷产生的 C.有磁必有电,有电必有磁 D.据安培分子电流假说,在外界磁场作用下,物体内部分子电流取向变得大致相同时,物体就被磁化,两端形成磁极

磁通量的变化讲解学习

1. 磁通量Φ:①物理意义:某时刻穿过磁场中某个面的磁感线条数,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大,因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大。 ②大小计算:Φ=BS⊥或φ=SB⊥ Φ=B·S,S为与B垂直的面积,不垂直时,取S在与B垂直方向上的投影, 我们称之为“有效面积”。 如图所示,线圈平面与水平方向成θ角,磁感线竖直向下,设磁感应强度为B, 线圈面积为S,把面积S投影投影到与磁场垂直的方向即水平方向,则S⊥=Scosθ,故φ=BS⊥=BScosθ。 把磁感应强度B分解为平行于线圈平面的分量B∥和垂直与线圈平面的分量B⊥,B∥不穿过线圈,且B⊥=Bcosθ,故φ=B⊥S=BScosθ。 如果磁场范围有限,如图所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内, 一半在磁场外,当线框以bc边为轴转动时,如果转动的角度小于60度,面积S在垂直与 磁感线方向且在磁场中的投影不变,这时“有效面积”为S/2,磁通量φ=BS/2. 如果磁场范围有限,如图示,当线圈包含全部磁场时,面积再扩大,磁通量扔不变,还是φ=BS. ③磁通量是标量,但有正负之分,正负仅表示穿入或穿出某面,而且是人为规定。 穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁通量抵消以后 所剩余的磁通量。若磁感线沿相反方向穿过同一平面,且正向穿过它的磁通量为φ1,反向穿过它的磁通量为φ2,则穿过该平面的磁通量等于磁通量的代数和,即φ1-φ2. ○4多匝线圈的磁通量:穿过某一线圈的磁通量是由穿过该面的磁感线条数的多少决定的,与线圈匝数无关,只要n匝线圈的面积相同,放置情况也相同,则通过n匝线圈与通过单匝线圈的磁通量相同,即Φ≠NBS 2.磁通量变化量ΔΦ:①物理意义:穿过某个面的磁通量的差值 ②大小计算:ΔΦ=Φ2-Φ1要首先规定正方向 ③与磁场垂直的平面,开始时和转过180°时穿过平面的磁通量是不同的,一正一负,|ΔΦ|=2BS而不是零 磁通量发生变化的四种情形 ①磁感应强度B不变,有效面积S变化,则△φ=φt-φ0=B?△S。 如图所示,闭合回路的一部分导体切割磁感线,此时穿过abcd面 的磁通量的变化量可用此公式计算。 ②磁感应强度B变化,磁感线穿过的有效面积S不变,则△φ=φt-φ0=△B?S。如图(8)所示,通电直导线下边有一个矩形线框,若使线框逐渐远离(平动)通电导线,此时穿过线框的磁通量的变化量可用此公式计算。 ③线圈平面与磁场方向的夹角θ发生变化时,线圈在垂直与磁场方向的投影面积S⊥=Ssinθ发生变化,从而引起穿过线圈的磁通量发生变化,即B、S不变,θ变化。此时可由△φ=φt-φ0=BS(sinθ1-sinθ2)计算并判断磁通量的变化。如图所示,当线框以ab为轴顺时针转动时,此时穿过abcd面的磁通量的变化量可由此公式计算。○4若磁感应强度B和回路面积S同时发生变化,则△φ=φt-φ0≠△B?△S.如图所示,若导线CD向右滑动,回路面积从S1变到S2,磁感应强度B从变到,则回路中的磁通量的变化量△φ=B2S2- B1S1

磁感应强度、磁通量教学设计

课题:磁感应强度磁通量 【教学目标】 1、知识与技能 ⑴.理解磁通量,知道磁通量可以粗略描述某一区域磁场的分布情况; ⑵.理解磁感应强度,知道磁感应强度的定义方法; ⑶.知道磁感应强度和磁通量的关系。 2、过程与方法 ⑴.回顾库仑、奥斯特、法拉第、安培等物理学家对磁现象的研究历程,感受大师们研 究物理问题的科学态度和思维方法。 ⑵.充分利用电场的知识和磁场进行类比,加强对磁场这一抽象概念的理解。 3、情感态度价值观 ⑴.从物理学家们身上看出科学研究的魅力,体会他们为探索真理而孜孜不倦、不断思 考、追求真相的历程,激发学生敬仰之心; ⑵.培养学生深入思考、勤于实验、实事求是的科学态度和科学精神,激发学习物理兴趣和动力。 【教学重点】 ⑴.探寻“如何定量描述磁场”的过程中,体验科学设想和科学实验相结合的方法,感悟 科学大师们给我们带来的启迪的反思; ⑵.通过电场和磁场的描述方法进行类比,加深理解电场和磁场的联系和区别。 【教学难点】 ⑴.“磁场”概念非常抽象,对学生来说思维要求较高,深刻理解有难度; ⑵.电场和磁场的概念类比,要求学生对场(特别是电场)的知识有扎实的基础。 【教学流程】 O、引入 近期我们学习了上一种既抽象又有趣的物质——磁场,按照物理研究的精神,我们必然要想方设法去描述它,大家说说看,我们描述物理现象和规律一般要用到那些方法? 我们现在用到了哪些方法描述磁场呢?对于看不见摸不着的磁场,我们又应该用什么科学思维方法去认识它呢? 根据从简单到复杂、从定性到定量的科学研究轨迹,利用电场的知识作类比,我们今天一起来探讨一下如何定量的描述磁场?

一、回顾电场的描述 电场的方向描述方法:电场线的切线方向,正电荷受力方向。 磁场的方向描述方法:磁感线的切线方向,N磁极受力方向,左手定则。 从上面同学们的回答可以看得出,电场和磁场有极大的相似之处,非常适合运用“类比”的科学思想方法。那么,磁场的强弱描述是否也可以从电场进行类比获得启发呢? 大家分组讨论:如果赋予我们这么一项科学使命,定义一个物理量描述磁场的强弱,你们会如何思考? 二、磁荷和磁库仑定律 1785年库仑曾成功的通过电荷的概念获得库仑定律,从而建立点电荷的场强公式,进而通过场强叠加推广到复杂电场的强弱描述,这种描述方式在磁场里可以复制吗? 其实,库仑当年就直觉地感到磁极之间的相互作用也服从类似的关系,于是提出了磁荷、磁库仑定律、磁场强度等一系列的概念和规律。 1931年,近代科学家狄拉克用量子理论也推导出来单个磁荷(磁单极子)存在的必然性。然而,物理规律必须建立在实验的基础上,200多年过去了,科学上至今也没找到单个磁荷,人们不得不寻求其他更合适的方式描述磁场强弱。 三、磁通量和磁通密度 我们知道,为了形象的描述电场和磁场,大科学家法拉第系统地提出了电场线和磁感线的概念,电场线的疏密可以描述电场的强弱。那么,我们是否也可以用磁感线的疏密来描述磁场的强弱呢?如果可行,又该如何用物理量描述磁感线的疏密呢? 科学家还真做过这样的系统研究,他们先定义了一个磁通量的概念,描述某一平面的磁感线的多少(条数),用符号Φ表示,单位为韦伯(Wb)。如果从某个面进入的磁感线记为正方向,那么从这面出来的磁通量就是负方向,反之亦然。那么,磁通量是矢量还是标量呢?显然,磁通量的方向是人为规定的,不具有矢量性,也不遵循平行四边形定则,是标量。比如,从某个面垂直进入100根磁感线和斜着进入100根磁感线,磁通量是相等的。 有了磁通量的概念,描述磁感线的疏密就水到渠成了,科学上把垂直穿过单位面积的磁感线的多少定义为磁通密度,用符号表示B,它从数量上反映磁场的强弱。其表达 Wb/m2)。

2018年高考物理一轮复习 专题 磁通量、磁通量变化量的理解与应用每日一题

磁通量、磁通量变化量的理解与应用 高考频度:★☆☆☆☆难易程度:★☆☆☆☆ 如图所示,大圆导线环A中通有电流,方向如图所示,另在导线环所在的平面画一个圆B,它的一半面积在A环内,另一半面积在A环外。则B圆内的磁通量 A.为零 B.是进去的 C.是出来的 D.条件不足,无法判别 【参考答案】B 【试题解析】穿过B环的磁通量分为两部分,一是环A内部的,方向向里,一是环A外部的方向向外,因为面积相等,但是环内部的磁感线密度比外部大,所以根据公式Φ=B·可得通过B圆环的磁通量是进去的。 【名师点睛】穿过B环的磁通量分为两部分,一是环A内部的,方向向里,一是环A外部的方向向外,环内部的磁感线密度比外部大。本题考查了磁通量的计算,关键是理解穿过B环的磁通量分为两部分和环内部的磁感线密度比外部大。 如图所示,AB是水平面上一个圆的直径,在过AB的竖直面内有一根通电直导线CD,已知CD∥AB。当CD竖直向上平移时,电流的磁场穿过圆面积的磁通量将 A.逐渐增大B.逐渐减小 C.始终为零D.不为零,但保持不变 如图所示,水平放置的扁平条形磁铁,在磁铁的左端正上方有一线框,线框平面与磁铁垂直,当线框从左端正上方沿水平方向平移到右端正上方的过程中,穿过它的磁通量的变化是

A.先减小后增大 B.始终减小 C.始终增大 D.先增大后减小 一个直径为d的圆形线圈,垂直放置在磁感强度为B的匀强磁场中,现使线围绕其直径转过30°角,如图所示,则穿过线圈的磁通量的变化为______。 关于磁通量的概念,以下说法中正确的是 A.磁感应强度越大,穿过闭合回路的磁通量也越大 B.磁感应强度越大,线圈面积越大,则磁通量也越大 C.穿过线圈的磁通量为零,但磁感应强度不一定为零 D.磁通量发生变化一定是磁场发生变化引起的。 某地地磁场磁感应强度B的水平分量B x=0.18×10–4 T,竖直分量B y=0.54×10–4 T。求:(1)地磁场B的大小及它与水平方向的夹角; (2)在水平面内2.0 m2的面积内地磁场的磁通量Φ。 【参考答案】 C 根据右手定则可得CD产生的磁场在AB的水平面上方向垂直向里,即与AB是平行的,所以没有磁感线穿过圆,所以当CD竖直向上平移时,电流的磁场穿过圆面积的磁通量始终为零,C正确。 【名师点睛】CD产生的磁场方向与AB的水平面平行,所以没有磁感线穿过圆,当磁感线方向与圆环所在平面垂直时,通过圆环的磁通量为零。

研究磁通量变化时感应电流的方向

研究磁通量变化时感应电流的方向 [探究目的] 探究感应电流的方向与磁通量变化的关系。 方案设计: 方案1 [实验原理] 将条型磁铁的N 、S 极分别 插入感应线圈,或从感应线圈中 拉出,观察检流计指针的偏转情 况,然后归纳出判断感应电流方 向的规律。 [实验器材] 条型磁铁、检流计、感应线圈等。 [实验过程] 如图7中(a)、(b)、(c)、(d)所示,将条型磁铁插入或拉出,观察并记录检流计指针的偏转方向。 [实验记录] (1)在图7中画出(a)、(b)、(c)、(d)四种情况下,线圈中感应电流方向及感应电流磁场的方向。 (2)归纳出感应电流的方向与磁通量变化的关系:_____________________________________。 图 7

某一实验装置如图所示,在铁芯P上绕着两个线圈A和B,如果线圈A中电流i和时间t的关系有下图所示的A、B、C、D四种情况. 在t1—t2这段时间内,哪些情况可以在线圈B中观察到感应电流( BCD )

如图所示的器材可用来研究电磁感应现象及判定感应电流的方向。 (1)在给出的实物图中,用笔划线代替导线将实验仪器连成完整的实验电路。 (2)将线圈L1插入线圈L2中,合上开关S,能使线圈L2中感应电流的磁场方向与线圈L1中原磁场方向相反的实验操作是() A.插入铁芯F B.拔出线圈L1C.使变阻器阻值R变大 D.断开开关S (3)某同学第一次将滑动变阻器的触头P从变阻器的左端快速滑到右端,第二次将滑动变阻器的触头P从变阻器的左端慢慢滑到右端,发现电流计的指针摆动的幅度大小不同,第一次比第二次的幅度(填写“大”或“小”),原因是线圈中的(填写“磁通量”或“磁通量的变化”或“磁通量变化率”)第 一次比第二次的大。 (1)在右图中,用笔线代替导线将实验仪器连成完整 的实验电路。(2)( A )(3)“大”、“磁通量变 化率”(各 2分) (1)C (2)右;抽出(3)感应电流的磁场总是阻碍原来磁通量的变化

磁感应强度磁通量教案

3.2 磁感应强度磁通量教案1 一、教材分析 磁感应强度是本章的重点内容,所以学好本节内容十分重要,首先要告诉学生一定要高度重视本节课内容的学习。 二、教学目标 (一)知识与技能 1、理解磁感应强度B的定义,知道B的单位是特斯拉。 2、会用磁感应强度的定义式进行有关计算。 3、会用公式F=BIL解答有关问题。 (二)过程与方法 1、知道物理中研究问题时常用的一种科学方法——控制变量法。 2、通过演示实验,分析总结,获取知识。 (三)情感、态度与价值观 学会由个别事物的个性来认识一般事物的共性的科学方法。 三、教学重点难点 学习重点: 磁感应强度的物理意义 学习难点: 磁感应强度概念的建立。 四、学情分析 学生通过日常生活经验对磁场强弱已具有一定的感性认识,且在研究电场时,已经学习确定了一个叫做电场强度的物理量,用来描述电场的强弱。与此对比类似引出表示磁场强度和方向的物理量。 五、教学方法 实验分析、讲授法 六、课前准备

1、学生的准备:认真预习课本及学案内容 2、教师的准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案 七、课时安排 1课时 八、教学过程 (一)用投影片出示本节学习目标. (二)复习提问、引入新课 磁场不仅具有方向,而且也具有强弱,为表征磁场的强弱和方向就要引入一个物理量.怎样的物理量能够起到这样的作用呢?紧接着教师提问以下问题. 1.用哪个物理量来描述电场的强弱和方向? [学生答]用电场强度来描述电场的强弱和方向. 2.电场强度是如何定义的?其定义式是什么? [学生答]电场强度是通过将一检验电荷放在电场中分析电荷所受的电场力与检验电荷量的比值来定义的,其定义式为E =q F . 过渡语:今天我们用相类似的方法来学习描述磁场强弱和方向的物理量——磁感应强度. (三)新课讲解-----第二节 、 磁感应强度 1.磁感应强度的方向 【演示】让小磁针处于条形磁铁产生的磁场和竖直方向通电导线产生的磁场中的各个点时,小磁针的N 极所指的方向不同,来认识磁场具有方向性,明确磁感应强度的方向的规定。 【板书】小磁针静止时N 极所指的方向规定为该点的磁感应强度方向 过渡语:能不能用很小一段通电导体来检验磁场的强弱呢? 2.磁感应强度的大小 【演示1】用不同的条形磁铁所能吸起的铁钉的个数是不同的,说明磁场有强弱。 【演示2】探究影响通电导线受力的因素(如图)先介绍匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。 后定性演示(控制变量法)①保持通电导线的长度不变,改变电流的大小②保持电流不变,改变通电导线的长度。让学生观察导线受力情况。 【板书1】精确实验表明,通电导线和磁场方向垂直时,通电导线受力(磁场力)大小IL F 写成等式为:F = BIL ① 式中B 为比例系数。 注意:①B 与导线的长度和电流的大小无关②在不同的磁场中B 的值不同(即使同样的电流导线的受力也不样) 再用类比电场强度的定义方法,从而得出磁感应强度的定义式 【板书2】磁感应强度的大小(表征磁场强弱的物理量) (1)定义: 在磁场中垂直于磁场方向的通电导线,所受的力(安培力)F 跟电流I 和导线长度L 的乘积IL 的比值叫磁感应强度。符号:B 说明:如果导线很短很短,B 就是导线所在处的磁感应强度。其中,I 和导线长度L 的乘积IL 称电流元。

相关文档
相关文档 最新文档