文档库 最新最全的文档下载
当前位置:文档库 › 关于雷达设备性能标准的建议案

关于雷达设备性能标准的建议案

关于雷达设备性能标准的建议案
关于雷达设备性能标准的建议案

INTERNATIONAL MARITIME ORGANIGATION

RESOLUTION MSC.64(67)

(adopted on 4 December 1996)

ADOPTION OF NEW AMENDED PERFORMANCE STANDARDS

THE MARITIME SAFETY COMMITTEE,

RECALLING Article 28(b) resolution A.825(19), by which the International Maritime Organization concerning the functions of the Committee,

RECALLING ALSO resolution A.825(19), by which the Assembly resolved that the functions of adopting performance standards for radio and navigational equipment, as well as amendments thereto, shall be performed by the Maritime Safety Committee on behalf of the Organization,

HAVING CONSIDERED new performance standards and amendments to existing performance standards adopted by the Assembly prepared by the forty-second session of the Sub-Committee on Safety of Navigation,

1. ADOPTS the following new and recommended performance standards, set out in Annexes 1 to 2 to the present resolution,

(a) Recommendation on Performance Standards for Integrated Bridge

Systems (IBS) (Annex 1);

(b) Recommendation on Performance Standards for Shipborne DGPS and

DGLONASS Maritime Radio Beacon Receiver Equipment (Annex 2);

2. ALSO ADOPTS the amendments to the following performance standards adopted by the Assembly, set out in Annexes 3 to 5 to the present resolution:

(a) Resolution A.342(IX) - Recommendation on Performance Standards for

Automatic Pilots (Annex3);

(b) Resolution A.477(XII) - Recommendation on Performance Standards

for Radar Equipment (Annex 4);

(c) Resolution A.817(19) - Recommendation on Performance Standards for

Electronic Chart Display and Information Systems (ECDIS) (Annex 5);

3. RECOMMENDS Member Governments to ensure that:

(a) integrated bridge systems(IBS), shipborne DGPS and DGLONASS

maritime radio beacon receiver equipment and electronic chart display and information system(ECDIS) installed on or after 1 January 1999 conform to performance standards not inferior to those set out in the Annexes 1, 2 and 5 to the present resolution;

(b) heading control systems and radar equipment installed on or after

1 January 1999 conform respectively to performance standards not

inferior to those set out in Annexes 3 and 4 to the present resolution:

(c) automatic pilots and radar equipment installed before 1 January

1999 conform at least to the performance standards set out in resolutions A 342.(IX) and A.477(XII), respectively.

ANNEX 1

RECOMMENDATION ON PERFORMANCE STANDARDS FOR INTEGRATED

BRIDGE SYSTEMS (IBS)

1 INTRODUCTION

1.1 An integrated bridge system(IBS) is defined as a combination of

systems which are interconnected in order to allow centralized access to sensor information or command/control from workstations, with the aim or increasing safe and efficient ship's management by suitably qualified personnel.

1.2 IBS, in addition to meeting the functional requirements contained

in applicable IMO instruments, the general requirements in resolution

A.694(17)*, should comply with the following performance standards.

*IEC 945 Publication

2 SYSTEM REQUIREMENT

the IBS should support systems performing two or more of the following operations:

.1 passage execution;

.2 communications;

.3 machinery control

.4 loading, discharging and cargo control; and

.5 safety and security.

3 CENERAL REQUIREMENTS

3.1 General

3.1.1 The IBS should comply with all applicable IMO requirements and

recommendations. Parts executing multiple operations should meet the requirements specified for each individual function they control, monitor or perform.

3.1.2 Each "part" of an IBS should meet the relevant requirements

of resolution A.694(17) and their associated technical testing standards. In consequence, the IBS is in compliance with these requirements without further environmental testing.

Note : "part" is meant to be - for example - an individual module, equipment or subsystem.

3.1.3 A failure of one part should not affect the functionality of

other parts except for those functions directly dependent upon the information from the defective part.

3.2 Integration

The IBS should provide functional integration meeting the following requirements:

.1 The functionality of the IBS should ensure that its operation is at least as effective as for stand-alone equipment.

.2 Continuously displayed information should be reduced to the minimum necessary for safe operation of the ship. Supplementary information should be readily accessible.

.3 Where multifunction displays and controls are used to perform functions necessary for safe operation of the ship they should be duplicated and interchangeable.

.4 It should be possible to display the complete system configuration, the available configuration and the configuration in use.

.5 Each part to be integrated should provide details of its operational status and the latency and validity of essential information. Means should be provided with the IBS to make use of this information.

.6 An alternative means of operation should be provided for essential functions.

.7 An alternative source of essential information should be provided.

The IBS should identify loss of either source.

.8 The source of information (sensor, result of calculation or manual input) should be displayed continuously or upon request.

3.3 Data exchange

3.3.1 Interfacing to an IBS should comply with the relevant

international marine interface standards.*

*IEC 1162 Publication

3.3.2 Data exchange should be consistent with safe operation of the

ship.

3.3.3 The integrity of data flowing on the network should be ensured.

3.3.4 A failure in the connectivity should not affect independent

functionality

3.4 Failure analysis

3.4.1 A failure analysis should be performed, documented and be

acceptable.

4. OPERATIONAL REQUIREMENTS

4.1 Human factors

4.1.1 The IBS should be capable of being operated by personnel

holding appropriate certificates.

4.1.2 The Man Machine Interface (MMI) should be designed to be easily

understood and in a consistent style all integrated functions.

4.1.3 Where multifunction displays are used, they should be in colour,

and continuously displayed information and functional areas, e.g.

menus should be presented in a consistent manner.

4.1.4 For actions which may cause unintended results, the IBS should

request confirmation from the operator.

4.2 Functionality

4.2.1 It should always be clear, from where essential functions may

be performed.

4.2.2 The system management should ensure, that one user only has

the focus of an imput or function at the same time. If so, all other users should be informed about that by the IBS.

5. TECHNICAL REQUIREMENTS

5.1 Sensors

In order to ensure an adequate system functionality the sensors employed should ensure communication compatibility in accordance with the relevant intermational marine interface standard*; and provide information about their pperational status and about the latency and validity of essential information.

* IEC 1162 Publication

5.2 Alarm management

5.2.1 The IBS alarm management, as a minimum, should comply with the

repuirements of the Code on Alarms and Indicators, 1995(resolution

A.830(19)).

5.2.2 Appropriate alarm management on proiority and functional

groups should be provided within the IBS.

5.2.3 The number of alarm types and their release should be kept as

low as possible by providing indications for information of lower importance.

5.2.4 Alarms should be displayed so that the alarm reason and the

resultion functional restrictions can be easily understood.

Indications should be self-explanatory.

5.3 Power interruptions and shut-down

5.3.1 If subjected to an orderly shut-down, the IBS should, upon

tum-on, come to an initial default state.

5.3.2 After a power interruption full functionality of the IBS should

be available after recovery 000 of all subsystems. The IBS should not increase the recovery time of individual subsystem functions after power restoration.

5.3.3 If subject to a power interruption the IBS should, upon

restoration of power, maintain the configuration in use and continue automated operation, as far as practicable. Safety related automatic functions should only be restored upon confirmation by the operator.

5.4 Power supply

5.4.1 Power supply requirements applying to parts of the IBS as a

result of other IMO requirements should remain applicable.

5.4.2 The IBS should be supplied:

.1 from the main and emergency sources of electrical power with

automated changeover through a local distribution board with

provision to preclude inadvertent shut-down;

.2 from a transitional source of electrical power for a duraion

of not less than 1 min; and

.3 where required, parts of the IBS should also be supplied from

a reserve source of electrical power.

ANNEX 2

RECOMMENDATION ON PERFORMANCE STANDARDS FOR SHIPBORNE DGPS

AND DGLONASS MARITIME RADIO BEACON RECEIVER EQUIPMENT 1 INTRODUCTION

1.1 Differential services broadcast information for augmenting the

Global Positioning System (GPS) and the Global Navigation Satellite System (GLONASS) to provide the accuracy and integrity required for entrance and harbour approaches and other waters in which the freedom to manoeuvre is limited. Various service provider are broadcasting

differential information applicable to localized areas. Different services provide information for augmenting GPS, GLONASS, or both.

1.2 Receiver equipment for the reception and proper decoding of

differential GPS and GLONASS maritime radio beacom broadcasts(fully compliant with ITU-R M.823) intended for navigational purposes on ships with maximum speeds not exceeding 50kts shall, in addition to the general requirements contained in resolution A.694(17)*, comply with the following minimum performance requirements.

* Refer to IEC 945 Publication

1.3 This standard cover the basic requirements of maritime radio beacon

receiver equipment providing augmentation information to position-fixing equipment. It dose not cover other computational facilities which may be in the equipment.

2. DGPS AND DGLONASS MARITIME RADIO BEACON RECEIVER EQUIPMENT

The words"DGPS and DGLONASS maritime radio beacon receiver equipment"

as usedin this perfomance standard includes all the components and units necessary for the system to properly perform its intended functions. The equipment should include the following minimum facilities.

.1 antenna capable of receiving DGPS or DGLONASS maritime radio beacon signals;

.2 DGPS and DGLONASS maritime radio beacon receiver and processor;

.3 receiver control interface; and

.4 data output interface.

3. FUNCTIONAL REQUIREMENTS

The DGPS and DGLONASS maritime radio beacon receiver equipment should:

.1 operate in the band of 283.5 to315kHz in Region 1 and 285 to 325 kHz in Regions 2 and 3 in accordance with ITU-R M.823;

.2 provide means of automatically and manually selection the frequency, but operator acknowledgement will be required for each frequency change when in automatic mode;

.3 make the data available for use with a delay not exceeding 100ms after its reception;

.4 be capable of acquiring a signal in less than 45seconds in the presence of electrical storms;

.5 have at least on serial data output that conforms to the relevant international marine interface standard*; and

* Refer to IEC 1162 Publication

.6 have an omni-directional antenna in the horizontal plane.

4 PROTECTION

Precautions should be taken to ensure that no permanent damage can result from an accidental short circuit or grounding of the antenna or any of its input or output connections or any of the DGPS and DGLONASS maritime radio beacon receiver equipment inputs or outputs for a duration of five minutes.

5 ALARMS

TheDGPS and DGLONASS maritime radio beacon receiver equipment should give an alarm if no DGPS and DGLONASS message is received.

ANNEX 3

AMENDMENT TO RESOLUTION A.342(IX) ON PERFORMANCE STANDARDS

FOR AUTOMATIC PILOTS

Replace the Annex by:

"ANNEX RECOMMENDATION ON PERFORMANCE STANDARDS FOR HEADING

CONTROL SYSTEMS*

* Previously "Recommendation on Performance Standards for Autopilots"

1 INTRODUCTION

In addition to the general requirements contained in resolution

A.694(17)**, heading control systems should comply with the following

minimum performance requirements.

** IEC 945 Publication

2 OBJECTIVES

2.1 Within limits related to the ship's manoeuvrability the heading

control system, in conjunction with its source of heading information, should enable a ship to keep a preset heading with minimum operation of the ship's steering gear.

2.2 A heading control system may work together with a track control

system adjusting its heading for drift.

2.3 A turm rate control for performing turns may be provided.

3 FUNCTIONAL REQUIRMENTS

3.1 Adaption to steering characteristics and environmental conditions

The heading control system should be capable of adaption manually of automaticall to different steering characteristics of the ship under various speed, weather and loading conditions and provide reliable operation under prevailing environment and normal operational conditions.

3.2 Performing turns

The heading control system should be able to perform turns, within the turning capability of the ship, based either on a preset turning radius or a preset rate of turn.

3.3 Rudder angle limitation

Means should be incorporated in the equipment to enable rudder angle limitation in the automatic mode. Means should also be available to indicate when the angle of limitation has been commanded or reached.

When other means of directional control are used the requirements of this section should appropriately apply.

3.4 Permitted yaw

Means should be incorporated to prevent unnecessary activation of the rudder due to normal yaw motion.

3.5 Preset heading

Any alteration of the preset heading should not be possible without intended action of the ship's personnel.

3.6 Limiting of overshoot

The heading control system should change to a preset heading without significant overshoot.

4. CHANGE-OVER FROM AUTOMATIC TO MANUAL STEERING AND VICE VERSA

4.1 Change-over from automatic to manual steering and vice-versa should

be possible ant any position of the rudder and should be effected by one manual control within 3 seconds.

4.2 Change-over from automatic to manual steering should be possible

under any conditions including any failure in the automatic control system.

4.3 When changing over from manual to automatic steering the heading

control system shall take over the actual heading as the preset heading.

4.4 There should be a single change-over control which should be located

in such a position that it is easily accessible to the officer of the watch.

4.5 Adequate indication should be provided to show which method of

steering is in operation.

5 CHANGE-OVER FROM TRACK CONTROL TO HEADING CONTROL

5.1 If the heading control system works as part of a track control system,

then when switching from track control to heading control, the actual heading should be taken as the preset heading.

5.2 Any switching back to track control shall not be possible without

intended action of the ship's personnel.

6 ALARMS AND SIGNALLING FACILITIES

6.1 Failure or reduction power

An alarm both audible with mute function and visual should be provided in order to indicate failure or a reduction in the power

supply to the heading control system or heading monitor, which would affect the safe operation of the equipment.

6.2 Off-heading alarm

An off-heading alarm, both audible with mute function and visual should be provided when the actual heading deviates from the preset heading beyond a preset limit.

6.3 Heading monitor

If the ship is required to carry two independent compasses, a heading monitor should be provided to monitor the actual heading information by independent heading sources. The heading monitor is not required to be an integrated part of the heading control system.

An alarm both audible with mute function and visual should be provided when the heading information in use deviates from the second heading source beyond a preset limit.

6.4 Indication of heading source

A clear indication of the actual heading source should be provided.

6.5 Sensor status

The heading control system should provide an indication when any input from external sensors used for control is absent. The heading control system should also repeat any alarm on the status messages concerning the quality of the input data from its external sensors when they are used for control.

7 CONTROLS

7.1 The number of operational controls should be such that easy and

safe operation con be achieved. The controls should be designed to preclude inadvertent operation.

7.2 Unless features for automatic adjustment are incorporated in the

installation, the heading control system should be provided with adequate controls to adjust to effects due to weather and the ship's steering performance.

7.3 The heading control system should be designed in such a way as to

ensure altering the pre-set heading to starboard by turning the heading setting control clockwise or tilting it to the right-hand side. Normal

alterations of heading should be possible by one adjustment only of the preset heading control.

7.4 Where remote control stations are provided, facilities for the

delegation of the remote station and unconditional return of control should be incorporated in the master station.

7.5 Except for the preset heading setting control, the actuation of

any other control should not significantly affect the heading of the ship.

7.6 Additional controls at remote positions should comply with the

provisions of this performance standard.

8 INTERFACING

8.1 The heading control system should be connected to a suitable source

of heading information.

8.2 The heading control system should be connected to a suitable source

of speed information when it is used in a turning radius mode or when any control parameters are automatically adapted to speed.

8.3 If a heading control system is capable of digital serial

communication with the ship's navigation system then the interface facilities comply with the relevant international marine interface standards*.

ANNEX 4

RECOMMENDATION ON PERFORMANCE STANDARDS FOR RADAR EQUIPMENT 1 INTRODUCTION

IN addition to the general requirements contained in resolution

A.694(17) all radar installations should comply with the following

minimum requirements.

2 GENERAL

The radar equipment should provide an indication, indication to the ship of the position of other surface craft and obstructions and of buoys, shorelines and navigational marks in a manner which will assist in navigation and in avoiding collision.

3 RADAR

3.1 Range performance

The operational requirement under normal propagation conditions, when the radar antenna is mounted at a height of 15 m above sea level, is that the equipment should in the absence of clutter give a clear indication of:

.1 Coastlines

At 20 nautical mines when the ground rises to 60m.

At 7 nautical miles when the ground rises to 6m.

.2 Surface objects

At 7 nautical mines a ship of 5,000 gross tonnage, whatever her

aspect. At 3 nautical miles a small vessel of 10 m in length.

At 2 nautical miles an object such as a navigational buoy having

an effective echoing area of approximately 10㎡.

3.2 Minimum range

The surface object specified in 3.1.2 should be clearly displayed from a minimum horizontal range of 50 m from the antenna position up to a range or 1 nautical mile, without changing the setting of controls other than the range selector.

3.3 Display

3.3.1 The equipment should provide, without external magnification,

a daylight display with a minimum effective diameter with the bearing

scale of not less than:

.1 180 mm on ships of 150* gross tonnage and more but less than

1,000* gross tonnage;

.2 250 mm on ships of 1,000* gross tonnage and more but less than

10,000* gross tonnage; and

.3 340 mm on ships of 10,000* gross tonnage and upwards.

* Gross tonnage limits to be aligned with the carriage requirements for radar of the revised SOLAS chapter V under development.

3.3.2 The equipment should provide the following set of range scale of display: 0.25, 0.5, 0.75, 1.5, 3, 6, 12 and 24 nautical miles.

3.3.4 The range scale displyed and the distance between range ring should be cleary indicated ant all times.

3.3.5 Within the effective display radar video area, the display should only contain information which pertains th the use of the radar display for navigation collision avoidance and which gas to be displayed there because of its association with a target(e.q. target identifiers, vectors) or because of some other direct relationship with the radar display.

3.3.6 The origin of the range scale (radar video) should start at own ship, be linerar and should not be delayed.

3.3.7 Multi-colour displays are permitted but the following requirements should be met:

.1 target echoes should be displayed by means of the same basic colours and the echo strength should not be displayed indifferent colours; and

.2 additional information may be shown in different colours.

3.3.8 The radar picture and information should be readable under all ambient light conditions. If a light shield is necessary to facilitate operation of the display in high ambient light levels, then means should be provided for its ready attachment and removal.

3.3.9 Selected parts of the System Electronic Navigation Chart(SENC) information may be displayed in such a way that the radar information is not masked, obscured or degraded. If SENC informationis made available for a radar display it should at least include coastlines, own ship's safety contour, dangers to navigation and fixed and floating aids to navigation. The mariner should be able to select those parts of the SENC, which can be made available and the mariner requires to be displayed.

3.3.10 For the superimposition of selected parts of the SENC:

.1 Reference management Reference management is required to ensure that the information displayed is correlated and in the same reference and co-ordinate system;

.2 Display Area the whole effective display area should contain the available radar and SENC information;

.3 Matching and adjustment incase of any deviations between the chart image and the radar image through detectable causes, manual adjustment should be possible. Any manual adjustment should be cleary indicated as long as it is activated. Resetting should be possible in a simple manner;

.4 priority in the display the display of radar information should have priority;

.5 Stability The equipment should be capable of appropriately stabilizing the radar image, ARPA vectors and SENC information.

The operating mode should be clearly indicated; and

.6 Independence of Radar/ARPA and SENC

.6.1 the SENC information should not have an adverse effect on

the radar picture;

.6.2 Radar/ARPA information and SENC information should be

clearly recognizable as such; and

.6.3 in the case of a malfunction of one component, the function

of the other component should not be affected.

3.3.11 The frequency band in use should be indicated to the operator.

3.4 Range measurement

3.4.1 Electronic fixed range rings should be provided for range

measurements as follows:

.1 on the range scale 0.25, 0.5, 0.75 nautical miles at least two and not more than six range rings should be provided, on each of the other mandatory range scales six range rings should be provided; and

.2 where off-centred facilities have been provided, additional range rings should be provided at the same range intervals.

3.4.2 An electronic variable range marker in the form of a ring should

be provided with a numeric readout of range. This readout should not display any other data. For ranges of less than 1 nautical mile, there

should be only one zero before the decimal point. Additional variable range markers may be provided.

3.4.3. The fixed range rings and the variable range markers should

enable the range of an object to be measured with an error not exceeding 1% of the maximum range of the scale in use, or 30m, whichever is the greater.

3.4.4 The accuracy should be maintained when the display is

off-certred.

3.4.5 The thickness of the fixed range rings should not be greater

than the maximum permissible.

3.4.6 On all range scales, it should be possible to set the variable

maker with the required precision within 5 s in all cases. A range that is set by the user should not change automatically when the range scale is changed.

3.5 Heading indication

3.5.1 The heading of the ship should be indicated by a continuous

line on the display with a maximum error of not greater than±1?.

The thickness of the displayed heading line should not be greater than 0.5?measured at maximum range at the edge of the radar display.

The heading line should extend from the trace origin to the edge of the display.

3.5.2 Provision should be made to switch off the heading indicator

by a device which cannot be left in the "heading line off" position.

3.5.3 A heading marker should be displayed on the bearing scale.

3.6 Bearing measurement

3.6.1 An Electronic Bearing Line, (EBL), should be provided with a

numeric readout of bearing to obtain with 5s the bearing of any object whose echo appears on the display.

3.6.2 The EBL should enable the bearing go a target whose echo appears

at the edge of the display to the display to be measured with m maximum error of not greater than±1?.

3.6.3 The EBL should be displayed on the screen in such a way that

it is clearly distinguishable from the heading indicator.

3.6.4 It should be possible to vary the brilliance of the EBL. This

variation may be separate or combined with the intensity of other markers. IT should be possible to remove the EBL completely from the screen.

3.6.5 The rotation of the EBL should be possible in both directions

continuously or in steps of not more than 0.2?.

3.6.6 The numeric readout of the bearing of the EBL should be

displayed with at least 4 digits, including one after the decimal point. The EBL readout should not be used to display any other data.

There should be a positive identification of whether the bearing indicated is a relative bearing or a true bearing.

3.6.7 A bearing scale around the edge of the display should be

provided. Linear or non-linear bearing scale may be provided.

3.6.8 The bearing scale should have division marks for at least each

5?, with the 5? and 10? divisions clearly distinguishable from each other. Numbers should clearly identify at least each 30? division.

3.6.9 It should be possible to measure the bearing relative to the

heading line and relative north.

3.6.11 It should be possible to move the position of the EBL origin

away from the own ship to any desired point on the effective display area. By a fast simple operationit should be possible to move the EBL origin back to own ship's position on the screen. On the EBL, it should be possible to display a variable range marker.

3.7 Discrimination

3.7.1 Range

The equipment should be capable of displaying as separate indications on a range scale of 1.5 nautical miles, two small similar targets at range of between 50% and 100% of the range scale, and on the same bearing, separated by not more than 40 m in range.

3.7.2 Bearing

The equipment should be capable of displaying as separate indications two small similar targets both situated at the same range between 50% and 100% of the 1.5 nautical mile range scale, and separated by not more than 2.5? in bearing

3.8 Roll or pitch

The performance of the equipment should be such that when the ship is rolling or pitching up to±10?The range performance requirements of 3.1 and 3.2 continue to be met.

3.9 Antenna Scan

The scan should be clockwise, continuous and automatic through 360?of azimuth. The antenna rotation rate should be not less than 20 revolutions per minute. The equipment should start and operate satisfactorily in relative wind speeds of up to 100knots.

Alternative methods of scanning are permitted provided that the performance is not inferior.

3.10 Azimuth stabilization

3.10.1 Means should be provided to enable the display to be

stabilized in azimuth by a gyro-compass, or its equivalent in performance. The accuracy of alignment with the compass transmission should be within 0.5? with a compass rotation rate of 2 revolutions per minute.

3.10.2 The equipment should operate satisfactorily in the head-up

unstabilized mode when the azimuth stabilization is inoperative.

3.10.3 Change over from one display mode th the other should be

possible within 5 s and achieve the required bearing accuracy.

3.11 Performance monitoring

Means should be available, while the equipment is used operationally, to determine readily a significant drop in system performance relative to a calibration standard established at the time of installation. Means should be provided to check that the equipment is correctly tuned in the absence of targets.

3.12 Anti-clutter devices

3.12.1 Suitable means should be provided for the suppression of

unwanted echoes from sea clutter, rain and other forms of precipitation, clouds, sandstorms and from other radars. It should be possible to adjust manually and continuously the anti-clutter controls. In addition, automatic anti-clutter controls may be provided; however, they should be capable of being switched off.

3.12.2 The operational requirement, when the radar antenna is

mounted at a height of 15 m above sea level. is that the equipment should, even in the presence of sea clutter, give a clear indication of a standard reflector up to 3.5 nautical miles.

3.13 Operation

3.13.1 Availability

After switching on from cold the equipment should become fully operational within 4 min.

A stand-by condition should be provided from which the equipment

cal be brought to an operational condition within 15 s.

3.13.2 Controls

Operational controls should be accessible and easy to identify and use. Controls should be identified and easy to operate.*

* IEC 936 and IEC 945 Publications.

The equipment should be capable of being switched on and off and operated from the master display position.

It should be possible to vary the brilliance of the fixed range rings and the variable range markers and electronic bearing lines and to remove them independently and completely from the display.

3.14 Operation with radar beacons and SARTS

3.1

4.1 Radar should be able to detect and display signals from radar

beacons and 9 GHz radar should also be able to detect and display signals from Search and Rescue Transponder(SARTs)

3.1

4.2 All radars operating in the 9GHz band should be capable of

operation in a horizontally polarized mode.

3.1

4.3 It should be possible to switch off those signal processing

facilities which might prevent a radar beacon of SART from being shown on the radar display.

3.15 Display modes

3.15.1 The equipment should be capable of operation in relative and

true motion.

3.15.2 The radar origin should be capable of being off-set to at least

50% and not more than 75% of the radius of the display.

3.15.3 The radar should be capable of sea and ground stabilisation.

With sea of ground stabilisation the accuracy and discrimination of the display should be at least equivalent to that required by this Performance Standard.

3.15.4 Speed and Distance Measuring Equipment (SDME) Providing the

ship's speed through the water to the radar should be capable of providing the speed in the fore and aft direction.

3.15.5 The ground stabilized input should be two-dimensional. It may

be provided from the SDME, from an electronic position-fixing system or from radar tracked stationary targets. The speed accuracy should be in accordance with the requirements of resolution A.824(19).

3.15.6 The type of input and stabilisation in use should be

displayed.

3.15.7 It should also be possible to input the ship's speed manually

from 0 (zero) knots to 30 knots in steps of not more than 0.2 knots.

3.15.8 Provision should be made for manual input of set and drift.

3.16 Interference from external magnetic fields

After installation and adjustment on board, the bearing accuracy as prescribed in this performance Standard should be maintain without futher adjustment irrespective of the movement of the ship in the earth's magnetic field.

3.17 Radar installation

The radar installation, including the antenna, should be in such a manner that the performance of the radar system is not substantially impaired. Guidance on installation should be given in manufacturer documentation.

3.18 Failure Warnings and Status

If there is any detectable reason why the information presented to the operator is invalid, adequate and clear warning should given to the operator.

4 MULTIPLE RADAR INSTALLATIONS

船用雷达

船用雷达是一种传统的无线电导航设备,在船舶近海定位、引导船舶进、出港,窄航道航行以及在避碰中发挥作用。GPS导航仪在海洋船舶中已普遍使用,它与雷达相比具有全球、连续、实时、高精度、多功能等优点。随着海用信标差分GPS(DGPS)基台的不断建立,可将使用GPS C/A码的定位精度提高到米量级。因此,还可应用DGPS或GPS导航仪来改善雷达的使用性能,测定雷达测距、测向精度,弥补雷达在避碰和锚位监视等方面的某些局限性。 2 GPS与雷达的定位与导航功能 2.1 定位功能 船用雷达发射无线电波,并接收该电波从目标反射的回波,在显示器上一目了然地显示周围物标相对于本船的图像。测定一个或几个固定物标相对于本船的方位和距离,可在海图上作出船位。由此可见,雷达对于船舶在近岸海区或窄航道上安全航行发挥重要作用,特别是在雾航中更加显示它的重要性。但是,由于受到雷达电波传播的视距所限,探测物标的距离通常只有几至几十海里,不能用于远洋定位。GPS导航仪同时跟踪3颗或4颗卫星信号,测定到达卫星的伪距,通过导航仪内部计算机解算,实现实时、连续、全球、高精度定位,可弥补雷达不能实现远洋定位以及定位不连续、定位操作工作量大等缺点。 2.2 导航功能 30m左右的中型引航船。考虑到天津港冬季多大风, 锚地无遮蔽,以及在海况好时的工作方便,可考虑配置1艘不小于40m的大型子母引航船。天气及海况不好时,可单独执行任务;海况好时,可将其携带的2艘高速艇放下,共同执行任务。如子母船的设想不能成立,也可只配置1艘大型引航船,另配置2艘高速艇。无论任何型号的引航船(艇),在设计上必须考虑到靠船的要求和引航员上、下船的方便。 3.3 对速度和操纵性能的要求引航船在速度上不能低于16kn。高速艇一般不能低于20kn。从操纵灵活的要求出发,采用可变螺距船;驾驶操纵系统,应以方便1人操作为原则;大型引航船,还应加装首侧推器。 3.4 要配置先进的雷达及通信设备 另外,船身应为白色,并在明显处标注英文“引航(PILOT)”。 以上仅是对引航船提出一些的初步设想,根据规范化及国际大港口的要求来考虑,配置专用引航船是非常必要的。 普通船用雷达要获得航速、航向航迹等航行数据,需通过几次定位,由人工标绘实现。自动雷达标绘仪(ARPA)虽然自动显示上述数据,但存在跟踪延迟和雷达、计程仪、罗经等传感器引入的误差。另外,由于ARPA设备昂贵,不能在所有的船上安装。GPS导航仪采用现代电子计算机技术,可实时计算并显示航速,航向,航迹偏差,风、流压差,还具有设置航路点、计划航线、显示到达航路点的距离、时间等导航功能。 3 GPS的避碰功能 船用雷达测定海上运动物标和静止物标的距离、方位等相对参数,通过人工标绘得到最近会遇距离(CPA)和到达最近会遇点的时间(TCPA)等避碰数据,驾驶员根据这些数据及时采取避让措施。但是,有些物标反射回波微弱,操作人员难以看清它们的回波图像,ARPA有可能对它们漏跟踪或错误跟踪而不能提供避碰数据。在气象条件恶劣时,出现严重的海浪回波干扰或雨、雪回波干扰,上述丢失物标的现象时有出现。对于未露出海面的暗礁、沉船、浅滩等潜在物标,雷达更是无能为力。根据海图和航海通告事先查出在航线附近水面危险的小物标和水下的潜在障碍物,把它们作为航路点在GPS导航仪中存贮,并根据障碍物和船舶状

航海雷达-简答题

1试述雷达测距、测方位原理 利用电磁波特性: 直线传播(微波波段) 匀速传播(同一媒质中) 反射特性(在任何两种媒质的边界面) 测距:通过无线电信号往返时间的精确测量,并在雷达显示器内设置一个计时系统实现测距。 公式:s=(c*Δt)/2 物理量:s物标离天线的距离;c电磁波在空间的传播速度,c=300m/us;Δt 无线电波往返于雷达天线与物标之间的时间 示意图: 测方位:在天线缓慢旋转时测量反射信号的最大幅度,即当在某个方向收到物标回波时,只需记下此时的天线方向就可知道物标的方向了。 示意图: 2.试画出船用雷达基本组成框图,并说明各部分的作用 框图: 船电

1)触发电路:每隔一段时产生一个尖脉冲,同时送到发射机、接收机、显示器三部分,使它们同步工作。(触发电路决定工作开始的时间) 2)发射机:触发脉冲到来后,立刻产生一个大功率,微波波段,具有一定宽度的脉冲包络射频(雷达工作频率,微波波段)的信号。 3)发收开关:发射时;将发射机与天线接通,并将天线与接收机断开。接收时;将发射机与天线断开,并将天线与接收机接通。 4)天线:把发射机送来的微波能量聚成细束朝一个方向发射出去,同时只接收从该方向反射的回波。 5)接收机:将天线送来的回波信号,进行混频、放大、检波处理。得到表示目标大小的视频信号。 6)显示器:在屏上扫描出一条径向亮线,用径向亮线上的加亮点或线段,来显示目标的距离,该扫描亮线随天线同步转动,扫描亮线与0°刻度线用来显示目标的方位。 7)雷达电源设备:把各种船电变换成雷达所需的具有一定频率、功率和电压的专用电源。 3.发射机由哪些部分组成?各部分作用是什么? ⑴触发脉冲产生器:相当于时钟电路,使雷达各部分同步工作。 ⑵调制器及预调制器:触发脉冲一到,预调制器输出具有一定宽度、一定幅度的正极性矩形控制脉冲去控制调制器,使调制器产生具有一定宽度、一定幅度的负极性高压矩形脉冲加到磁控管的阴极。 ⑶磁控管振荡器:在调制脉冲的作用下产生超高频振荡,经波导送至天线向外辐射。

船舶驾驶JRC航海雷达中文操作说明书

ARPA雷达(JMA 9823/9833)操作说明 一、按下PWR键,绿灯亮,3分钟后出现STAND BY,按下TX/STBY键,雷达开始工作;再按TX/STBY可停止发射,设备在预备状态。 二、调整SEA、RAIN、GAIN和BRILL钮,选择RANGE量程,调节TURN钮至物标清晰出现在荧光屏上;SEA、RAIN和TURN分别有手动和自动,但是雨雪和海浪不能同时自动。 三、捕捉物标,按下ACQ MANUAL键,移动光标到物标上,按下左键,物标被捕捉。最多可捕捉50个物标。 四、读取物标数据,按下TGT DATA键,将光标移动到物标上,按下左键,物标数据被读取。 五、取消物标,按下ACQ/CANCEL键,将光标移动到物标上,按下左键,物标被取消。 六、设置方位线、距离圈,按下EBL和VRM键,荧光屏出现方位线、距离圈,旋转EBL 和VRM钮,设置方位和距离。 七、按下AZI/MODE键,进行真北、真运动、相对运动等选择。 八、按下PL键改变发射脉冲宽度。 九、按下TRUE/REL、VECT/TIME键进行真矢量和相对矢量选择。 十、按下TM/RM键,进行真运动和相对运动选择。 十一、按下OFF/CENT键进行偏心显示。 十二、按下MENU键有9个子菜单, 1.IR,按下此键抑制同频干扰(如附近有SART信号应关闭此键)。 2.TGT ENH,按下此键为目标放大功能。 3.PROCESS,程序键。 4.FUNCTION,功能键。 5/ 6.EBL1/EBL2,电子方位线。 7.DATA OFF,按下此键关闭荧光屏部分数据。 8.SUB1 MENU子菜单,按下此键进入下一子菜单: ①SETTING-设置罗经、速度、日期时间等内容,此雷达关机后罗经不能跟踪,故开机后要输入罗经航向。 ②LEVEL-按此键调节亮度。 ③NA V/MAP-导航及转向点信息。 ④TRACK-航迹设定。 ⑤APRA/AIS-设定CPA、TCPA、AIS功能。 ⑥PIN-设置个人信息。 ⑦ISW-两部雷达互换发射机和天线。 ⑧EBL MANEUVER-手动电子方位线。 ⑨SUB2-此菜单调节显示器的颜色。 9.DEGAUSS-按下此键荧光屏消磁。 10.EXIT-按此键退出菜单。 十三、按下DAY/LIGHT钮可调整亮度。 十四、TRAILS钮为尾迹显示。

航海雷达与ARPA

CPA : closest point of approach 最接近点,至CPA 的距离 TCPA : time to CPA 到达CPA 的时间 PPC : possible point of collision 可能碰撞点 PAD : predicted area of danger 预测危险区 VRM : variable range marker 可移动距标,活动距标 EBL : electronic beaning line 电子方位线 STC : sensitivity time control 海浪干扰抑制 FTC : fast time constant 雨雪干扰抑制 AFC : auto frequency control 自动频率控制 IR/RIC : radar interence cancel 同频雷达干扰抑制 1.测距原理:因为超高频无线电波在空间传播时具有等速,直线传播的特性,并且遇到物标有良好的反射性,记录雷达脉冲波离开雷达的时间t1和无线电脉冲遇到物标反射回到天线的时间t2,则物标距离天线的距离S 可由下式求的:T C T T C S ?=-=2 )(212 2.提高雷达的测距精度注意事项:1.正确调节显示器控制面板上的各控制按钮,使回波饱满清晰。2.选择包含所测物标的合适量程,使物标回波显示于1/2~2/3量程处。3.应定期将活动距标与固定距标进行比对,进行校准。4.活动距标应和回波正确重合,即距标圈内缘与回波前沿相切。5.尽可能选用短脉冲发射工作状态,以减少回波外侧扩大效应。 3.提高雷达的测方位精度注意事项:1.正确调节各控钮,使回波饱满清晰。2.选择合适量程,使物标回波显示于1/2~2/3量程区域,并注意选择图像稳定显示方式(如“北向上”)。3.调准中心,减少中心差。实现应垂直屏幕观测,以减少视差。 4.检查船首线是否在正确的位置上。应校准罗经复示器、主罗经及船首线所指航向值三者是否一致。 5.使用机械方位标尺线测点物标时,应使方位标尺线穿过回波中心;测横向岬角、突堤等物标时,应将方位标尺线 切与回波边缘进行读数,再减去或加上“角向肥大”值 (22??H +d θ)。6.使用电子方位线 测物标时,应使其和物标回波边缘进行“同源外侧”重合,以消除光点扩大效应,并进行水平波束宽度扩大效应的修正(2?H θ)。此外,应经常将电子方位线的方位读数和机械防方 位标尺读数进行校准。7.船倾斜或摇摆时,应伺机测定,即待船身回正瞬间时快测。当实在不可避免船摇时,则横摇时尽可能远测正横方向物标,纵摇时尽可能选择首位方向物标,避免测四个偶点方向的物标。 4.雷达定位方法的种类,并比较他们的精度:1.三物标距离定位;2.两物标距离加一物标方位定位;3.两物标距离定位;4.两物标方位加一物标距离定位; 5.单物标距离方位定位; 6.三物标方位定位; 7.两物标方位定位;值得指出的是,在条件许可的情况下应采用方位分罗经目测方位,其精度要比雷达测定的方位精度高。 5.如何利用ARPA 进行碰撞危险估计:1.用相对矢量判断---根据本船的实际情况和当时的态势,设置MINCPA 圆延长相对矢量线,若相对矢量线与MINCPA 圆相交,表示该目标与本船有碰撞危险。还可以读出该物标的CPA 和TCPA 值,进一步予以核实。2.用真矢量判断---调整矢量的时间长短,若本船真矢量与物标船真矢量的终端重叠或非常接近,则表示存在碰撞危险。当采用PCP 或PPC 显示时。当PCP(PPC)标志出现在本船船首线上或船首线附近时,则有碰撞危险。当采用PAD 时,若本船航向线与PAD 相交,则表示存在碰撞危险。3.用仅存危险矢量判断--当采用仅存危险矢量显示时,不论用相对矢量或真矢量模式,凡是在屏幕上显示适量的目标,既是与本船有碰撞危险的目标。

航海雷达 简答题

1.试述雷达测距、测方位原理 利用电磁波特性: 直线传播(微波波段) 匀速传播(同一媒质中) 反射特性(在任何两种媒质的边界面) 测距:通过无线电信号往返时间的精确测量,并在雷达显示器内设置一个计时系统实现测距。 公式:s=(c*Δt )/2 物理量:s 物标离天线的距离;c 电磁波在空间的传播速度,c=300m/us ;Δt 无线电波往返于雷达天线与物标之间的时间 示意图: 测方位:在天线缓慢旋转时测量反射信号的最大幅度,即当在某个方向收到物标回波时,只需记下此时的天线方向就可知道物标的方向了。 示意图: 2.试画出船用雷达基本组成框图,并说明各部分的作用 框图: 1)触发电路:每隔一段时产生一个尖脉冲,同时送到发射机、接收机、显示器三部分,使它们同步工作。(触发电路决定工作开始的时间) 2)发射机:触发脉冲到来后,立刻产生一个大功率,微波波段,具有一定宽度的脉冲包络射频(雷达工作频率,微波波段)的信号。 3)发收开关:发射时;将发射机与天线接通,并将天线与接收机断开。接收时;将发射机与天线断开,并将天线与接收机接通。 4)天线:把发射机送来的微波能量聚成细束朝一个方向发射出去,同时只接收从该方向反射的回波。 5)接收机:将天线送来的回波信号,进行混频、放大、检波处理。得到表示目标大小的视频信号。 6)显示器:在屏上扫描出一条径向亮线,用径向亮线上的加亮点或线段,来显示目标的距离,该扫描亮线随天线同步转动,扫描亮线与0°刻度线用来显示目标的方位。 7)雷达电源设备:把各种船电变换成雷达所需的具有一定频率、功率和电压的专用电源。 3.发射机由哪些部分组成?各部分作用是什么? ⑴触发脉冲产生器:相当于时钟电路,使雷达各部分同步工作。 ⑵调制器及预调制器:触发脉冲一到,预调制器输出具有一定宽度、一定幅度的正极性矩形 天 线 显示器 触发电路 接收机 方位同步系统产生的方位信号 收发开关 发射机 雷达电源 船电

21世纪的船用雷达改(新)

浅析21世纪的船用雷达 摘要:本文以英国船商公司的船用雷达为例,分析了现代雷达的优缺点,重点讨论了AIS和ENC系统在雷达方面的应用,指出了未来雷达技术的发展方向。 关键词:雷达电子海图AIS 1 前言 安装在船舶上的雷达是船长的眼睛。它能辅助船舶航行,在能见度较低或在拥挤水道时能辅助避碰。近30年来,雷达系统的天线单元和收发机单元的技术实际并没有实质性的变化,而显示单元的生产技术却经历了显著的变革。一些使用计算机类型显示器的彩色雷达已经面世,但到现在为止市场上还未出现计算机雷达(指雷达显示单元全部基于PC机)。未来雷达技术将向哪个方向发展呢?本文就这一问题以英国船商有限公司(Transas)在雷达专业领域的最新进展及代表性产品为例进行一些讨论。 2新型雷达概况 在船用雷达更新换代之际,船商公司集过去数年的研究成果和实践提出了一个崭新的概念,即:一部性能优异的ARPA雷达=普通天线收发机+ 普通PC机及显示器+ 船商雷达信号处理卡。船商的雷达信号处理卡(RadarIntegrator Board)目前已发展到第二代,它直接安插在普通PC机的PCI插槽上,与雷达收发天线单元相接后具有直接处理雷达视频信号、录取和跟踪移动目标、控制收发机等功能;安插雷达信号处理卡的计算机能将雷达图像与矢量电子海图相叠加,利用计算机连网可将雷达图像和电子海图传输到船上任一部位;利用船商扩展串行接口,计算机还能处理包括AIS(又称船舶自动识

别系统)在内的所有船用传感器的信息。此外,计算机还能把航行过程中的信息压缩并保存在硬盘上,这些信息不仅包括所有目标的动态数据,而且还包括数月连续航行中雷达天线旋转每一圈所得到的整个雷达图像。 3ENC在雷达方面的应用 IEC允许在雷达屏幕上显示电子导航海图(ENC)上的一些要素,包括岸线、安全区、预警区和线条、孤立的危险物、浮标和灯塔。根据船商公司多年研制和销售电子海图的经验(船商海图数据库已包括全球海域近6000幅矢量电子海图),我们认为上述物标已占ENC数据量的70%。例如,在使用一些国家(如挪威、瑞典、芬兰等)的纸海图制作电子海图过程中我们曾遇到过数百幅海图,图上包含的上述海图要素由一百万条以上线(或点)组成;有些海图竟有11000块礁石。假如我们使用芬兰的第25号海图,用原始比例尺显示在21英寸显示器上,屏幕上将显示出840个岛屿。根据S57标准,一幅ENC海图的容量不能超过5Mb,但如果船舶航行到海图连接处将要显示四幅海图时,这意味着非常庞大的信息量。这些说明在雷达图像上显示ENC绝非易事,至今世界上还没一部雷达能同时显示ENC 和雷达图像。 然而,在雷达图像上叠加显示ENC所有数据将非常有助于安全航行。例如,浮标图形的显示可以使驾驶人员方便地区别浮标回波和目标回波;如果ENC显示的岸线与雷达岸线图像重合,则整个海图要素的参照都是正确的,驾驶人员可迅速判断出本船和其它所有目标

航海雷达介绍

目录 目录 .................................................................................................................................................. I 图录 ................................................................................................................................................ I V 表格目录.......................................................................................................................................... V 缩略语 ............................................................................................................................................ V I 1.雷达/ARPA产品概述 (1) 1.1.概述 (1) 1.2.航海雷达/ARPA系统结构图 (3) 1.3.天线收发单元 (4) 1.4.雷达显示单元 (4) 1.5.其他配件 (5) 1.5.1.电缆线 (5) 1.5.2.电源线 (6) 1.5.3.输入信号数据线 (7) 2.航海雷达安装 (9) 2.1.天线收发单元安装 (9) 2.1.1.天线收发单元安装注意事项 (9) 2.1.2.天线收发单元安装步骤 (10) 2.2.显示单元安装 (13) 2.2.1.注意事项 (13) 2.2.2.安装步骤 (14) 2.3.配线 (16) 2.3.1.布线要求 (16) 2.3.2.收发机接线 (16) 2.3.3.电源线接线 (20) 2.3.4.输入信号线接线 (20) 2.4.对外接口 (22) 2.4.1.电源接口 (22) 2.4.2.电缆接口 (22) 2.4.3.输入信号接口 (23) https://www.wendangku.net/doc/d69467333.html,B接口 (23) 2.4.5.RS-232接口 (23) 2.5.调试和验收 (23) 2.5.1.开机 (23) 2.5.2.日期时间设置 (24) 2.5.3.方位调整 (24) 2.5.4.距离调整 (24) 2.5.5.按键检查 (24) 2.5.6.系统检测 (24) 3.雷达系统操作 (25) 3.1.控制面板介绍 (25) 3.2.雷达界面介绍 (27) 3.3.雷达开机 (28) 3.4.雷达待机 (28) I

航海雷达与

<航海雷达与A R P A> 第一章基本工作原课 第一节测距测方位基本原理 1.测距 a)利用电磁波特性: 1).直接传播(微波波段) 2).匀速传播(同一媒质中) 3).反射特性(在任何两种媒质的边界面) b)计算公式: S = C( t2 - t1 ) / 2 其中:S:目标和本船距离; t1 :发射时刻; t2 :接收时刻;C:电波速度;为300000公里/秒 为准确测量( t2 - t1 ) ,发射信号包络为矩形脉冲。 2.测向 天线为定向天线,只向一个方向发射,也只接收这个方向的目标回波,实现这个方向的测距。随着天波的转动,实现不同方向的测距。 第二节基本组成及各部分作用 1)触发电路: 每隔一段时产生一个尖脉冲,同时送到发射机、接收机、显示器三部分,使它们同步工作。(触发电路决定工作开始的时间) 2)发射机: 触发脉冲到来后,立刻产生一个大功率,微波波段,具有一定宽度的脉冲包络射频(雷达工作频率,微波波段)的信号。 3)发收开关: 发射时;将发射机与天线接通,并将天线与接收机断开。 接收时;将发射机与天线断开,并将天线与接收机接通。 第二章船用雷达设备 第一节中频电源设备 为满足船用雷达工作、及工作环境的要求,雷达对电源的电压值、频率值及各指标的稳定性均有具体的要求,船舶上存在低频、高频电源干扰,有船电负载多变化大等等现象。采用专门的中频电源,正是为了防止这些干扰和有害的现象。目前;雷达电源有中频逆变器、中频变流机组二种。 第三节雷达发射机 一、主要组成及各部分作用 1:触发脉冲产生器: 相当于时钟电路,使雷达各部分同步工作。 2.调制器及预调制器: 触发脉冲一到,预调制器输出具有一定宽度的小功率正方波,控制预调制器产生的方波的起始时刻,预调制器产生的方波控制调制器,使调制器产生大功率负高压脉冲。有的雷达没有预调制器,预调制器的功能由调制器完成。

JRC航海雷达 JMA-7725、7710中文操作说明书

JMA-7725/7710 雷达中文操作说明书

二、面板操作控制和按键Display Control Panel

2.[MAIN MENU]显示主菜单 3.Trackball 移动光标到所需位置 4.5 [-] [+] 选择0.125~96/120海里量程 6.[TUNE] 控制调谐使目标到最清晰的显示 7.[GAIN] 控制雷达的接收灵敏度 8.[RAIN] 在下雨/雪时减小杂波干扰 9.[SEA] 减少海面的反射杂波干扰 10.[BRIL] 调整显示器亮度 11.[COLOR] 选择本船和其它船跟踪、标记和航迹颜色 12.[FUNC] 选择预先设定的功能 13.[GZ MENU] 显示设定的报警菜单 14.[MAP] 雷达复合标绘模式开关 15.[AZI MODE] 真北向上、船首向上、航向向上模式开关 16.[HL OFF] 按住它可以使船首线暂时消隐 17.[DAY/ NIGHT] 选择荧屏的颜色和亮度 18.[OFF CNET] 移动本船位置到需要的地方(66%以内)或返回到中心位置(再 长按一次) 19.[RR] 开关固定距标圈 20.[TRAILS] 显示/删除雷达尾迹 21.[TX/ STBY] 选择雷达发射/预备状态 22.[PANEL] 调节每个开关和控制盘上的控制字符的亮度23.[ALARM ACK] 报警确认,报警消音 24.[VRM I / VRM 2 ] 选择活动距标圈1或2 25.[VRM OFF] 选择开/关活动距标1/2 26.[VRM] 改变可变距标的尺寸 27.[EBL 1/EBL 2 ] 选择电子方位线1或2 28.[EBL OFF] 选择开/关电子方位线1或2 29.[EBL] 改变电子方位线1或2 30.[F EBL] 开/关移动的EBL 31.[TM RST] 在真方位显示下人工复位本船位置32.[TM/ RM] 开/关真方位显示或相对方位显示33.[TGT DATA] 显示目标数据或用ATA设置清除目标数字

海上导航和无线电通信设备及系统船用雷达 性能要求、测试方法和要求的测试结果-编制说明

国家标准《海上导航和无线电通信设备及系统船用雷达性能要求、测试方法和要求的测试结果》(征求意见稿)编制说明 一、工作简况 1.1任务来源 根据国家标准化管理委员会2018年第四批国家标准制修订计划(项目号:20184217-T-339)的要求,GB/T9391-1988的修订工作由上海广电通信技术有限公司、广东蓝盾新微安全科技有限公司等单位承担,归口为339-1(工业和信息化部(电子))。该标准等同采用IEC62388:2013《海上导航和无线电通信设备及系统船用雷达性能要求、测试方法和要求的测试结果》。项目的起止时间为2018年~2020年。 1.2主要工作过程 为使项目能顺利进行,承担单位成立了由技术人员和标准化工作人员组成的标准编制组。编制组认真研究了IEC62388:2013及其引用标准、查阅了大量与船用雷达相关的国家标准及资料,并邀请相关科研单位、行业主管部门、院校、船级社及雷达生产企业的专家举行了专题研讨,从2018年12月起,历时一年多,起草完成了《海上导航和无线电通信设备及系统船用雷达性能要求、测试方法和要求的测试结果》(征求意见稿)。 二、国家标准编制原则和确定国家标准主要内容 2.1编制原则 依据GB/T1.1:2009和GB/T20000.2:2009给出的规则,采取翻译法等同采用IEC 62388:2013,除进行最小限度的编辑性修改外,标准的技术内容和文本结构与原国际标准相同,并遵循“简化、统一、协调、优化”的原则。 对于英文原文中有些词汇的释义,遵循尽可能采用现行相关国家标准已有的定义,参考公开发行并具有权威性的词典和资料以及尊重行业共识的原则。 2.2标准主要内容 2.2.1概述 本标准的修订是基于GB/T9391-1988并等同采纳IEC62388-2013。本标准规定了不低于国际海事组织(IMO)在MSC.192(79)号决议中采用性能标准的最低操作和性能要求、测试方法和要求的测试结果,包括了18个章节和10个附录。 2.2.2标准的主要修订情况 与原标准比较,本标准无论从名称、结构、还是内容方面都做了较大修订,主要包括:1)标准名称 将原标准名称改为“海上导航和无线电通信设备及系统船用雷达性能要求、测试方法和要求的测试结果”,与国际标准IEC62388:2013保持一致; 2)结构调整 原标准将“船用雷达技术要求和使用要求”与“鉴定检验方法和要求的试验结果”分为第一、二篇进行编排,本次修订将这两个部分融合为每一“要求”后紧跟“测试方法和要求的测试结果”,使原标准的28个章节融合为本标准的18个章节,原标准中仍然有效和可行的内容均融合进本标准中;本标准提出了一些新的定义(比如,统一公共基准点、试操船,等等),对于许多技术参数提出了更高的要求(比如,将最小距离50m修改为40m,将待机到发射的时间从15s修改为5s,等等),对于测试方法和要求的测试结果也做了大量扩充和完善;

船用导航雷达简介

船用导航雷达简介 摘要:本文简单介绍了雷达的工作原理,并以此为基础重点介绍了船用导航雷达与普通雷达的区别、相关规范要求、基本组成及作用,技术指标。 关键词:雷达雷达的工作原理船用导航雷达盲区基本组成及作用技术指标自动雷达标绘仪 Abstract: this paper briefly introduces the working principle of the radar, and, on this basis, focusing on the Marine navigation radar and common radar difference, relevant specification requirements, basic composition and function, the technical indexes. Keywords: radar radar principle of work of the Marine navigation radar blind area basic composition and function technical indicators to be automatic radar instrument plot 0引言 雷达(radar)概念形成于20世纪初。雷达是英文radar的音译,为Radio Detection And Ranging的缩写,意为无线电检测和测距的电子设备。它是利用电磁波探测目标的电子设备。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方向、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。船上装备雷达始自第二次世界大战期间,战后逐渐扩大到民用商船。 1雷达的基本工作原理 雷达发射机产生足够的电磁能量,经过收发转换开关传给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 2船用导航雷达 2.1 船用导航雷达简介

关于雷达设备性能标准的建议案

INTERNATIONAL MARITIME ORGANIGATION RESOLUTION MSC.64(67) (adopted on 4 December 1996) ADOPTION OF NEW AMENDED PERFORMANCE STANDARDS THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) resolution A.825(19), by which the International Maritime Organization concerning the functions of the Committee, RECALLING ALSO resolution A.825(19), by which the Assembly resolved that the functions of adopting performance standards for radio and navigational equipment, as well as amendments thereto, shall be performed by the Maritime Safety Committee on behalf of the Organization, HAVING CONSIDERED new performance standards and amendments to existing performance standards adopted by the Assembly prepared by the forty-second session of the Sub-Committee on Safety of Navigation, 1. ADOPTS the following new and recommended performance standards, set out in Annexes 1 to 2 to the present resolution, (a) Recommendation on Performance Standards for Integrated Bridge Systems (IBS) (Annex 1); (b) Recommendation on Performance Standards for Shipborne DGPS and DGLONASS Maritime Radio Beacon Receiver Equipment (Annex 2); 2. ALSO ADOPTS the amendments to the following performance standards adopted by the Assembly, set out in Annexes 3 to 5 to the present resolution: (a) Resolution A.342(IX) - Recommendation on Performance Standards for Automatic Pilots (Annex3); (b) Resolution A.477(XII) - Recommendation on Performance Standards for Radar Equipment (Annex 4);

航海雷达实验报告

实验一船用雷达开关机及主要按钮 内容: 一.控制电源的开关 1.1船电闸刀(SHIP’S POWER SWITCH) 船电闸刀开关设在雷达电源间或机舱配电间。此开关合上后,雷达各分机的加热电阻即通电,用于潮湿天气时加温或驱潮。当显示器上的雷达电源开关合上时,加热电阻即断电。在干热天气又不用雷达或在雷达机内进行维修保养时,应拉开船电闸刀。 1.2雷达电源开关(RADAR POWER SWITCH) 该开关设在显示器面板上,用于控制雷达中频电源通断,一般有三个位置: 1)关(OFF):整个电源切断。 2)预备(STAND-BY):各分机低压电源供电,此时除发射机特高压电源外,全机已供电。 3)发射(ON):低压供电3min~5min,使磁控管阴极充分预热后置该开关于"ON’’位置,此时发射机加上特高压,开始发射。注意:当雷达短时间不用时,应将开关扳回到"STAND一BY”位置,处于热备用状态。有的雷达在"ON”位置又分为短、长(SHORT—LONG)两档,以切换脉冲宽度 1.3天线开关(SCANNER POWER;ANTENNA POWER) 该开关在显示器面板上,用来控制天线驱动电机电源的通断。接通前应先检查天线上

有无障碍。切断前应先将屏幕“亮度”钮反时针旋到底。有的雷达天线开关与雷达电源开 关同轴安装。有的雷达在“预备”位置时天线即旋转。有的雷达则在“发射”位置时天线 才旋转,显示器才能调出扫描线。天线驱动电机的电源常用船电而非中频电,在安装或维 修时应予注意。 二、调节图像质量的控钮 1.亮度(BRILIAANCE;INTENSITY) 该控钮用来调整扫描线的亮度。开关机前或转换量程前,应先关至最小,开机后应调 到扫描线刚见未见。 2.聚焦(FOCUS) 该控钮用来调整屏上光点的粗细。应调到固定距标圈最细、图像清晰为止。 3.增益(GAIN) 该控钮用来调整接收机中放放大量,以控制回波和杂波的强弱。应调到屏上杂波斑点 刚见未见,但在观测远距离弱回波时可适当增大。 4.调谐(TUING) 该控钮用来微调接收机本振频率,使本振频率与回波信号频率(即发射频率)之差为中频,从而使屏上回波图像最饱满、清晰。雷达开机工作稳定后或在工作过程中必要时应重 调该钮,以保持图像清晰。设有自动频率控制(AFC)电路的雷达,当“手动/自动”开关置 于“自动”时,此调谐控钮无用。一般雷达还设有“调谐指示器”,可用来指示调谐的好坏。 5.脉冲宽度选择开关(PULSE LENGTH SELECTOR) 该开关用来选择发射脉冲的宽度,以适应远、近量程不同的使用要求。一般设有2~3 种宽度供选用。有些雷达则不单独设此开关,而由量程开关同轴转换。 三、抑制杂波的控钮 1.海浪干扰抑制(ANTI—CLUTTER SEA;SEA ECHO SUPPRESSION) 该电路又称灵敏度时间控制电路(SENCITIVITY TIME CONTROl。缩写为“STC”)。该控 钮用来调整一个随时间按指数规律变化的脉冲电压的幅度,以控制中放增益(灵敏度),使 中放的近距离增益大大减小,而随着距离的增加便逐渐恢复正常,达到抗海浪干扰的目的。海浪干扰抑制的范围和深度由该控钮控制,一般最大范围可达6n mile~8n mile,有的 可达8n mile~10n mile。注意:该控钮应酌情调节,力求达到既抑制海浪干扰,又不 丢失近距离海浪中的小物标回波的效果。 2.线性/对数中放转换开关(LIN/LOG) 该开关用来选择接收机用线性中放还是对数中放。当近距离有强物标回波或强海浪等 干扰时用对数中放。由于对数中放对灵敏度有损失,因此有远距离观测或近距离不存在强 回波或强干扰时,应选用线性中放。 3.雨雪干扰抑制控钮(或开关)(ANTI CLUTTER RAIN) 雨雪干扰抑制电路实际上是在回波视频放大器输入电路部分接入的一个微分电路,又称 快时间常数电路(FAST TIME CONSTANT,缩写为FTC)。可用来抑制雨雪等大片连续的干扰 回波,也可增加距离分辨力。该控钮有开关式和旋钮式两种。因为微分处理对回波信号有 损失,会引起失真,所以开关式"FTC"控钮在雨雪天开,晴天时关;旋钮式"FTC"应酌情调节,达到既去除雨雪干扰杂波,又不丢失雨雪中物标回波的效果。 4.极化选择开关(POLARIZATION) 该开关用来选择雷达天线发射波极化方式,它有三个位置:水平(HOR)一准备(READY) 一圆极化(CIR)。在准备(READY)位置时,发射机停止发射。在转换极化方式时,开关应先 在“准备”位置停一下,然后再拨到“圆极化”位置。因为圆极化天线对灵敏度是有损失

相关文档
相关文档 最新文档