文档库 最新最全的文档下载
当前位置:文档库 › 基于随机用户均衡的城市交通流分配优化模型

基于随机用户均衡的城市交通流分配优化模型

基于随机用户均衡的城市交通流分配优化模型
基于随机用户均衡的城市交通流分配优化模型

Transcad交通分配关键操作指南20111220

TransCAD交通分配操作指南2011 上海海事大学交通运输学院刘兰辉 本文介绍通过TransCAD进行交通分配的关键操作。机动车出行OD表和各小区的交通生成表可通过Excel计算生成。交通方式划分可由交通工程师根据资料和发展趋势判定。 1 建立一个路网 在建路网前,可先打开tif格式的地图作为画路网得依据。(File-Open, 选择*.tif格式)。 新建线层地理文件(菜单File-New, 文件类型选Geographic File-Line Geographic File)。路网文件的字段属性一般包含路名(name)、道路等级(type)、车道数(lanes)、设计速度(speed)、通行能力(capacity)、背景交通量(basicvolume)和小区连接线(centroidline)等。各字段的推荐类型见表1。还可通过工具栏的Formula Field命令计算获得RoadLength和TravelTime字段。自身的默认字段有ID,length, dir。 表1路网文件的字段属性及其类型 字段属性name lanes roadtype speed capacity basicvolume centroidline 单位――――――(km/h) (pcu/h) (pcu/h) ―― 字段类型Character Integer Integer Integer Real Real Integer 通过工具栏的Working layer将点层设为当前工作层。通过工具栏的Open Dataview 命令按钮打开点层的Dataview文件。点层Dataview文件的默认字段有ID,longitude,latitude。选择菜单Dataview-Modify Table,增加小区形心点类型(Centroid Point)字段,类型设为Integer。 建路网前,建议将系统的默认单位设为m和cm(Edit-Preferences)。比例尺推荐设为1cm=100m(1:10000)。 通过工具栏的Working layer将线层设为当前层,开始建立路网。选择Tools-Map Editing-Toolbox,得到画图工具框。建路网时,可按由上向下、先左后右以及道路等级由高到低的顺序根据tif地图创建道路网。同时,打开点层文件,并标注显示节点ID。时刻注意节点ID是否连续,若发生节点ID跳跃,说明可能有的路段没连上,从而生成了2个节点。这往往比较难发现。所以,等画完所有路段后进行一下路段连接性检查(选择Tools-map editing-check line layer connectivity)。

交通分配及其算法

V 为网络节点集,即:道路交叉点;A 为路段集,即:道路 交通量—人的个数—OD 矩阵 ,a C a A ∈:路段a 的通行能力 ()a a t x :路段a 的阻抗,a x 为流量,通常以时间记,假设仅与路段a 有关 系统最优是系统规划者所期望得到的一种平衡状态,其前提是所有网络用户必须互相协作,遵从网络管理者的统一调度,所以是计划指向型分配准则。 出行者的出行决策过程是相互独立的,路网上的交通流的状态是出行者独立选择的结果。出行者必然转向费用较小的路径.其结果,路网上的交通量分布最终必然趋于用户平衡状态。所以,用户平衡状态最接近实际的交通状态。 Wardrop 准则的提出标志着网络流平衡分配概念从描述转为严格刻画,不但假设司机都力图选择阻抗最小的路径,而且还假设司机随时掌握整个网络的状态,精确计算每条路径的阻抗,还假设了司机的计算能力与水平是相同的。 在这些假设条件下进行的配流被称为确定性配流,得到的用户平衡条件被称为确定性平衡条件,简称UE 条件。User Equilibrium System Optimal rs k rs a f q ∑=且0rs k f ≥(rs k f —O-D 对r-s 之间路径k 上的流量)rs q 等于连接rs 之间 各路径上的路段的交通量的总和。 ,rs rs a k a k r s k x f σ=∑∑∑(,rs a k σ—如果弧a 在连接O-D 对r-s 的路径k 上,其值为1,否则为0)路段a 上的流量等于通过a 的路径上分配到a 上的交通量的总和。 1. 目标函数本身并没有什么直观的经济含义或行为含义。 2. 没必要直接求解用户平衡条件方程组,平衡状态可以由求解等价都极小值问题得到。 3. 模型的解关于路段流量唯一,关于路径流不唯一 4. 等价性与唯一性证明略

交通分配之用户均衡分配模型二(matlab源码)

例 总流量为100,走行函数为: ??? ??+=40)(6.04)(111t x x c ?? ? ??+=40)(9.06)(222t x x c ?? ? ??+=60)(3.02)(333t x x c ??? ??+=40)(75.05)(444t x x c ?? ? ??+=40)(45.03)(555t x x c 模型求解的Matlab 源码: syms lambda ; tt =[0 0 0 ]; xx = [0 0 0 0 0] ; t1 = 4 + (0.6/40)*xx(1,1); t2 =6 + (0.9/40) *xx(1,2); t3 = 2 + (0.3/60) *xx(1,3); t4 = 5 + (0.75/40) *xx(1,4) ; t5 = 3 + (0.45/40) *xx(1,5) ; Q = 100; N=8 ; % 迭代次数 ,本例只设置最大迭代次数。也可另外设置收敛条件 tt(1,1)= t1 +t4 ; tt(1,2) = t2 + t5 ; tt(1,3) =t1+ t3 +t5 ; y = [0 0 0]; %置初值 Min = 50000; for j = 1 : 3 if tt(1 ,j)

% y(1,index) = Q; if index ==1 xx(1,1)= Q; xx(1,4)=Q; elseif index ==2 xx(1,2)= Q; xx(1,5)=Q; else xx(1,1)= Q; xx(1,3)=Q; xx(1,5)=Q; end for i =1 :N y = [0 0 0 0 0 ]; t1 = 4 + (0.6/40)*xx(1,1); t2 =6 + (0.9/40) *xx(1,2); t3 = 2 + (0.3/60) *xx(1,3); t4 = 5 + (0.75/40) *xx(1,4) ; t5 = 3 + (0.45/40) *xx(1,5) ; tt(1,1)= t1 +t4 ; tt(1,2) = t2 + t5 ; tt(1,3) =t1+ t3 +t5 ; fprintf('第%d 次迭代的路径时间值:' , i); tt Min = 50000; for j = 1 : 3 if tt(1 ,j)

城市均衡分配模型与算法

专适于城市道路网络的交通均衡分配模型 刘灿齐 同济大学道路与交通工程系,上海,200092 摘要:由于已有的均衡分配理论中的阻抗公式不包含车流在交叉口的延误,其研究成果并不真正适用于城市道路网络。本文提出了流向、流向阻抗、流向流量的概念,找到了包含交叉口分流向延误的阻抗公式、基于新阻抗公式的交通均衡分配模型。这个模型较真实地描述了城市道路网络上的交通分配情况。 关键词:城市道路网络,流向,延误,阻抗公式,均衡分配 Traffic Equilibrium Assignment Model Special for Urban Road Network LIU Canqi Road & Traffic Department, Tongji University, Shanghai 200092 Abstract: The cost formula in the existing equilibrium theory does not include the delay time at nodes. So, the researching results of the theory are unsuitable for urban road network. The conceptions of traffic direction, cost on traffic direction, and volume on traffic direction are given. The cost formula including the delay time at nodes is expressed. At last, a new equilibrium assignment model based on the cost formula is posed, which is suitable for urban road network. Key words: Urban road network, Flow-direction, delay, cost formula, equilibrium assignment 关于交通分配,1952年Wardrop 提出了道路网均衡分配的概念,其定义是: 在道路网的用户都知道网络的状态并试图选择最短路径时,网络会达到这样一种均衡状态,每对产生——吸引点(PA 点对)之间各条被利用的路径的走行时间都相等而且是最小的走行时间,而没有被利用的的路径的走行时间都大于或等于这个最小的走行时间。 这条定义通常称为“Wardrop 的第一原理”,又叫“用户均衡原理”。 1956年,Bechmann 等提出了描述这个均衡问题的一个数学规划模型,1975年LeBlanc 等学者设计出了求解Bechmann 模型的算法,从而形成了现在的实用解法。Wardrop 原理——Bechmann 模型——Leblanc 算法这三点突破是交通分配问题研究的三个里程碑,也是现在交通分配理论的基础[1]。 然而,这些均衡分配研究成果并不真正适合于城市道路网络。在交通均衡分配模型和算法中,路段阻抗函数是一个基本要素,LeBlanc 的算法中要求它单调递增。到目前为止,唯一公认的来自于实际观测的阻抗函数实例就是美国公路局(BPR )的走行时间公式 ()[] βαa a a a a e x t x t /1)0()(+= (1) 然而,这个公式是从市际公路观测得到的,对城市道路,只能描述车辆在路段部分的行驶时间。但城市道路网络上的车辆除了在路段部分要花费行驶时间外,在信号灯交叉口还往往要花时间

相关文档