文档库 最新最全的文档下载
当前位置:文档库 › 时间复杂度的计算

时间复杂度的计算

时间复杂度的计算
时间复杂度的计算

时间复杂度计算

学习数据结构时,觉得时间复杂度计算很复杂,怎么也看不懂,差不多三年之后,还是不懂,马上就要找工作了,赶紧恶补一下吧:

首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。

当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。

常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。

1. 大O表示法

定义

设一个程序的时间复杂度用一个函数 T(n) 来表示,对于一个查找算法,如下:

int seqsearch( int a[], const int n, const int x)

{

int i = 0;

for (; a[i] != x && i < n ; i++ );

if ( i == n) return -1;

else return i;

}

这个程序是将输入的数值顺序地与数组中地元素逐个比较,找出与之相等地元素。

在第一个元素就找到需要比较一次,在第二个元素找到需要比较2次,……,在第n个元素找到需要比较n次。对于有n个元素的数组,如果每个元素被找到的概率相等,那么查找成功的平均比较次数为:

f(n) = 1/n (n + (n-1) + (n-2) + ... + 1) = (n+1)/2 = O(n)

这就是传说中的大O函数的原始定义。

用大O来表述

要全面分析一个算法,需要考虑算法在最坏和最好的情况下的时间代价,和在平均情况下的时间代价。对于最坏情况,采用大O表示法的一般提法(注意,这里用的是“一般提法”)是:当且仅当存在正整数c和n0,使得 T(n) <= c*f(n)对于所有的n >= n0 都成立。则称该算法的渐进时间复杂度为T(n) = O(f(n))。这个应该是高等数学里面的第一章极限里面的知识。这里f(n) = (n+1)/2, 那么c * f(n)也就是一个一次函数。就是在图象上看就是如果这个函数在c*f(n)的下面,就是复杂度为T(n) = O(f(n))。

对于对数级,我们用大O记法记为O(log2N)就可以了。

规则

1)加法规则

T(n,m) = T1(n) + T2(n) = O ( max (f(n), g(m) )

2) 乘法规则

T(n,m) = T1(n) * T2(m) = O (f(n) * g(m))

3)一个特例

在大O表示法里面有一个特例,如果T1(n) =O?, c是一个与n无关的任意常数,T2(n) = O ( f(n) ) 则有

T(n) = T1(n) * T2(n) = O ( c*f(n) ) = O( f(n) ).

也就是说,在大O表示法中,任何非0正常数都属于同一数量级,记为O(1)。

4)一个经验规则

有如下复杂度关系

c < log2N < n < n * Log2N < n^2 < n^3 < 2^n < 3^n < n!

其中c是一个常量,如果一个算法的复杂度为c 、 log2N 、n 、 n*log2N ,那么这个算法时间效率比较高,如果是 2^n , 3^n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意.

1)基本知识点:没有循环的一段程序的复杂度是常数,一层循环的复杂度是

O(n),两层循环的复杂度是O(n^2)? (我用^2表示平方,同理 ^3表示立方);

2)二维矩阵的标准差,残差,信息熵,fft2,dwt2,dct2的时间复杂度: 标准差和残差可能O(n),FFT2是O(nlog(n)),DWT2可能也是O(nlog(n));信息熵要求概率,而dct的过程和jpeg一样。因为和jpeg一样,对二难矩阵处理

了.Y=T*X*T',Z=Y.*Mask,这样子,还有分成8*8子图像了;

3)example:

1、设三个函数f,g,h分别为 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn

请判断下列关系是否成立:

(1) f(n)=O(g(n))

(2) g(n)=O(f(n))

(3) h(n)=O(n^1.5)

(4) h(n)=O(nlgn)

这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则

T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足

0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。

◆(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。

◆(2)成立。与上同理。

◆(3)成立。与上同理。

◆(4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn

的比值不是常数,故不成立。

2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。

(1) i=1; k=0

while(i

{ k=k+10*i;i++;

}

解答:T(n)=n-1, T(n)=O(n),这个函数是按线性阶递增的。

(2) x=n; // n>1

while (x>=(y+1)*(y+1))

y++;

解答:T(n)=n1/2 ,T(n)=O(n1/2),最坏的情况是y=0,那么循环的次数是n1/2

次,这是一个按平方根阶递增的函数。

(3) x=91; y=100;

while(y>0)

if(x>100)

{x=x-10;y--;}

else x++;

解答: T(n)=O(1),这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有? 没。这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数。

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。

1、时间复杂度

(1)时间频度

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

(2)时间复杂度

在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与

T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

按数量级递增排列,常见的时间复杂度有:

常数阶O(1),对数阶O(log2n),线性阶O(n),

线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),...,

k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

2、空间复杂度

与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作:

S(n)=O(f(n))

我们一般所讨论的是除正常占用内存开销外的辅助存储单元规模。讨论方法与时间复杂度类似,不再赘述。

(3)渐进时间复杂度评价算法时间性能

主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个

算法的时间性能。

【例3.7】有两个算法A1和A2求解同一问题,时间复杂度分别是

T1(n)=100n2,T2(n)=5n3。

(1)当输入量n<20时,有T1(n)>T2(n),后者花费的时间较少。

(2)随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20

亦随着增大。即当问题规模较大时,算法A1比算法A2要有效地多。

它们的渐近时间复杂度O(n2)和O(n3)从宏观上评价了这两个算法在时间方

面的质量。在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予

区分,而经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中

的f(n)一般是算法中频度最大的语句频度。

【例3.8】算法MatrixMultiply的时间复杂度一般为T(n)=O(n3),f(n)=n3

是该算法中语句(5)的频度。下面再举例说明如何求算法的时间复杂度。

【例3.9】交换i和j的内容。

Temp=i;

i=j;

j=temp;

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规

模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。

如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有

上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度

是O(1)。

【例3.10】变量计数之一。

(1) x=0;y=0;

(2) for(k-1;k<=n;k++)

(3) x++;

(4) for(i=1;i<=n;i++)

(5) for(j=1;j<=n;j++)

(6) y++;

一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分。因此,以上程序段中频度最大的语句是(6),其频度为f(n)=n2,所以该程序段的时间复杂度为

T(n)=O(n2)。

当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

【例3.11】变量计数之二。

(1) x=1;

(2) for(i=1;i<=n;i++)

(3) for(j=1;j<=i;j++)

(4) for(k=1;k<=j;k++)

(5) x++;

该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:

则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)。

(4)算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。

【例3.12】在数值A[0..n-1]中查找给定值K的算法大致如下:

(1)i=n-1;

(2)while(i>=0&&(A[i]!=k))

(3) i--;

(4)return i;

此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关:

①若A中没有与K相等的元素,则语句(3)的频度f(n)=n;

②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。

(5)最坏时间复杂度和平均时间复杂度

最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。

这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。

【例3.19】查找算法【例1·8】在最坏情况下的时间复杂度为T(n)=0(n),它表示对于任何输入实例,该算法的运行时间不可能大于0(n)。

平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。

常见的时间复杂度按数量级递增排列依次为:常数0(1)、对数阶

0(log2n)、线形阶0(n)、线形对数阶0(nlog2n)、平方阶0(n2)立方阶

0(n3)、…、k次方阶0(nk)、指数阶0(2n)。显然,时间复杂度为指数阶0(2n)的算法效率极低,当n值稍大时就无法应用。

类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。算法的时间复杂度和空间复杂度合称为算法的复杂度。

算法时间复杂度的计算

算法时间复杂度的计算 [整理] 基本的计算步骤 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。 2. 计算出T(n)的数量级 求T(n)的数量级,只要将T(n)进行如下一些操作: 忽略常量、低次幂和最高次幂的系数 令f(n)=T(n)的数量级。 3. 用大O来表示时间复杂度 当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。 一个示例: (1) int num1, num2; (2) for(int i=0; i

排序算法时间复杂度比较

排序算法比较 主要容: 1)利用随机函数产生10000个随机整数,对这些数进行多种方法排序。 2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。 3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。 程序的主要功能: 1.随机数在排序函数作用下进行排序 2.程序给出随机数排序所用的时间。 算法及时间复杂度 (一)各个排序是算法思想: (1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。 (2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的

关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。 (3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。 (4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。 时间复杂度分析

10000个数据的时间比较: 程序源代码: /********************************************************************************************** package test; public class SortArray { private static final int Min = 1;//生成随机数最小值 private static final int Max = 10000;//生成随机数最大值 private static final int Length = 10000;//生成随机数组长度(测试的朋友建议不要超过40000,不然你要等很久,如果你电脑配置绝对高的情况下你可以再加个0试试) public static void main(String[] args) { System.out.println("数组长度:"+Length+", Min:"+Min+", Max:"+Max); long begin; long end; int arr[] = getArray(Length);

算法的时间复杂性

算法的时间复杂度计算 定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。 我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。 此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。 “大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。 这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。 O(1) Temp=i;i=j;j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 O(n^2) 2.1. 交换i和j的内容 sum=0;(一次) for(i=1;i<=n;i++) (n次) for(j=1;j<=n;j++) (n^2次) sum++;(n^2次) 解:T(n)=2n^2+n+1 =O(n^2) 2.2. for (i=1;i

最大公约数的三种算法复杂度分析时间计算

昆明理工大学信息工程与自动化学院学生实验报告 ( 2011 —2012 学年第 1 学期) 一、上机目的及内容 1.上机内容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。 2、欧几里得算法 3、分解质因数算法 根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) {

r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

排序算法时间复杂度比较

排序算法比较 主要内容: 1)利用随机函数产生10000个随机整数,对这些数进行多种方法排序。 2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。 3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。 程序的主要功能: 1.随机数在排序函数作用下进行排序 2.程序给出随机数排序所用的时间。 算法及时间复杂度 (一)各个排序是算法思想: (1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。 (2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的

关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。 (3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。 (4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。 时间复杂度分析 排序算法最差时间时间复杂度是否稳定? 插入排序O(n2) O(n2) 稳定冒泡排序O(n2) O(n2) 稳定快速排序O(n2) O(n*log n) 不稳定 2 选择排序O(n2) O(n2) 稳定

算法的时间复杂度计算

for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++; 它的时间复杂度是多少? 自己计算了一下,数学公式忘得差不多了,郁闷; (1)时间复杂性是什么? 时间复杂性就是原子操作数,最里面的循环每次执行j次,中间循环每次执行 a[i]=1+2+3+...+i=i*(i+1)/2次,所以总的时间复杂性=a[1]+...+a[i]+..+a[n]; a[1]+...+a[i]+..+a[n] =1+(1+2)+(1+2+3)+...+(1+2+3+...+n) =1*n+2*(n-1)+3*(n-2)+...+n*(n-(n-1)) =n+2n+3n+...+n*n-(2*1+3*2+4*3+...+n*(n-1)) =n(1+2+...+n)-(2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)) =n(n(n+1))/2-[(2*2+3*3+...+n*n)-(2+3+4+...+n)] =n(n(n+1))/2-[(1*1+2*2+3*3+...+n*n)-(1+2+3+4+...+n)] =n(n(n+1))/2-n(n+1)(2n+1)/6+n(n+1)/2 所以最后结果是O(n^3)。 【转】时间复杂度的计算 算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,

下面我们就这个问题给各位考生进行分析。 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn 请判断下列关系是否成立: (1)f(n)=O(g(n)) (2)g(n)=O(f(n)) (3)h(n)=O(n^1.5) (4)h(n)=O(nlgn) 这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆(2)成立。与上同理。 ◆(3)成立。与上同理。 ◆(4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,

算法的时间复杂度

算法的时间复杂度 Prepared on 22 November 2020

时间复杂度:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数,T(n)称为这一算法的“时间复杂度”。渐近时间复杂度:当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂度”。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶 O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^+5000nlgn 请判断下列关系是否成立: (1) f(n)=O(g(n)) (2) g(n)=O(f(n)) (3) h(n)=O(n^ (4) h(n)=O(nlgn)

这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤Cf(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆ (1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆(2)成立。与上同理。 ◆(3)成立。与上同理。 ◆(4)不成立。由于当n→∞时n^比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。 2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。 (1) i=1; k=0 while(i

算法时间复杂度计算示例

算法时间复杂度计算示 例 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

基本计算步骤? 示例一:? (1) int num1, num2; (2) for(int i=0; i

常用的排序算法的时间复杂度和空间复杂度

排序法最差时间分析平均时间复杂度稳定度空间复杂度 冒泡排序()() 稳定() 快速排序()(*) 不稳定()() 选择排序()() 稳定() 二叉树排序()(*) 不一顶() 插入排序()() 稳定() 堆排序(*) (*) 不稳定() 希尔排序不稳定() 、时间复杂度 ()时间频度一个算法执行所耗费地时间,从理论上是不能算出来地,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费地时间多,哪个算法花费地时间少就可以了.并且一个算法花费地时间与算法中语句地执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中地语句执行次数称为语句频度或时间频度.记为(). ()时间复杂度在刚才提到地时间频度中,称为问题地规模,当不断变化时,时间频度()也会不断变化.但有时我们想知道它变化时呈现什么规律.为此,我们引入时间复杂度概念. 一般情况下,算法中基本操作重复执行地次数是问题规模地某个函数,用()表示,若有某个辅助函数(),使得当趋近于无穷大时,()()地极限值为不等于零地常数,则称()是()地同数量级函数.记作()O(()),称O(()) 为算法地渐进时间复杂度,简称时间复杂度. 在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为(),另外,在时间频度不相同时,时间复杂度有可能相同,如()与()它们地频度不同,但时间复杂度相同,都为(). 按数量级递增排列,常见地时间复杂度有:常数阶(),对数阶(),线性阶(), 线性对数阶(),平方阶(),立方阶(),...,次方阶(),指数阶().随着问题规模地不断增大,上述时间复杂度不断增大,算法地执行效率越低. 、空间复杂度与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间地度量.记作: ()(()) 我们一般所讨论地是除正常占用内存开销外地辅助存储单元规模.讨论方法与时间复杂度类似,不再赘述. ()渐进时间复杂度评价算法时间性能主要用算法时间复杂度地数量级(即算法地渐近时间复杂度)评价一个算法地时间性能. 、类似于时间复杂度地讨论,一个算法地空间复杂度( )()定义为该算法所耗费地存储空间,它也是问题规模地函数.渐近空间复杂度也常常简称为空间复杂度. 空间复杂度( )是对一个算法在运行过程中临时占用存储空间大小地量度.一个算法在计算机存储器上所占用地存储空间,包括存储算法本身所占用地存储空间,算法地输入输出数据所占用地存储空间和算法在运行过程中临时占用地存储空间这三个方面.算法地输入输出数据所占用地存储空间是由要解决地问题决定地,是通过参数表由调用函数传递而来地,它不随本算法地不同而改变.存储算法本身所占用地存储空间与算法书写地长短成正比,要压缩这方面地存储空间,就必须编写出较短地算法.算法在运行过程中临时占用地存储空间随算法地不同而异,有地算法只需要占用少量地临时工作单元,而且不随问题规模地大小而改变,我们称这种算法是“就地"进行地,是节省存储地算法,如这一节介绍过地几个算法都是如此;有地算法需要占用地临时工作单元数与解决问题地规模有关,它随着地增大而增大,当较大时,将占用较多地存储单元,例如将在第九章介绍地快速排序和归并排序算法就属于这种情况.文档收集自网络,仅用于个人学习 如当一个算法地空间复杂度为一个常量,即不随被处理数据量地大小而改变时,可表示为();当一个算法地空间复杂度与以为底地地对数成正比时,可表示为();当一个算法地空司复杂度与成线性比例关系时,可表示为().若形参为数组,则只需要为它分配一个存储由实参传送

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较 1.选择排序:不稳定,时间复杂度 O(n^2) 选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。这样,经过i遍处理之后,前i个记录的位置已经是正确的了。 2.插入排序:稳定,时间复杂度 O(n^2) 插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。 3.冒泡排序:稳定,时间复杂度 O(n^2) 冒泡排序方法是最简单的排序方法。这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。 4.堆排序:不稳定,时间复杂度 O(nlog n) 堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。 5.归并排序:稳定,时间复杂度 O(nlog n)

最大公约数的三种算法复杂度分析时间计算

理工大学信息工程与自动化学院学生实验报告 (2011 —2012 学年第 1 学期) 课程名称:算法设计与分析开课实验室:信自楼机房444 2011 年10月 12日 一、上机目的及容 1.上机容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。

根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) { int r; r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

给出以下算法的时间复杂度

第1章绪论 1、填空题 1.常见的数据结构有_________结构,_________结构,_________结构等三种。 2.常见的存储结构有_________结构,_________结构等两种。 3.数据的基本单位是_________,它在计算机中是作为一个整体来处理的。 4.数据结构中的结构是指数据间的逻辑关系,常见的结构可分为两大类,_________和_________。 2、应用题 1、给出以下算法的时间复杂度. void fun(int n) { int i=1,k=100; while(i

while(inext=p->next; p->next=s; (B)p->next=s; s->next=p->next;

算法时间复杂度

算法时间复杂度 The final edition was revised on December 14th, 2020.

实验一算法的时间复杂度 一、实验目的与要求 熟悉C/C++语言的集成开发环境; 通过本实验加深对算法分析基础知识的理解。 二、实验内容: 掌握算法分析的基本方法,并结合具体的问题深入认识算法的时间复杂度分析。三、实验题 定义一个足够大的整型数组,并分别用起泡排序、简单选择排序、快速排序和归并排序对数组中的数据进行排序(按从小到大的顺序排序),记录每种算法的实际耗时,并结合数据结构中的知识对算法的时间复杂度分析进行说明。实验数据分两种情况: 1、数组中的数据随机生成; 2、数组中的数据已经是非递减有序。 四、实验步骤 理解算法思想和问题要求; 编程实现题目要求; 上机输入和调试自己所编的程序; 验证分析实验结果; 整理出实验报告。 五、实验程序 #include #include<> #include<> using namespace std; void SelectSort(int r[ ], int n) { int i; int j; int index; int temp; for (i=0; i

数据结构时间复杂度的计算

数据结构时间复杂度的计算 for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++; 它的时间复杂度是多少? 自己计算了一下,数学公式忘得差不多了,郁闷; (1)时间复杂性是什么? 时间复杂性就是原子操作数,最里面的循环每次执行j次,中间循环每次执行 a[i]=1+2+3+...+i=i*(i+1)/2次,所以总的时间复杂性=a[1]+...+a[i]+..+a[n]; a[1]+...+a[i]+..+a[n] =1+(1+2)+(1+2+3)+...+(1+2+3+...+n) =1*n+2*(n-1)+3*(n-2)+...+n*(n-(n-1)) =n+2n+3n+...+n*n-(2*1+3*2+4*3+...+n*(n-1)) =n(1+2+...+n)-(2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)) =n(n(n+1))/2-[(2*2+3*3+...+n*n)-(2+3+4+...+n)] =n(n(n+1))/2-[(1*1+2*2+3*3+...+n*n)-(1+2+3+4+...+n)] =n(n(n+1))/2-n(n+1)(2n+1)/6+n(n+1)/2 所以最后结果是O(n^3)。 【转】时间复杂度的计算 算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,下面我们就这个问 题给各位考生进行分析。 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中 频度最大的语句频度。

算法时间复杂度计算示例

基本计算步骤 示例一: (1) int num1, num2; (2) for(int i=0; i

典型比较排序法时间复杂度对比

典型比较排序法时间复杂度对比 2008-09-12 13:56 平均情况最好情况最坏情况 归并排序O(nlogn)O(nlogn)O(nlogn) 快速排序O(nlogn)O(nlogn)O(n2) 希尔排序O(n1.5)O(n)O(n1.5) 插入排序O(n2)O(n)O(n2) 选择排序O(n2)O(n2)O(n2) 堆排序:时间复杂度O(n log n) 选择排序:时间复杂度O(n2) 冒泡排序:时间复杂度O(n2) 归并排序占用附加存储较多,需要另外一个与原待排序对象数组同样大小的辅助数组。这是这个算法的缺点。 基数排序:时间复杂度是O ( d ( n+radix ) ),但d一般不能取常数,d=logn,所以时间复杂度为O(n log n),当k=n时,为O(n) 线性时间排序的有:计数、基数、桶排序。 在前面几节中讨论了内部排序和外部排序的方法。对于内部排序主要介绍了五大类排序方法:插入排序(直接插入排序、折半插入排序和希尔排序)、交换排序(冒泡排序和快速排序)、选择排序(简单选择排序和堆排序)、归并排序和基数排序。详细讨论了各种排序方法的基本原理,并从时间复杂性、空间复杂性以及排序的稳定性三方面

讨论了各种排序方法的时效性,介绍了各排序方法的实现算法及其存在的优缺点。如果待排序的数据量很小,最好选择编程简单的排序算法,因为在这种情况下采用编程复杂、效率较高的排序方法所能节约的计算机时间是很有限的。反之,如果待处理的数据量很大,特别是当排序过程作为应用程序的一部分需要经常执行时,就应该认真分析和比较各种排序方法,从中选出运行效率最高的方法。 下面具体比较一下各种排序方法,以便实现不同的排序处理。 (1) 插入排序的原理:向有序序列中依次插入无序序列中待排序的记录,直到无序序列为空,对应的有序序列即为排序的结果,其主旨 是“插入”。 (2) 交换排序的原理:先比较大小,如果逆序就进行交换,直到有序。其主旨是“若逆序就交换”。 (3) 选择排序的原理:先找关键字最小的记录,再放到已排好序的序列后面,依次选择,直到全部有序,其主旨是“选择”。 (4) 归并排序的原理:依次对两个有序子序列进行“合并”,直到合并为一个有序序列为止,其主旨是“合并”。 (5) 基数排序的原理:按待排序记录的关键字的组成成分进行排序的一种方法,即依次比较各个记录关键字相应“位”的值,进行排序,直到比较完所有的“位”,即得到一个有序的序列。 各种排序方法的工作原理不同,对应的性能也有很大的差别,下面通过一个表格可以看到各排序方法具体的时间性能、空间性能等方面的区别。 依据这些因素,可得出如下几点结论: (1) 若n较小(如n值小于50),对排序稳定性不作要求时,宜采用选择排序方法,若关键字的值不接近逆序,亦可采用直接插入排序法。但如果规模相同,且记录本身所包含的信息域比较多的情况下应首选简单选择排序方法。因为直接插入排序方法中记录位置的移动操作次数比直接选择排序多,所以选用直接选择排序为宜。 (2) 如果序列的初始状态已经是一个按关键字基本有序的序列,则选择直接插入排序方法和冒泡排序方法比较合适,因为“基本”有序的序列在排序时进行记录位置的移动次数比较少。 (3) 如果n较大,则应采用时间复杂度为O(nlog2n)的排序方法,即快速排序、堆排序或归并排序方法。快速排序是目前公认的内部排序的最好方法,当待排序的关键字是随机分布时,快速排序所需的平均时间最少;堆排序所需的时间与快速排序相同,但辅助空间少于快速排序,并且不会出现最坏情况下时间复杂性达到O(n2)的状况。这两种排

渐进时间复杂度的计算

时间复杂度计算 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 1. 大O表示法 定义 设一个程序的时间复杂度用一个函数 T(n) 来表示,对于一个查找算法,如下: int seqsearch( int a[], const int n, const int x) { int i = 0; for (; a[i] != x && i < n ; i++ ); if ( i == n) return -1; else return i; } 这个程序是将输入的数值顺序地与数组中地元素逐个比较,找出与之相等地元素。 在第一个元素就找到需要比较一次,在第二个元素找到需要比较2次,……,在第n个元素找到需要比较n次。对于有n个元素的数组,如果每个元素被找到的概率相等,那么查找成功的平均比较次数为: f(n) = 1/n (n + (n-1) + (n-2) + ... + 1) = (n+1)/2 = O(n) 这就是传说中的大O函数的原始定义。 用大O来表述 要全面分析一个算法,需要考虑算法在最坏和最好的情况下的时间代价,和在平

如何计算时间复杂度

如何计算时间复杂度 求解算法的时间复杂度的具体步骤是: ⑴ 找出算法中的基本语句; 算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 ⑵ 计算基本语句的执行次数的数量级; 只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。 ⑶ 用大Ο记号表示算法的时间性能。 将基本语句执行次数的数量级放入大Ο记号中。 如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如: for (i=1; i<=n; i++) x++; for (i=1; i<=n; i++) for (j=1; j<=n; j++) x++; 第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为 Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。 常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!) Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环 语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和 Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。 这只能基本的计算时间复杂度,具体的运行还会与硬件有关。

排序算法时间复杂度分析

算法分析与设计实验报告 姓名:龚一帆 班级:04011404 学号:2014211849 专业:计算机科学与技术 一.实验题目排序问题求解 二.实验目的 1)以排序(分类)问题为例,掌握分治法的基本设计策略。 2)熟练掌握一般插入排序算法的实现; 3)熟练掌握快速排序算法的实现; 4) 理解常见的算法经验分析方法; 三.实验环境 计算机、C语言程序设计环境 四.实验内容与步骤 1.生成实验数据: 代码: int main() { freopen("/Users/shana/Desktop/实验课/算法实验课/1/Data.txt","w",stdout); srand(static_cast(time(0))); cout<<2000<

for(int j=i-1;j>=0;j--) { if(a[j]>a[j+1]) { swap(a[j],a[j+1]); } } } 3.实现快速排序算法. 思路: 使用了二分的思想,将每段数组以与该数组的第一个数比较大小的关系分类并改变它们的位置,实现这段数组总所有比第一个数大的数都在第一个数的后面,比第一个小的数都在第一个数前面,再将本次划分的两段数组再进行本次操作,直到每段数组只有一个数 代码: void sway(int n,int m) { int temp=a[n]; a[n]=a[m]; a[m]=temp; } int partition(int p,int q) { int n=q,s=1; while(p!=q) { if( s&&a[n]=a[p]) { n=--q; } elseif( !s &&a[n]>a[q]) {

相关文档