文档库 最新最全的文档下载
当前位置:文档库 › 涡街流量计原理讲解

涡街流量计原理讲解

涡街流量计原理讲解
涡街流量计原理讲解

涡街流量计

1.1基本原理:

流体流经阻挡体或者是特制的元件时,产生了流动振荡,通过测定其振荡频率来反映通过的流量。

1.2特点:

优点:无可动部件,寿命长;准确度高,线性范围宽;量程范围宽(100:1);压力损失小;不受P、t、η、ρ等流体参数变化的影响;气、液均可以使用,可用于大口径管道的气液测量。

缺点:干扰引起的流量振荡时影响较大。

1.3涡街产生原理:

涡街流量计是利用流体力学中著名的卡门涡街原理,即在流动的流体中插入一个非流线型断面的柱体,流体流动受到影响,在一定的雷诺数范围内将在柱体下游,均要产生漩涡分离。当这些漩涡排列成两排、且两例漩涡的间距与同列中两相邻漩涡的间距之比满足下式时,h/l=0.281,就能得到稳定的交替排列漩涡,这种稳定而规则地排列的涡列称为“卡门涡街”。这个稳定的条件是冯·卡门对于理想涡街研究分析得到的,后来一般把错排稳定的涡街称作“卡门涡街”。这就是卡门涡街流量计的名称由来,如图1所示

图1卡门涡街示意图

理论和实验的研究都证明,漩涡分离频率,即单位时间内由柱体一侧分离的漩涡数目f与流体速度V1成正比,与柱体迎

流面的宽度d成反比,即:

式中f—漩涡分离频率。

S r—斯特劳哈尔数(无量纲)。对于一定柱型在一定流量范围内是雷诺数的函数。

V1—漩涡发生体两侧的流速,m/s。

d—漩涡发生体迎流宽度m m。

为了计算方便起见,可用管道内平均流速

通过试验可以测定S r数,其数值与柱体的断面形状、柱体流道的相对尺寸以及流动雷诺数有关。大量的试验表明,对于许多经过适当选择的柱型,由于数在很宽的雷诺数范围内可以看成是常数。一旦柱体和流道的几何尺寸及其形状确

定后,f便与成为简单的正比关系,因而检测出漩涡的频率,便可以测得流速,并以此推知其流量。这就是涡街流量计的基本原理。

当流体流动受到一个垂直于流动方向的非流线形柱体的阻碍时,柱体的下游两侧会发生明显的旋涡,成为卡门涡列,涡列的形成与流体雷诺数有关。如图2,漩涡形成示意图,图3卡曼涡街示意图。

图2:漩涡形成示意图

图3:卡曼涡街

1.3涡街流量计结构

1.3.1:如图4,涡街流量计=传感器+转换器(1)传感器:

旋涡发生体(阻流体)、

检测元件、

仪表表体;

(2)转换器:

前置放大器、

滤波整形电路、

D/A转换电路、

输出接口电路、端子、支架和防护罩

图4:窝接传感器剖面图

1.4旋涡发生体

与仪表的流量特性(仪表系数、线性度、范围度等)和阻力特性(压力损失)密切相关,

要求如下:

①能控制旋涡在旋涡发生体轴线方向上同步分离;

②在较宽的雷诺数范围内,有稳定的旋涡分离点,保持恒定的斯特劳哈尔数;

③能产生强烈的涡街,信号的信噪比高;

④形状和结构简单,便于加工、安装和组合;

⑤材质应满足流体性质的要求,耐腐蚀,耐磨蚀,耐温变;

⑥固有频率在涡街信号的频带外。

旋涡发生体和检测方式一览表

1.5漩涡分离频率检测方法和检出元件

利用伴随漩涡分离的物理效应,可以采用热敏、力敏元件通过光、声调制方法等来检测漩涡分离频率。

至今用于检测分离频率的方法和采用的元件是多种多样的,归纳起来有以下几种典型方法:

(1)热敏元件检测方法漩涡分离产生的交变环流所引起的柱体表面速度脉动或者交变横向流的频率,用加热的金属丝、热敏电阻器等进行检测。

(2)力敏元件检测方法漩涡分离造成的交变差压、交变升力或者交变升力引起的机械振动,用差动电容、电阻应变

片、压电晶体、压电陶瓷等检测。

(3)电磁传感器检测方法漩涡的分离所引起的膜片或者梭球等的往复振动的频率,用电磁传感器检测。声、光信号调制检测方法利用声束光束通过涡街时受到漩涡的调制,由接收声强光强或相位的脉动频率得到漩涡分离频率。

1.6频率检测方法

主要方法:压力脉动测量法、流速脉动测量法、频率直接检测法;

热电阻法(P脉动):

把圆柱做成空心,中间放入一个加热的电阻丝,在隔板层开几个导压孔,当一侧产生涡列时,P变化(脉动),另一侧未变,所以流体经过导压孔突然流过电阻丝,使之冷却,温度降低,电阻减小,另一侧再产生涡列时,流体反而再次冷却,电阻减小,测出电阻下降的次数就可以推出f。

热敏电阻法(灵敏度高):

在三角柱体的迎流面上对称的嵌入两个热敏电阻,热敏电阻中通入恒定的电流,使之温度在流体静止的情况下比流体高出10℃左右。未起漩时,流体的温度相同,交替旋转时,发生漩涡的一侧,能量损失,因此流速降低,此侧对电阻的冷却作用下降,可以产生一个脉冲。

电磁检测法:

旋涡发生体后设置一个信号电极,并使电极处于一个磁感应强度为B的永久磁场中,流体旋涡的振动使电极同频率振动,切割磁力线产生感应电动势。特点:不怕管道振动,刚刚兴起的涡街频率检测方法,如图5。

图5电磁检测方法原理

1.7安装使用注意事项

涡街流量计对管道流速分布畸变、旋转流和流动脉动等敏感,对现场管道安装条件应充分重视,遵照生产厂使用说明书的要求执行。

涡街流量计可安装在室内或室外。

如果安装在地井里,有水淹的可能,要选用涎水型传感器。传感器在管道上可以水平、垂直或倾斜安装,但测量液体和气体时为防止气泡和液滴的干扰,安装位置要注意。

1.7.1混相流体的安装

1.7.2涡街流量计对上、下游直管段长度的要求

1.8使用注意事项

(1)现场安装完毕通电和通流前的检查

①主管和旁通管上各法兰、阀门、测压、测温孔及接头应无渗漏现象;

②管道振动情况是否符合说明书规定;

③传感器安装是否正确,各部分电气连接是否良好。

(2)接通电源静态调试

在通电不通流时转换器应无输出,瞬时流量指示为零,累积流量无变化,否则首先检查是否因信号线屏蔽或接地不良,或管道震动强烈而引入干扰信号。如确认不是上述原因时,可调整转换器内电位器,降低放大器增益或提高整形电路触发电平,直至输出为零。

(3)通流动态调试

关旁通阀,打开上下游阀门,流动稳定后转换器输出连续的脉宽均匀的脉冲,流量指示稳定无跳变,调阀门开度,输出随之改变。否则应细致检查并调整电位器直至仪表输出既无误触发又无漏脉冲为止。

1.9涡街流量计的常见故障处理

(1)新安装或新检修好的涡街流量计安装在现场管道上后,在开表过程中有时显示仪表

无指示。这往往是管道内无流量或流量很小,致使速度V=0或很小,在传感器内无旋涡产生。也可能是由于传感器内的检测放大器灵敏度调得太低。如果管道内未吹净的焊渣、铁屑等杂物卡在探头与内壁之间,使探头不振动,也会引起一次表无指示。

(2)管道内无流体流动,但显示仪表有流量显示。这是由于仪表接地不良,引入了外部干扰引起的;也可能是由于灵敏度调得太高所致。实践证明,灵敏度不能调得太高,否则会引起流量偏高或指示波动;调得太低,显示仪表又无指示。一般应在无流量和无外界干扰时,使显示仪表指零即可。

(3)管道内有强烈的机械振动,也会使显示仪表有指示,而工业生产的现场管道常常受动力设备的影响而发生振动,这种振动所形成的噪声干扰,对涡街流量计仪表的准确检测是非常有害的,严重时会导致仪表无法正常工作。如泵可以引起流体的压力脉动(静压脉动),而间隙性大幅度的开闭阀门,或负荷的突变,则可引起流体对仪表的大冲击。涡街流量计最怕大范围的波动冲击,更怕介质中夹杂的焊渣、石块等硬物的冲击,这些都会使噪声信号增大,以致影响测量精度。

(5)涡街传感器的探头与内壁只有很小的距离,极易被沙粒、污物堵住,使振动源不能振动,仪表指零。此时如用外

力敲击几下一次表的壳体,有时会把探头与内壁之间的污物振掉,使仪表恢复指示。有时二次表指示偏低且迟缓,是有污物堵在了探头与内壁之间,但未堵死,此时可旋动丝杠,使振动源旋转180°,即把振动源倒过来,让流体反冲一下振动源,有时会解决问题。

(6)有时一送电,仪表就指示某一刻度,且不管怎样调整灵敏度电位器,也总不变化,这往往是一次表内部某元件损坏所致。

北京泽诺科技开发公司

陈海萌

2013/3/14

TK--WJL涡街流量计系

TK--WJL涡街流量计 应用: TK--WJL系列涡街流量计主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。无可动机械零件,因此可靠性高,维护量小。仪表参数能长期稳定。涡街流量计采用压电应力式传感器,可靠性高,可在-20℃~+250℃的工作温度范围内工作。有模拟标准信号,也有数字脉冲信号输出,容易与计算机等数字系统配套使用,是一种比较先进、理想的流量仪表。 涡街流量计原理: 涡街流量计在流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡门旋涡,如右图所示,旋涡列在旋涡发生体下游非对称地排列。 设旋涡的发生频率为f,被测介质平均流速为,旋涡发生体迎流面宽度为d,表体通径为D,即可得到以下关系式: f=SrU1/d=SrU/md 式中U1--旋涡发生体两侧平均流速,m/s; Sr--斯特劳哈尔数; m--旋涡发生体两侧弓形面积与管道横截面面积之比 管道内体积流量qv为:qv=πD2U/4=πD2mdf/4Sr 、K=f/qv=[πD2md/4Sr]-1 式中K--流量计的仪表系数,脉冲数/m3(P/m3)。 K除与旋涡发生体、管道的几何尺寸有关外,还与斯特劳哈尔数有关。斯特劳哈尔数为无量纲参数,它与旋涡发生体形状

及雷诺数有关,图2所示为圆柱状旋涡发生体的斯特劳哈尔数与管道雷诺数的关系图。由图可见,在ReD=2×104~7×106范围内,Sr可视为常数,这是仪表正常工作范围。当测量气体流量时,VSF的流量计算式为 斯特劳哈尔数与雷诺数关系曲线 式中qVn,qV--分别为标准状态下(0oC或20oC,101.325kPa)和工况下的体积流量,m3/h; Pn,P--分别为标准状态下和工况下的绝对压力,Pa; Tn,T--分别为标准状态下和工况下的热力学温度,K; Zn,Z--分别为标准状态下和工况下气体压缩系数。 由上式可见,VSF输出的脉冲频率信号不受流体物性和组分变化的影响,即仪表系数在一定雷诺数范围内仅与旋涡发生体及管道的形状尺寸等有关。但是作为流量计在物料平衡及能源计量中需检测质量流量,这时流量计的输出信号应同时监测体积流量和流体密度,流体物性和组分对流量计量还是有直接影响的。 涡街流量计便是依据卡门旋涡原理进行封闭管道流体流量测量的新型流量计。因其具有良好的介质适应能力,无需温度压力补偿即可直接测量蒸汽、空气、气体、水、液体的工况体积流量,配备温度、压力传感器可测量标况体积流量和质量流量,是节流式流量计的理想替代产品。 为提高涡街流量计的耐高温及抗振动性能,我公司新近开发出了HAKK-TK--WJL改进型涡街流量传感器,因其独特的结构和选材使该传感器可在高温(350℃)、强振动(≤1g)的恶劣工况下使用。 在实际应用中,往往最大流量远低于仪表的上限值,随着负荷的变化,最小流量又往往会低于仪表的下限值,仪表并非工作在它的最佳工作段,为了解决这一问题,通常采用在测量处缩径提高测量处的流速,并选用较小口径的仪表以利于仪表的测量,但是这种变径方式必须在变径管与仪表间有长度为15D以上的直管段进行整流,使加工、安装都不方便。我公司研制的纵断面形状为圆弧的LGZ变径整流器,具有整流、提高流速及改变流速分布多重作用,其结构尺寸小,仅为工艺管内径的1/3,与涡街流量计作成一体,不仅不需要另外附加一段直管段,还可以降低对工艺管直管段的要求,安装非常方便。 为了使用方便,电池供电的本地显示型涡街流量计采用微功耗高新技术,采用锂电池供电可不间断运行一年以上,节省了电缆和显示仪表的采购安装费用,可就地显示瞬时流量、累积流量等。温度补偿一体型涡街流量计还带有温度传感器,可以直接测量出饱和蒸汽的温度并计算出压力,从而显示饱和蒸汽的质量流量。温压补偿一体型带有温度、压力传感器,用于气体流量测

涡街流量计工作原理

涡街流量计工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

涡街流量计 涡街产生原理: 涡街流量计是利用流体力学中著名的卡门涡街原理,即在流动的流体中插入一个非流线型断面的柱体 ,流体流动受到影响 ,在一定的雷诺数范围内将在柱体下游,均要产生漩涡分离。当这些漩涡排列成两排、且两例漩涡的间距与同列中两相邻漩涡的间距之比满足下式时,h/l= ,就能得到稳定的交替排列漩涡,这种稳定而规则地排列的涡列称为“卡门涡街”。这个稳定的条件是冯?卡门对于理想涡街研究分析得到的,后来一般把错排稳定的涡街称作“卡门涡街”。这就是卡门涡街流量计的名称由来,如图1所示 图1 卡门涡街示意图 理论和实验的研究都证明,漩涡分离频率,即单位时间内由柱体一侧分离的漩涡数目f与流体速度V1成正比,与柱体迎流面的宽度d成反比,即: 式中f—漩涡分离频率。 Sr—斯特劳哈尔数(无量纲)。对于一定柱型在一定流量范围内是雷诺数的函数。V1—漩涡发生体两侧的流速m/s。 d—漩涡发生体迎流宽度mm。 为了计算方便起见 ,可用管道内平均流速 试验可以测定Sr数,其数值与柱体的断面形状、柱体流道的相对尺寸以及流动雷诺数有关。大量的试验表明,对于许多经过适当选择的柱型,由于斯特劳哈尔数在很宽的雷诺数范围内可以看成是常数。一旦柱体和流道的几何尺寸及其形状

确定后,f便与平均速度V成为简单的正比关系,因而检测出漩涡的频率 ,便可以测得流速 ,并以此推知其流量。这就是涡街流量计的基本原理。 当流体流动受到一个垂直于流动方向的非流线形柱体的阻碍时,柱体的下游两侧会发生明显的旋涡,成为卡门涡列,涡列的形成与流体雷诺数有关。如图2,漩涡形成示意图,图3卡门涡街示意图。 图2:漩涡形成示意图 图3:卡门涡街

涡街流量计工作原理

涡街流量计 涡街产生原理: 涡街流量计是利用流体力学中著名的卡门涡街原理,即在流动的流体中插入一个非流线型断面的柱体,流体流动受到影响,在一定的雷诺数范围内将在柱体下游,均要产生漩涡分离。当这些漩涡排列成两排、且两例漩涡的间距与同列中两相邻漩涡的间距之比满足下式时,h/l=0.281 ,就能得到稳定的交替排列漩涡,这种稳定而规则地排列的涡列称为“卡门涡街”。这个稳定的条件是冯?卡门对于理想涡街研究分析得到的,后来一般把错排稳定的涡街称作“卡门涡街”。这就是卡门涡街流量计的名称由来,如图1所示 图1 卡门涡街示意图 理论和实验的研究都证明,漩涡分离频率,即单位时间内由柱体一侧分离的漩涡数目f与流体速度V1成正比,与柱体迎流面的宽度d成反比,即: 式中f—漩涡分离频率。 Sr—斯特劳哈尔数(无量纲)。对于一定柱型在一定流量范围内是雷诺数的函数。 V1—漩涡发生体两侧的流速m/s。 d—漩涡发生体迎流宽度mm。 为了计算方便起见,可用管道内平均流速 试验可以测定Sr数,其数值与柱体的断面形状、柱体流道的相对尺寸以及流动雷诺数有关。大量的试验表明,对于许多经过适当选择的柱型,由于斯特劳哈尔数在很宽的雷诺数范围内可以看成是常数。一旦柱体和流道的几何尺寸及其形状确定后,f便与平均速度V成为简单的正比关系,因而检测出漩涡的频率,便可以测得流速,并以此推知其流量。这就是涡街流量计的基本原理。

当流体流动受到一个垂直于流动方向的非流线形柱体的阻碍时,柱体的下游两侧会发生明显的旋涡,成为卡门涡列,涡列的形成与流体雷诺数有关。如图2,漩涡形成示意图,图3卡门涡街示意图。 图2:漩涡形成示意图 图3:卡门涡街

靶式流量计说明书

靶式流量计说明书

靶式流量计于六十年代开始应用于工业流量测量,主要用于解决高粘度、低雷诺数流体 的流量测量,先后经历了气动表和电动表两大发展阶段,智能靶式流量计是在原有应变片式 靶式流量计测量原理的基础上,采用了新形式的差动传感器。采用新式差动传感器是该新型 产品真正实现高精度、高稳定性的关键核心,彻底改变了原有应变片式靶式流量计温漂大,抗过载(冲击)能力差,存在静态密封点等种种缺陷,不但发挥了靶式流量计原有的技术优势,同时又具有与容积式流量计相媲美的测量准确度,加之其特有的抗干扰、抗杂质性能,除能替代常规流量计所能测量的流量计量问题,尤其在小流量、高粘度、易凝易堵、高温、低温、强腐蚀、强震动等流量计量困难的工况中具有很好的适应性。目前已广泛应用于冶金、 石油、化工、能源、食品、环保等各个领域的流量测量。 一、原理及特性 1结构 智能靶式流量计主要由测量管(外壳)、新型传感器(含阻流元件)、积算显示和输出部分组成。根据不同的介质和工况,必须选用相适应的传感器,因此,用户提供准确的计量对 象及参数,生产厂家选用合适的传感器是产品能否计量准确的关键。 2、工作原理 当介质在测量管中流动时,因其自身的动能通过阻流件(靶式流量计)时而产生的压差,并对阻流件有一作用力,其作用力大小与介质流速的平方成正比,其数学方式表达如下: F=C d A p V2/2 式中:F――阻流件所受的作用力(kg ) C d――物体阻力系数 A ――阻流件对测量管轴向投影面积(mm2) P――工况下介质密度(kg/m3) V ――介质在测量管中的平均流速(m/s) 阻流件(靶)接受的作用力F,经刚性连接的传递件(测杆)传至传感器,传感器产生电压 信号输出:V=KF 式中:V――传感器输出的电压(mV), K――比例常数, F――阻流件(靶)所受的作用力(kg)

智能涡街流量计说明书

一、概述 涡街流量计是根据卡门涡街理论,利用了流体的自然振动原理,以压电晶体或差动电容作为检测部件而制成的一种速度式流量仪表。 该仪表采用独特的差动技术,配合隔离、屏蔽、滤波等措施,克服了同类产品抗震性差、小信号数据紊乱等问题,并采用了独特的检测探头封装新技术和防护措施,保证了产品的可靠性。产品有管道式和插入式两种结构型式,每种型式都有高温、高压、防腐、防爆、温压补偿一体型等规格,又有整体和分体结构,以适应不同的测量介质和安装环境。 该仪表具有量程比宽,精度高,安装维护方便和介质适应性广等一系列优点。可广泛应用于石油化工、冶金机械、食品、造纸,以及城市管道供热、供水、煤气等行业的各种低黏度液体、气体、蒸汽等单相流体的工艺计量和节能管理。 二、工作原理 涡街流量计根据卡门涡街理论,在流体中设置旋涡发生体,当流体流经旋涡发生体时,它的两侧就形成了交替变化的两排旋涡,这种旋涡被称为卡门涡街。斯特罗哈尔在卡门涡街理论的基础上又提出了卡门涡街的频率与流体的流速成正比,并给出了频率与流速的关系式: f = St ×V/d 式中: f 涡街发生频率(Hz) St 斯特罗哈尔系数(常数) d 旋涡发生体迎流面宽度 V旋涡发生体两侧的平均流速(m/s ) 图1 这些交替变化的旋涡就形成了一系列交替变化的负压力,该压力作用在检测探头上,便产生一系列交变电信号,经过检测放大器转换、整形、放大处理后,输出脉冲频率信号,或进一步转换成与流量成正比的4 ~ 20mA.DC标准电流信号。 三、基本特点 ●安装简便,维护十分方便。 ●应用范围广,压力损失小,运行费用低。 ●结构简单牢固,无可动部件,使用寿命长。 ●采用抗机械振动,抗冲击和抗脏污的结构新设计。 ●从检测探头到运放电路实现了高度的互换性和通用性。 ●可现场显示,也可远距离传输,还可与计算机控制系统联网。 ●检测元件不直接接触测量介质,尤其适合恶劣环境下的流量测量。 ●操作简单,全部参数设定和调试在出厂前已完成,一般通电后即可正常工作。 ●在一定雷诺数范围内,输出信号不受被测介质物理性质和组分变化的影响,仪表系数仅与

孔板流量计工作原理

孔板流量计工作原理 充满管道的流体,当它们流经管道内的节流装置时,流束将在节流装置的节流件处形成局部收缩,从而使流速增加,静压力低,于是 在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节 流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。这种测量方法是以能量守衡定律和流动连续性定 律为基准的。 孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成,广泛应用于气体、蒸汽和液体的流量测量。具有结构简单,维修方便,性能稳定,使用可靠等特点。详细介绍: 一、概述孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成,广泛应用于气体、蒸汽和液体的流量测量。具有结构简单,维修方便,性能稳定,使用 可靠等特点。孔板节流装置是标准节流件可不需标定直接依照国家 标准生产,1.国家标准GB2624-81<流量测量节流装置的设计安装和使用;2.国际标准ISO5167<国际标准组织规定的各种节流装置; 3.化工部标准GJ516-87-HK06。 二、工作原理充满管道的流体流经管道内的节流装置,在节流件附近造成局部收缩,流速增加,在其上、下游两侧产生静压力

差。在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。 孔板流量计由截流元件孔板、均压环、三阀组和智能多参数变送器组成。 三阀组: 三阀组的作用是将差压变送器的正负压室与引压管导通或切断,导通或切断差压变送器。 停用时:关闭负压阀,打开平衡阀,关闭正压阀. 投用时:打开正压阀,关闭平衡阀,打开负压阀.在有隔离液的情况下要确保三阀组不能同时打开,防止隔离液因为差压而跑掉. 五阀组比三阀组多2个排污阀。 初次使用时应先打开平衡阀,再打开低压侧负压阀,接着是打开高压侧正压阀,最后关闭平衡阀,变送器工作,这样操作很好的保护了变 送器。在变送器的工作过程中也可以打开平衡阀给变送器调零等操作 孔板流量计的安装位置是直管的前10D后5D。 造成孔板测量不准的几个原因:

质量流量计工作原理的学习

质量流量计工作原理的学习 质量流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。质量流量计是一种重要的流量测量仪表。质量流量计是采用感热式测量。 流体的体积是流体温度和压力的函数,它是一个因变量,而流体的质量是一个不随时间、空间温度、压力的变化而变化的量。如前所述,常用的流量计中,如孔板流量计、涡轮流量计、涡街流量计、电磁流量计、转子流量计、超声波流量计和椭圆齿轮流量计等的流量测量值是流体的体积流量。在科学研究、生产过程控制、质量管理、经济核算和贸易交接等活动中所涉及的流体量一般多为质量。采用上述流量计仅仅测得流体的体积流量往往不能满足人们的要求,通常还需要设法获得流体的质量流量。以前只能在测量流体的温度、压力、密度和体积等参数后,通过修正、换算和补偿等方法间接地得到流体的质量。这种测量方法,中间环节多,质量流量测量的准确度难以得到保证和提高。随着现代科学技术的发展,相继出现了一些直接测量质量流量的计量方法和装置,从而推动了流量测量技术的进步。 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P ?正比于2 qρ,如图1所示,密度计 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为

各种流量计的原理

一、按测量原理分类 (1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 (2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 (3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 (4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 (5)光学原理:激光式、光电式等是属于此类原理的仪表。 (6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表。 (7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。 二、按流量计结构原理分类 按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型: 1. 容积式流量计 容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。流量越大,度量的次数越多,输出的频率越高。容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等. 2.叶轮式流量计 叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。 3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量

孔板流量计的安装注意点和原理分析

孔板流量计的安装注意点和原理分析 一、孔板流量计的安装注意事项 1.气体取压口最好在管道上部;液体取压口在侧面以下但不要在正下方,沉积颗粒会堵着取压口的;蒸汽的话取压口在管道侧面; 2.孔板方向不要弄错了,标“+”的为正向,“-”为负向,“+”是迎着流体过来的方向。 3.正负取压口引出的导压管在任何情况下都要保持平行; 4.孔板一般都要配合差压变送器用的,导压管与差压变送器连接时要注意正负压不要装反,“H”为正,“L”为负; 5.测气体的话差压装置建议放在管道上方,液体的话放在管道下部,测蒸汽嘛如果有配冷凝罐的话,应当保持冷凝罐在同一水平面高度上。 6.直管段要求了,按计算书计算出安装孔板时要求的前后直管段长度,通常为前20D后10D来装(D是指孔板的口径)节流装置V锥流量计与孔板流量计性能比较:V锥形流量计(又称内锥、V锥、V型锥流量计)是新一代差压式流量计测量仪表,由专用的节流装置锥形管与通用的差压变送器、二次仪表配套构成。锥形管是专利技能产品,对残旧的差压装置作了很大的技能改进,它由一圆形测量管和置入测量管内并与测量管同轴的特型芯体构成。芯体与测量管内圆柱面之间构成异径环型过流裂痕,对流过的流体进行节流,其节流历程同环型孔板、经典文丘里管的节流历程近似。锥形管的特殊构造,有效的消除了而今在用孔板、喷嘴的性能毛病,使之在运用历程中不永存类似孔板等节流件的锐缘磨蚀与积污纰漏,并能对节流前管内流体速度散播梯度及大概永存的各种非轴对称速度散播进行额外有效的流动排解(整流),从而能实现高切确度与高平乱性的流量测量。锥形管流量计可用于对各种液体、气体和蒸汽的测量,是尺寸孔板等残旧节流式仪表的梦想换代产品,为改进而今的工业、能源计量成果,供给了一项有效、可靠的计量手腕。 二、产品性能机理简析 孔板流量计为何能有如此优秀的技能性能?最本原的原因是靠其简单而又科学合理的构造及其所造成的节流模式。应该说,锥形管是环形孔板与经典文丘里管的技能再发家,它将环形孔板、经典文丘里管、耐磨孔板以及锥形入口孔板的性能优特性融会在一齐,彻底消除了孔板的计量性能毛病,使之造成了一项齐全”择优遗传杂交”特性的新型节流式流量测量仪表。尺寸孔板的首要计量性能毛病:①运用历程中,额外减省爆发节流件锐缘磨蚀和积污,造成流出系数缓缓变换,导致难以克制的流量测量差池。②在中低雷诺数测量区,流出系数随流量工况变革而变革的幅度较大,导致编制性的测量差池。③安设直管段哀求过高,以及孔板安设的峻厉圭臬哀求难以达标,经常造成运用安设附加差池较大,该差池经常难以定量评估。④压损大。

靶式流量计

靶式流量计 靶式流量计于六十年代开始应用于工业流量测量,主要用于解决高粘度、低雷诺数流体的流量测量。它是一种通过测量流体对靶板的冲击力,通过公式换算为流量值。 测量原理 当介质在测量管中流动时,因其自身的动能通过阻流件(靶)时而产生的压差,并对阻流件有一作用力,其作用力的大小与介质流速的平方成正比,其数学方式表达如下: F = Cd·A·ρ·V2/2 F:靶板所受的作用力 Cd:流体阻力系数 A:靶板对测量管轴向投影面积 ρ:工况下介质密度 V:介质在测量管中的特征流速 靶板所受的作用力,经靶杆传递使传感器的弹性体产生微量变化,经过电路转换,输出相应的电信号。

信号传输过程 靶式流量计典型应用 靶式流量计应用范围和适应性很广泛,一般工业过程中的流体介质,包括液、气和蒸汽,口径范围(DN15-DN3000),各种工作状态(高、低温,常压、高压)皆可应用,可以说其应用范围可与孔板流量计相媲美。 气体类: 煤气、空气、氢气、天然气、氮气、液化石油气、过氧化氢、烟道气、甲烷、丁烷、氯气等。 液体类: 重油、石蜡、沥青、硫酸、食用油、渣油、丙酮、柴油、矿井水、洗涤剂、酱油、汽油、硅油、糖浆、溶剂、香水、海水、航空煤油、皂酮水、葡萄糖、菜油酸、盐水、浆糊、墨水、冷却剂、乙二醇、矿物油、液态糖、盐酸、汽车涂料、树脂、牛油、菜油、液氧、洗发液、牙膏、凝胶、燃油、牛奶、漂白剂、调节剂、

苏打、添加剂、清洗剂、碱性、氨、船用油、化学试剂、煤油、甘油、染料、水、硝酸、高沸点有机溶液、猪油、添加剂、酒精、油、乙烯、聚丙烯、甲笨等。 靶式流量计产品特点 能准确测量各种常温、高温500度、低温-200度工况下的气体、液体流量; 可测量液、气和蒸汽,口径范围(DN15-DN3000)至更大; 计量准确,精度可达到0.2%; 重复性好,一般为0.05~0.08%,测量快速; 压力损失小,仅为标准孔板的1/2△P左右; 抗干扰,抗杂质能力特强; 可根据实际需要更换阻流件(靶片)而改变流量范围; 安装简单方便,极易维护。 化工小鱼塘编辑

流量计类型及原理

流量计类型及原理 一、流量计原理 (1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 (2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 (3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 (4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 (5)光学原理:激光式、光电式等是属于此类原理的仪表。 (6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表. (7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。二、按流量计结构原理分类按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下 二、几种类型: 1.容积式流量计容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。流量越大,度量的次数越多,输出的频率越高。容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等. 2.叶轮式流量计叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。 3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量都采用这种表计。目前生产的产品分:孔板流量计、楔形流量计、文丘里管流量计、平均皮托管 4.变面积式流量计(等压降式流量计) 放在上大下小的锥形流道中的浮子受到自下而上流动的流体的作用力而移动。当此作用力与浮子的“显示重量”(浮子本身的重量减去它所受流

LUGB涡街流量计说明书

LUGB系列涡街流量计 使用说明书

目录 一. 概述工作原理- - - - - - - - - - - - - - - (3) 二. 技术参数- - - - - - - - - - - - - - - - - - - (4) 三. 流量范围- - - - - - - - - - - - - - - - - - - (4) 四. 安装结构图- - - - - - - - - - - - - - - - - - (5) 五. 安装及接线- - - - - - - - - - - - - - - - - - (6) 六. 流量计参数整定- - - - - - - - - - - - - - - - (9) 七. 流量计信号检测、调整和校验方法- - - - - - - - - (10) 八. 维护及故障排除- - - - - - - - - - - - - - - - (10) 九. 订货须知- - - - - - - - - - - - - - - - - - - (11) 十. 智能流量计操作说明- - - - - - - - - - - - - - (12)

一概述 LUGB系列涡街流量计是一种采用压电晶体作为检测元件,输出与流量成正比的标准信号的流量仪表。该仪表可以直接与DDZ-Ⅲ型仪表系统配套,也可以与计算机及集散系统配套使用,对不同介质的流量参数进行测量。该仪表根据流体涡街的检测原理,其检测涡街的压电晶体不与介质接触,仪表具有结构简单、通用性好和稳定性高的特点. LUGB系列涡街流量计可用于各种气体、液体和蒸汽的流量检测及计量。 LUGB 系列涡街流量计可以与本公司生产的智能流量积算仪配套使用,也可以和其它仪表厂商生产的智能仪表配套使用,具有通用性强的特点。 二工作原理 涡街流量计的基本原理是卡门涡街原理,?即“涡街旋涡分离频率与流速成正比”。 流量计流通本体直径与仪表的公称口径基本相同。如图一所示,?流通本体内插入有一个近似为等腰三角形的柱体,柱体的轴线与被测介质流动方向垂直,底面迎向流体。 当被测介质流过柱体时,在柱体两侧交替产生旋涡,旋涡不断产生和分离,?在柱体下游便形成了交错排列的两列旋涡,即“涡街”。理论分析和实验已证明,?旋涡分离的频率与柱侧介质流速成正比。 式中: f──柱体侧旋涡分离的频率(Hz); V──柱侧流速(m/s); d──柱体迎流面宽度(m); Sr ──斯特劳哈尔数。是一个取决于柱体断面形状而与流体性质和流速大小基本无关的常数。 图一圆管内的涡街 三产品特点 传感器测量探头采用特殊工艺封装,耐高温可达350℃ 敏感元件封状在探头体内,检测元件不接触测量介质,使用寿命长 传感器采用补偿设计,提高仪表抗震性 结构简单、无可动件,耐用性高 在规定雷诺数范围内,测量不受介质温度、压力、粘度影响 流量计可应用于防爆场合,安全性好

涡街流量计的工作原理和特点

涡街流量计的工作原理和特点 本文由https://www.wendangku.net/doc/da11355795.html,提供 涡街流量计的工作原理是在流体中设置旋涡发生体,从而发生体两侧交替地产生有规则的旋涡,旋涡列在旋涡发生体下游非对称地排列,产生一定的频率,通过公式f=St*v/(1-1.27d/D)*d,(St为斯特劳哈尔数,为无量纲数,与旋涡发生体及雷诺数有关;v为流速;d为发生体迎面宽度;D为公称通径)即可得出流速。 一般的来说,涡街流量计输出信号(频率)不受流体物性和组分变化的影响,是指仪表系数仅与旋涡发生体形状和尺寸以及雷诺数有关。它的优点是:结构简单牢固,安装维护方便;适用多种类流体,液、气、蒸汽及部分混合相皆适用;精确度较高,一般达±1%R左右;流量范围宽,可达10:1或20:1或更大;压头损失小;无零点飘移;价格相对便宜;缺点是:不适于低雷诺数Re<20000的情况,对高粘度、低流速、小口径的使用有限制;对环境的要求较高,应尽量杜绝有振动的场所,且上游侧需要有较长的直管段;仪表系数较低,口径愈大愈低。信号分辨率降低,故口径不宜过大,一般应用于DN15~DN300mm。 1.优点 涡街流量计结构简单牢固,安装维护方便(与节流式差压流量计相比较,无需导压管和三阀组等,减少泄漏、堵塞和冻结等)。 适用流体种类多,如液体、气体、蒸气和部分混相流体。 精确度教高(与差压式,浮子式流量计比较),一般为测量值的(±1%~±2%)压损小(约为孔板流量计1/4~1/2)。输出与流量成正比的脉冲信号,适用于总量计量,无零点漂移;在一定雷诺数范围内,输出频率信号不受流体物性(密度,粘度)和组分的影响,即仪表系数仅与旋涡发生体及管道的形状尺寸有关,只需在一种典型介质中校验而适用于各种介质。 2、局限性 涡街流量计不适用于低雷诺数测量(ReD≥2×104),故在高粘度、低流速、小口径情况下应用受到限制。 旋涡分离的稳定性受流速分布畸变及旋转流的影响,应根据上游侧不同形式的阻流件配置足够长的直管段或装设流动调整器(整流器),一般可借鉴节流式差压流量计的直管段长度要求安装。与涡轮流量计相比仪表系数较低,分辨率低,

孔板流量计

孔板流量计 孔板流量计是将标准孔板与多参数差压变送器(或差压变送器、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及引的流量,广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。节流装置又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成广泛应用于气体.蒸汽和液体的流量测量.具有结构简单,维修方便,性能稳定。 孔板流量计工作原理 充满管道的流体流经管道内的节流装置,在节流件附近造成局部收缩,流速增加,在其上、下游两侧产生静压力差。 在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其基本公式如下: c-流出系数无量纲 d-工作条件下节流件的节流孔或喉部直径 D-工作条件下上游管道内径 qm-质量流量Kg/s qv-体积流量m³/s ß-直径比d/D无量纲 流体的密度Kg/m³ 可膨胀性系数无量纲 孔板流量计结构 节流装置组成 节流件:标准孔板、标准喷嘴、长径喷嘴、1/4圆孔板、双重孔板、偏心孔板、圆缺孔板、锥形入口孔板等 取压装置:环室、取压法兰、夹持环、导压管等 测量管 孔板流量计的安装要求:对直管段的要求一般是是前10D后5D,因此在选购孔板流量计时一定要根据流量计的现场工矿情况来选择适合现场工矿的流量计。 孔板流量计特点 ▲节流装置结构易于复制,简单、牢固,性能稳定可靠,使用期限长,价格低廉。 ▲孔板计算采用国际标准与加工 ▲应用范围广,全部单相流皆可测量,部分混相流亦可应用。 ▲标准型节流装置无须实流校准,即可投用。 ▲一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。 选择孔板流量计所需要的参数 1、管道的口径(管径*壁厚) 2、孔板流量计测量的介质 3、被测介质的工作温度 4、被测介质的工作压力(最大压力、最小压力、正常压力)

简述各种流量计原理及特点

简述各种流量计原理及特点 1. 简述 目前工程实际中,流量测量方法及流量仪表的种类繁多,至今为止,可供工业用的流量仪表种类多达数十余种。在流量仪表的家族中,每种产品都有它特定的适用性及使用局限性。按测量对象划分就有封闭管道和明渠两大类:按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 本文简要介绍目前最常用流量计分类法,主要有:差压式流量计、容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计质量流量计等分别简述各种流量计的原理及特点。 2. 差压式流量计 差压式流量计是通过安装于是工业管道中流量检测元件产生的差压,将已知流体条件和检测件与管道的几何尺寸来计差压式流量计算流量计。 差压式流量计由一次检测件及二次仪表(差压转换器或变送器和流量显示仪表)组成。以检测件形式划分差压式流量计分类,有孔板流量计、文丘里流量计、均速管流量计等。二次仪表为各种机械、电子、机电一体式差压式流量计、差压变送器及流量显示仪表。差压式流量仪表是流量仪表大家族中应用最广泛的一中流量仪表,目前国内外已系列化、通用化、标准化,差压式流量计既可单独测量流量参数,也可测量其它参数(压力、物位、密度)等。差压式流量计的检测件按其作用原理可分为:节流装置、水利阻力、动

压头式、动压头增益及射流式、以及离心式等几大类。 检测件有标准化型式或非标准两大类。标准型检测元件是以标准文件设计、制造、安装和使用,无需经实流标定即可确定其流量值和估算测量误差。而非标型检测元件一般尚未列入国际标准中检测元件。差压式流量计也是应用最广泛的一种流量仪表,在各种流量计使用量中占据首位。 主要优点是:(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;(2)应用范围广泛,至今尚无任何一流量计可与之比拟;(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。 主要缺点是:(1)测量精度普遍偏低:(2)范围度窄,一般仅3:1~4:1;(3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。 3. 容积式流量计 容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类。它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。 容积式流量计按其测量元件分类:有椭圆齿轮流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、湿式气体计及膜盒式气体计、液封转筒式流量计等。 主要优点:(1)计量精度高;(2)安装管道条件对计量精度没有影响;(3)可用于高粘度液体的测量;(4)范围度宽;(5)直读式仪表无需外部能源可直接获得累计,总量,清晰明了,操作简便。 主要缺点:(1)结果复杂,体积庞大;(2)被测介质种类、口径、介质工

详解孔板流量计

详解孔板流量计 差压式流量计作为经典与最古老的流量计,应用范围最为广泛。不过随着电子式流量计如(电磁、涡街等)流量计的兴起,我们有些新的行业朋友,还真不一定熟悉这种流量计,今天这一期,给大家好好讲解这个差压式流量计。 差压式流量计在化工生产中得到最广泛的应用,也是操作人员最为熟悉的一种流量计,它的节流装置(1)安装在生产工艺管道(2)上,并由引压管(3)和差压变送器(4)三个部分组成流量测量系统(如图3—1所示)。下面对差压式流量计,差压变送器及差压式流量计的安装分别予以介绍。 图3-1 差压式流量计的组成 差压式(也称节流式)流量计是基于流体流动的节流原理,利用流体经节流装置时产生的压力差而实现流量测量的。差压式流量计一般是由能将流体的流量变换成差压信号的节流量(孔扳、喷嘴)和用来测量压差值的差压计或差压变送器及显示仪表组成。 这种流量计,目前在化工、炼油及其它工业中应用很广,应用的历史也较长久,因此已经积累了丰富的实践经验和完整的实验资料。对于常用的孔板、喷嘴等节流装置,国内外已把它们标准化了,并称为“标准节流装置”。因此,这种流量计所用的标准节流装置可以根据计算结果直接投入制造和使用,不必用实验方法进行单独标定。但对于非标准化的特殊节流装置, 在使用时,均应进行个别标定。 一.节流装置的流量测量原理 节流现象及其原理: 流体在有节流装置的管道中流动时,在节流装置前后的管璧处,流体的静压产生差异的现象称为节流现象,如图3—2所示 图3—2 流体流经节流装置时的节流现象

现在,我们对流体流经节流装置前后的变化情况作进一步分析。 连续流动着的流体,在遇到安插在管道内的节流装置时,由于节流装置的截面积比管道的截面积小,形成流体流通面积的突然缩小,在压力作用下,流体的流速增大,挤过节流孔,形成流速的扩大而降低。与此同时,在节流装置前后的管壁处的流体静压力就产生了差异,形成静压力差△p(△p=P1- P2),如图3-3所示。并且p1>p2, 图3—3 孔扳附近流束及压力分布情况 此即为节流现象,从图中可以看出,节流装置的作用在于造成流束的局部收缩从而产生的压差.并且,流过的流量愈大在节流装置前后所产生的压差也愈大,因此可以通过测量压差来衡量流体流量的大小。由于节流装置造成流束的收缩,同时流体又是保持连续流动的状态,因此在流束截面积最小处的流速达到最大,在流速截面积最小处,流体的静压力最低。 同理,在孔板出口端面处,由于流速已比原来增大,因此静压力仍旧比原来的为低(即图中P2

流量测量方法及涡街流量计原理

流量测量方法及流量计 根据测量原理,将流量测量方法分为几大类,下面分别说明其测量方法、特性等,并介绍几种常用的流量计。 1.差压式流量计 流体流动的伯努利方程就是流体运动的能量方程,其含义是:在流体运动过程中,不同性质的机械能可以相互转换,但总的机械能守恒,差压式流量计正是利用了压能与动能的转换和守恒原理而测量流量的。 (1)节流式流量计 充满圆管的单相连续流体,流经管内节流件时,由于节流件的流通截面比管道截面小,流束形成局部收缩,在压头作用下,流体加速,动能增加,静压下降,在节流前后形成压力差(简称压差)?p,?p=p1-p2。设流体是理想流体和不可压缩的,在两截面之间,按伯努利方程和连续方程就可导出不可压缩实际流体的流量方程: 式中C——流出系数,据节流流束的收缩特性,取压孔的位置和速度分布而确定; A1,A2——分别为所取两个断面的截面积,m2; m——截面比A2/A1; ?p——两截面间压差。 (2)浮子流量计 浮子流量计是由一根自下向上的垂直锥形管和一个沿着锥管轴上下移动的浮子所组成,如图4.10-1所示。被测流体自下而上经过锥管和浮子形成的环隙时,浮子上下端产生差压形成浮子上升的力,当浮子所受上升力大于浸在流体中浮子重量时,浮子便上升,环隙面积随之增大,该处流体流速下降,浮子上下端差压降低,作用于浮子的上升力亦随着减小,直到上升力等于浸在流体中浮子重量时,浮子便稳定在某一高度。浮子在锥管中高度和通过的流量有对应关系。 2.容积式流量计 典型的容积式流量计(椭圆齿轮式)的工作原理如图4.10-2所示。两个椭圆形齿轮具有相互滚动进行接触旋转的形状,当流体流过流量计时,作用在流量计进出口之间的压力差使两个齿轮产生旋转,并将流体由入口排向出口。在一次循环过程中,流量计排出四个由齿轮与壳壁围成的初月形空腔的流体体积,该体积称为流量计的“循环体积”。设流量计“循环体积”为υ,一定时间内转子转动次数为N,则在该时间内流过流量计的流体体积为: V=Nυ(4.10-16)

常见流量计的工作原理,南控仪表

常见流量计的工作原理 常用的几种流量计的基础知识和比较;差压流量计(DP)是最普通的流量技术,包括孔板、文丘里管和音速喷嘴。DP流量计可用于测量大多数液体、气体和蒸汽的流速。DP流量计没有移动部分,应用广泛,易于使用。但堵塞后,它会产生压力损失,影响精确度。流量测量的精确度取决于压力表的精确度。 差压流量计(DP) 这是最普通的流量技术,包括孔板、文丘里管和音速喷嘴。DP流量计可用于测量大多数液体、气体和蒸汽的流速。DP流量计没有移动部分,应用广泛,易于使用。但堵塞后,它会产生压力损失,影响精确度。流量测量的精确度取决于压力表的精确度。 容积流量计(PD) PD流量计用于测量液体或气体的体积流速,它将流体引入计量空间内,并计算转动次数。叶轮、齿轮、活塞或孔板等用以分流流体。PD流量计的精确度较高,是测量粘性液体的几种方法之一。但是它也会产生不可恢复的压力误差,以及需装有移动部件。 涡轮流量计 当流体流经涡轮流量计时,流体使转子旋转。转子的旋转速度与流体的速度相关。通过转子感受到的流体平均流速,推导出流量或总量。涡轮流量计可精确地测量洁净的液体和气体。像PD流量计,涡轮流量计也会产生不可恢复的压力误差,也需要移动部件。 电磁流量计 具有传导性的流体在流经电磁场时,通过测量电压可得到流体的速度。电磁流量计没有移动部件,不受流体的影响。在满管时测量导电性液体精确度很高。电磁流量计可用于测量浆状流体的流速。 超声流量计 传播时间法和多普勒效应法是超声流量计常采用的方法,用以测量流体的平均速度。像其他速度测量计一样,是测量体积流量的仪表。它是无阻碍流量计,如果超声变送器安装在管道外测,就无须插入。它适用于几乎所有的液体,包括浆体,精确度高。但管道的污浊会影响精确度。 涡街流量计 涡街流量计是在流体中安放一根非流线型游涡发生体,游涡的速度与流体的速度成一定比例,从而计算出体积流量。涡街流量计适用与测量液体、气体或蒸汽。它没有移动部件,也没有污垢问题。涡街流量计会产生噪音,而且要求流体具有较高的流速,以产生旋涡。

相关文档