文档库 最新最全的文档下载
当前位置:文档库 › 激光全息照相实验报告

激光全息照相实验报告

激光全息照相实验报告
激光全息照相实验报告

实验32 激光全息照相

物理科学与工程技术学院光信息科学与技术学号10329051 陈海域

与材料物理陈嘉平合作完成

实验时间:2012/4/12 2012/4/19

地点:基础物理实验室激光全息照相实验室1号桌

【实验目的】

1.学习全息照相的基本原理和方法

2.了解全息照相的主要特点

3.学习观察全息照片的方法

【实验仪器】

全息照相的整套装置(PHYWE),如图1所示:

【全息照相的特点】

全息照相与普通照相无论在原理上还是方法上都有本质上的差别。普通照相是以几何光学的折射定律为基础,利用透镜把物体成像在平面上,记录各点的光强或振幅分布,物象之间各点一一对应,但却是二维平面像上的点与三维物体各点之间的对应,因此并不完全逼真,即使一般所谓的“立体照相”也多是利用双目视差的错觉,而不是物体的真正三维图像。而全息照相是以光的干涉、衍射等物理光学的规律为基础,借助于参考光波记录物光波的振幅与位相的全部信息,在记录介质(如感光干版)上得到的不是物体的像,而只有在高倍显微镜下才能观察得到的细密干涉条纹,称之为全息图。(在感光版上看见的同心环,斑纹之类不是原来物体的真正信号,而是由给出参考光的发射镜上的灰尘微粒及其它散射物引起的。)条纹的明暗程度和图样反映了物光波的振幅与位相分布,好像是一个复杂的衍射光栅,只有经过适当的再照明才能重

与普通照片相比,全息照片还具有如下几个特点:

1)全息照片在适当的照明下重建物光波与原来的物光波具有相同的深度和视差。改变观察的位置,就可以看到景物被遮拦的物体,观察近距离的物体,眼睛必须重新调焦。

2)把全息照片分成小块,其中每一小块都可以再现整个图像。因为照片上每一点都受到参考光和被摄物体所有部分的光的作用,所以这些点就用编码的形式包含了整个图像的信息。但是当小块逐渐减小时,分辨率逐渐变差。这是因为分辨率是成像系统孔径的函数。

3)全息照片可以用接触法复制,但无正负片之分,不论是原来的还是复制的都再现被摄物体的正像。而且无论照明乳剂的反差特性如何,再现影像的反差同原物体的反差都非常接近。

4)全息照片绕垂直轴线转1 80,引起一个倒转的像,让全息照片绕一水平轴线旋转180,也产生一个倒转,也产生一个倒转的像,但让全息照片绕一个垂直与全息图平面的轴线转180,则不引起像的倒转。

5)最后一个特点是在同一张底片上用连续曝光方法可以重叠几个影像,而每一张影像又不受其它影像的干扰而单独显现。

【实验原理】

全息照相是一种采用相干光源的两步光学成像过程。第一步是在记录介质上记录由参考光和物光形成的复杂的干涉图样——全息图,第二步是在适当的照明下从全息图再现出物体通常的图像,所以全息照相的基本理论,实质上就是一种较为广义的双光束干涉场的计算。

由激光器发出的相干光经分束器之后,一束照明物体成为景物光,另一束为参考光。两光束成一定的夹角入射到记录介质上,相互干涉而记录下全息图。由于记录介质只能记录振幅,可见物波的位相记录也是利用干涉的原理转换成相应的振幅关系加以记录的。

为简单起见,我们从点光源发出的球面波相干涉着手来讨论全息图的一些基本特点。因为广延光源和被照明的物体可以看作点源的集合,平面波可看成点源在无穷远发出的球面波。所以讨论具有一般性。

1.全息照相记录的信号

如图2所示,(x1 ,y1,z1=-d)为物点所在的物平面,(x1′,y1′,z1′=0)为记录介质所在的像平面,P (x1 ,y1,z1=-d)为物点,R (x r ,y r,z r )在任意平面( x r ,y r,z r),上,R点源与平面(x`2 ,y`2,0)的距离为Zr。Q(x`2 ,y`2,0)为记录介质平面上任一点。若物光与参考光是相干的,则记录介质上的光强分布为

I= a02+r02+r*a+ra* (1)其中,a=a0exp(iφa)为物点源到达全息图平面的光波的复振幅,r=r0exp(iφr)为全息图上参考波

的复振幅。 由于做全息照相时,总是尽量使参考光和物光独立在记录介质上的照度均匀,所以在全息图上 a 02和 r 02变化比较缓慢。所以这里主要注意相干项

r*a+ra*=2a 0r 0cos(φr -φa ) (2)

其中

12()a PQ PO πφλ=

- (3) 12()r PQ RO πφλ=

- (4) 1122()r a RQ PQ l ππφφλλ-=-=? (5)

其中()l RQ PQ ?=-为光波从P 进行到Q 和由R 进行到Q 的光程差。由图可见,当P 点和Q 点离z 轴不太远,而且z 1很大时,

a φ可以由1/ z 1一级近似求得 ()222221*********a x y x x y y Z πφλ??''''≈+--???? (6)

同理

()222222121222r r r r x y x x y y Z πφλ??''''≈+--???? (7)

可见干涉项产生的是明暗以()r a φφ-为变量按余弦规律变化的干涉条纹并被记录介质记录下来。由于这些干涉条纹在记录介质上各点的强度决定于物光波(以及参考光波)在各点的振幅与位相,因此记录介质上就保留了物光波的振幅和位相的信息。

2.波前重建 常用于记录全息图的介质是照相干版或胶片,假定记录全息图的干版经曝光、冲洗以

后,把曝光时的入射光强线形变换为显影振幅的透射率,并假定曝光量的变化范围限于该种干版的t -E 曲线的线形区内,则干版的透射率为

t=t 0-KI

t(x,y)=t 0-K(a 02+r 02+r*a+ra*) (8)

式中,t 0为未曝光部分的透射率,K 为比例系数。

对同一干版,t 0和 K 都可认为是常数。I 1= a 02,I 2=r 02

分别为入射到干版的物光强和参考光强,它们在全息图

面上接近均匀。因此对于点源的全息图,只有透过率与

r*a+ra*成正比的空间变化干涉项,在照明后能产生衍射。

假设在全息图形成后和再现前有可能把它放大或缩

小,为此把全息图平面坐标再标记为x 2=m x’2, y 2=m y’2,

式中m 为线放大率。假设再现波长λ2不必和形成波长

λ1相同,它们的比值由μ=λ2/λ1给出。再现波或照明波

由一点光源C(x c ,y c ,z c )发出,如图 3 所示。则全息图平

面的衍射波复振幅 C 与上述透射率的乘积为

()()000**exp exp v R Cr a Cra C a r i i φφ+=+???? (9) 其中 ()0exp c C C i φ= (10)

(),,v c a r v v v v x y z φφφφφ=+-= (11) (),,R c r a R R R R x y z φφφφφ=+-= (12)

为使全息图能产生点源物体P 的像,全息图上的再现波的位相v φ和R φ必须和球面波相当,在全息图上球面波位相分布的一级近似值可按式(6)写成

()()22222232232321,222x y x y x x y y z πφλ??=+--????

(13) 其中z 3为全息图到像平面的距离,x 3和y 3代表像平面上像点 P 的坐标。我们必须使φV 和φR 与φ有相同的形式。如果做到这一点,那么在一级近似下影像波是会聚的平面波还是发散波将按φV 和φR 的正负号而定。这就是点源的完全一级近似成像的情况。可是φ、φV 和φR 的展开式中略去了代表像差的高次项,因此,将与实际情况略有不同。

一般来说,全息图的再现波所成的物象比较复杂,像的位置、大小、和虚、实将会生变化,而且还可能存在畸变等现象。详细的讨论可参考有关资料。

但是,若再现波和原参考光波完全一样时,式(9)变为

()[]22

0000**exp exp (2)a r a rr a rra a r i a r i φφφ+=+- (14) 显然,式(14)右边第一项是按一定的比例重建的物光波,它离开全息片以后按照惠更斯――菲涅耳原理继续传播时,其行为与原物在原来位置发出的光波相同(仅仅是振幅按一定的比例改变,位相改变180°),因此在全息片后面的观察者对着这个衍射而产生的另一个一级衍射波,称为孪生波。在一定的条件下,它是一束会聚光,形成一个有畸变的,并且在观察者看来物体的前后关系与实物相反的实像。

如果用参考光波 r 和共轭光波 r*(所谓共轭光波是传播方向和原来光波完全相反的光波,是会聚于点源 R (x r , y r , z r )的球面波)照射全息片,此时透过全息片的光波,干涉项 可仿照式(1)写成

[]()220000**exp (2)exp a r a r a ra a r i a r i φφφ+=-+- (15)

式中等号右边第二项与原来物光波 a 的共轭光波 a*成正比,由于 a*是会聚于原来物点所在位置的光束,因此这一项所代表的衍射光束在原来物体所在的位置形成一个无畸变的实象,如图 4(b )所示,从图(b )可以看到,观察者好像是跑到原来物体的背后去观察,而且能透过原来处于后面的部分看到前面的部分。

在上面的讨论中,利用公式(8)分析透过全息片的衍射光束时,实际上是把全息片二维的衍射光栅来处理,再照光经衍射后,除了直接透过的零级光束外,同时存在正、负一级衍射光束。由于感光板上的乳胶有一定的厚度,而且是透明的,故其内部也存在物光波与参考光波的相互干涉,干涉条纹也被记录下来,经过处理后得到的三维全息图,相当于三维衍射光栅。三维光栅的衍射受到布拉格条件的限制,只有物光束和参考光束的夹角较小时才能同时出现正、负一级衍射。当物光束和参考光束的夹角较大时,(如接近 180°时)和 x 射线在晶格中的衍射一样,三维光栅对光的衍射也具有波长的选择性,因此可以用单色相干光制作全息片,用普通的白光照射它实现波前重建。这一重建过程是三维光栅衍射的结果,从效果上看,好像是从全息片的反射光束中得到的,因此称为反射全息,又

因为波前的重建利用了白光,所以又称为白光重现全息照相。

反射式全息片的制作法是让物光束和参考光束分别从照相底版的

两面进入乳胶层,如图(a)所示(图中用直接透过底版的参考光作为物体

的照明光),两束光的干涉极大值在显影后形成基面波的相互干涉来估

计这些银层的间距。图 6中 α和 γ分别代表参考光束和物光束的传

播方向,它们的夹角为2θ并假设都是平面波。显然,两组波阵面的

夹角也是2θ,每一组波阵面中相邻两波阵面之间的距离为λ,图中

竖直线代表干涉极大所在的平面,它们的间隔为d ,这些平面是物光

束与参考光束的分角面,从图上画粗线的三角形可得

2sin d θλ= (16)

用上式计算d 的大小时,θ和λ应取乳胶介质中的数值。由式(4

—16)可得

/2sin d λθ= (17)

通常物光束和参考光束之间的夹角接近于 180°,从而 d = λ/2,若采用

波长为632.8nm的激光作为光源,银层的间距大约为0.3μm,若考虑到乳胶的折射率n >1,这个间距还要更小。通常全息干版的乳胶层厚度为6-15μm,因此在乳胶内部能形成几十层银层。实际上参考光和物光都不是平面波,特别是物光波具有复杂的波前,因此干涉极大并非是和底版平行的理想平面,得到的全息图是复杂的三维光栅。

用再照光γ照射这个全息片时,入射光受三维光栅衍射时所遵从的规律与x 光在晶格中衍射的规律相同,它们都遵从布拉格公式。此时三维光栅的衍射等效于各银层反射光束的相干叠加,只有入射光线与银层的夹角和波长λ满足式(16)表示的布拉格公式时才存在干涉极大(此时,公式中的 d 为银层间距),而且相对于银层而言,干涉极大的方向正好是入射光经银层反射后的反射方向,如图7 所示,把图7 和图6 比较,不难发现这时干涉极大的方向正好是制作全息片时物光束的方向,因此在反射方向上得到的正是重建的物光束,对此方向可看到原物的三维虚像。

由于三维光栅衍射的这种波长选择性,我们不必用原来的参考光作为再照光,而可以用白光照射重建原来的物光波,如图5(b)所示,如果把图(b)中的乳胶面转过180 ,可得三维实像,如图5(c)所示。

用白光再现时,根据式(16),白光中只有波长和制作全息片时所用光波波长相同的成分衍射后才能出现干涉极大,但乳胶经显影、定影和晾干后往往发生收缩,使银层间距减小,因此能出现干涉极大的波长比制作时光波的波长要小。如用波长为632.8nm的红光制作全息片,用白光再现时可能观察到绿色的像。

如果参考光束和物光束从感光干版的同一侧入射,而且相对于乳胶表面而言,它们的入射角都不大的话,根据上述分析,干涉极大形成银层间距将比较大,而且接近于乳胶表面垂直。这时形成的全息图可近似看作乳胶面上的二维干涉条纹。这就是前面讨论的一般透射全息照相的情形。

【全息照相的拍摄条件】

1.对稳定性的要求

全息片所记录的是参考光束和物光束之间的干涉条纹,这些干涉条纹十分

细密,拍摄全息照片时,极小的扰动都会使得干涉模糊,甚至使干涉条纹完全

不能记录下来.由上述布喇格法则(式16),我们可以估计干涉条纹的宽度,例

如,当λ=632.8nm,2θ=30°时,d = 1.22μm。在制作反射全息片时,2θ≈

180°,银层之间的间隔小于0.3μm。简单的理论推导和实验证明,景物在曝光

时间内移动λ/8就足以使于涉条纹模糊不清。所以,为了成功地记录干涉条纹,

曝光期间,元件之间的相对位移应小于条纹间距的几分之一。此外,空气、声

波和温度的变化也会引起元件的震动,或者使空气的流动密度不均匀而导致光

程变化,因此,曝光期间应避免大声喧哗、敲门、吹风等,更不能碰到防震台。

缩短曝光时间也有利于减少外界震动的影响。使用脉冲激光器甚至可以拍

摄运动物体的全息照片。但是减少曝光时间往往受到光源强度和底片灵敏度的

限制。所以具体需要的曝光时间决定于各种因素,其中包括被摄物体的反射率、相对距离和几何位置以及感光干版的灵敏度等等。

2.对光源相干性的要求

如前所述,全息照相是用干涉的方法记录物光波的振幅和位相,因此参考光束与物光束必须是相干的。我们实验用的是He-Ne激光器,λ=632.8nm。激光器的单色性虽然很好,但谱线仍然有一定的宽度Δλ,相应的相干长度l=λ2/Δλ,考虑到最坏的情况,例如多普勒展宽Δλ=0.002nm时,l = 20cm。为了保证物光束与参考光束相干,应使参考光路与物光路的光程接近相等。而被摄景物的景深也应该在相干长度之内。此外,对空间相干性的要

求也是必不可少的。为此,我们的实验选用单横模(TEM00)的激光器,景物的大小应在空间相干的范围内。

【实验内容】

制作漫反射物体的全息片的典型光路如图8所示,这是一种典型的利思一厄帕特尼克斯(离轴型)全息照相的光路图。He-Ne激光器发出的激光由分束镜分为两束,两束光强的比例,要视被摄物的漫反射能力以及参、物两光束在底片上的比例来决定。参考光束和物光束都经过扩束镜扩束,移动扩束镜的位置(或改变扩束镜的倍率),放大或缩小光斑,在一定面积上的光强就会增大或减小。在底片位置处参考光束强度和物光束强度的比值可用光电池配以检流计在底片架上进行测量。

开始实验前,激光器要预热大约一个小时,以免发生波长振动。由于激光经过分束器后形成参考光和景物光,它们沿不同的路径到达记录介质相互干涉从而产生全息图象,实验时必须确保机械的稳定性。

记录三维漫反射物体的全息片,观察再现的三维物像。具体步骤如下:

1.调节激光器使激光束距离底板13cm,按图2安排好光路(注意各个器件的坐标位置),选择适当的曝光时间进行拍摄。注意在整个曝光时间内尽量避免走动及大声说话。

2.拍摄完毕以后,全息片要经过显影、停影、定影、水漂及晾干等四个步骤以后才能观察再现,整个操作过程均应在暗绿灯下进行,但要认真保持清洁。

3.底片处理完毕以后,就可以观察波前重建:把制作好的全息片放回原来位置(乳胶面仍对着光),从底片后面观察再现的虚像,轮流挡住照明物体的光束和参考光束,从不同方向反复观察、比较原来的物体与再现的虚像;用一张带有直径约5mm小孔的纸片贴近全息片,人眼通过小孔观察虚像,改变小孔在全息片上的不同位置作同样的观察,记录观察结果。

4.改变全息片相对于参考光束的取向或距离,在底片后面的不同方向观察虚像有什么变化。

5.把全息片仍回复到原来的位置与取向,用不扩展的参考光束来照射全息片,并用毛玻璃在全息片后面同距离的地方接受与观察衍射光束,记录并说明所看到的现象;把全息片绕竖直轴转过180°,使乳胶面对着观察者,重复这一观察,记录并说明所看到的现象。

【实验结果】

实验内容1:制作全息光栅

实验器材:氦氖激光器、扩束镜、5:5半反半透分光镜、衰减镜2块、普通反射镜若干、防震台、擦镜纸若干、全息照相底片

光路设计:设计光路,使从氦氖激光器发出的激光经过扩束后分为强度近似相等的两束光,利用反光镜使两束光重新照射到全息底片上,在全息底片上进行干涉。为此,由于实际中的光源不是理想光源,所以分光后两束光照射到底片上的光程应大致相等。另外,两束光照射到底片上的夹角应在30度以内,且关于全息底片法线对称。

我们设计的光路如下:

实验步骤:

1、按照设计好搭建光路,?<30o ,且分束后两束光到底片的光程大致相等,符合要求;

2、曝光:在全黑、安静的环境下(空调关闭、门窗均关上并用遮光布挡住、仪器指示灯用黑盖子盖住、手机等均调振动放书包中、禁止走动、说话、不触碰试验台、呼吸减小),从饭盒中取出全息底片,正面(乳胶面)朝上,饭盒盖上盖子放回原处,回到实验台,把底片装在光路中。调激光器的开启时间为9秒进行曝光。曝光结束后,把底片拆下,用镊子夹住,挡光,直到其他组完成曝光;

3、底片处理:曝光完毕后,用镊子夹住,在显影液中浸泡并观察,当底片发黑后,继续在显影液中浸泡20秒;然后在自来水中清洗30秒;接着在停影液中浸泡2分钟;水洗30秒;在定影液中漂白,观察到底片不再变白后,水洗30秒;晾干。操作过程中均保持安静、全黑,观察底片是否变黑在暗绿色光源下观察;

反射镜

4、观察衍射光斑:用氦氖激光照射光栅,移动光栅使观察到的衍射级最多并最清晰,测量各级光斑到中心亮斑的距离以及中心亮斑到光栅的距离,填入表中,计算光栅常数。

观察结果:全息底片处理完后呈很浅的黄色,仔细看底片可发现上面有细小的条纹,但是这不是由两束光干涉形成的,而是各自在底片上形成的等倾干涉。激光照射产生衍射条纹后,在中心亮斑的两侧,可以看到清晰的一级衍射亮斑,但是二级或以上的衍射亮斑完全看不到,因此实验没有完全成功,最后只能通过一级亮斑来计算光栅常数,误差较大。

分析失败原因:

1、由于底片只有一片,所以没有曝光经验,曝光时间把握不准确;

2、曝光完毕后处理底片时操作出现了漏洞,原本应该“当底片发黑后,继续在显影液中浸泡20秒”,但是实际操作时错误操作成“在显影液中浸泡20秒”,虽然浸泡完后底片也完全变黑,但是不是在“底片发黑”的前提下进行20秒的浸泡,所以浸泡时间不足,导致反应不足,所以光栅没有完全成形,这个是最主要的原因;

3、分束后两束光到达底片的光程差只能做到“大致相等”,所以也存在光源不稳定导致的相干性因素影响;

4、另外,由于实验室没有绝对黑暗以及实验室外的声音和振动以及其他误差因素也会影响光栅的制作,但都不是主要原因。

综上所述,失败的主要原因在于底片曝光后的处理上的操作错误。

通过一级衍射亮斑来计算d:改变光栅到激光器和墙壁的距离测出三组数据:正负一级衍射光斑之间的距离x和光栅到墙壁的距离y,填入下表中并计算。

表一

其中,tan =(x/2)/y, =arc tan ,d=/(2sin )

故测得的d值为1.538um。

实验内容2:制作全息照片

实验器材:氦氖激光器、扩束镜、5:5半反半透分光镜、衰减镜2块、普通反射镜若干、防震台、擦镜纸若干、全息照相底片、用于拍照的石膏像

光路设计:设计的光路使从氦氖激光器发出的激光经过扩束后再分为两束光,利用反光镜使两束光一束作为参考光直接照射到全息底片上,另一束光照到物体上再反射回全息底片上,在全息底片上进行干涉。由于实际中的光源不是理想光源,所以分光后两束光照射到底片上的光程应大致相等。为使物体上反射回底片上的光强和参考光强差不多,需要用两片衰减篇衰减参考光,且物体应尽量靠近底片以保证底片接收的反射光强尽可能大,但是不能挡住参考光,照射物体的光不应该有部分直接照射在底片上。而且,物光应尽量找在凹凸明显等立体感强的位置,便于观察。我们的物光照射的部位是石膏人像的头部。

参考课本提供的光路如下:

为使光路符合实际情况,我们设计的光路如下:

反射镜

实验步骤:

1、按照设计好搭建光路,分束后两束光到底片的光程大致相等,符合要求;

2、曝光:在全黑、安静的环境下(空调关闭、门窗均关上并用遮光布挡住、仪器指示灯用黑盖子盖住、手机等均调振动放书包中、禁止走动、说话、不触碰试验台、呼吸减小),从饭盒中取出全息底片,正面(乳胶面)朝上,饭盒盖上盖子放回原处,回到实验台,把底片装在光路中。调激光器的开启时间为29秒进行曝光。曝光结束后,把底片拆下,用镊子夹住,挡光,直到其他组完成曝光;

3、底片处理:曝光完毕后,用镊子夹住,在显影液中浸泡并观察,当底片发黑后,继续在显影液中浸泡20秒;然后在自来水中清洗30秒;接着在停影液中浸泡2分钟;水洗30秒;在定影液中漂白,观察到底片不再变白后,水洗30秒;晾干。操作过程中均保持安静、全黑,观察底片是否变黑在暗绿色光源下观察;

4、观察全息图像:将处理好的全息底片放回原光路中,撤去物体,接通激光器,在底片的后方从原来的角度观察是否有物体的立体图像。用激光器直接照射全息底片正面,用接收屏在底片后方一定距离接收图像,改变激光器照射在底片上的位置,观察现象。观察到现象后,把全息底片绕数值轴转动180度观察现象,再在原来的情况绕水平轴转动180度观察现象,记录下来。

观察结果:观察结果:全息底片处理完后呈很浅的黄色,仔细看底片可发现上面有细小的条纹,但是这不是由两束光干涉形成的,而是各自在底片上形成的等倾干涉。在原来的光路中,可以发现从原来的角度在底片后方观察到清晰的立体石膏头像。用激光直接照射在接收屏上观察,移动合适的位置可以看到正立的、清晰的物体实像,全息照片绕垂直轴线转180o,可以观察到一个倒转的清晰实像。由此可以说明制作全息照片成功。

实验总结:吸收第一周实验不成功的教训,我们做了改进,1、根据光强和老师的建议准确把握曝光时间;2、光程差控制更严格;3、清洗底片时,确保在显影液中洗到变黑后再浸泡20秒,清洗过程中可以发现,底片在显影液中不是马上变黑,而是处于逐渐变黑的过程,这也验证了我们第一周的总结:总共清洗20秒不足以反应完全;4、其他操作更加细致。

【思考题】

1,与普通照相比较,全息照相有哪些特点?

答:普通照相是以几何光学为基础的,利用透镜将物体的图像投射到平面上,记录的各点光强或者振幅的分布,三维物体与二维图像各点一一对应,并不完全逼真。而全息照相是以光的干涉和反射等物理原理为基础,借助于参考光波记录物光波的振幅和相位全部信息,在介质上记录的不是普通光的图像点,而是细密的干涉条纹,这就是全息图像。全息图像反应的是物体的像而是只有在高倍显微镜下才能观察到的细密干涉条纹,在适当的光照射下重现的物体与原物体具有相同的深度和视差;即使是全息图的一部分,也能够重现物体(但是分辨率会下降);可用接触法复制,且无正负片之分;绕竖直轴转动会引起一个倒转的像,绕水平轴转动也能产生一个倒转的像;可在同一张底片上用连续曝光法重叠几个影像。

2,全息照相是如何把光波的相位记录下来的?

答:物光波通过光的干涉原理转换为相应的振幅关系记录下来。干涉项产生的是明暗以(φ

r-φa)为变量按余弦规律变化的干涉条纹。由于这些干涉条纹在记录介质上各点的强度不仅决定于物光波(以及参考光波)在各点的振幅,还决定于各自的位相,因此记录介质上就保留了物光波的位相信息。

3,观察到再现像后,将全息片旋转或倒置,透过全息照片能否观察到图像?

答:可以,全息照片绕垂直轴线转180o,引起一个倒转的像,让全息照片绕一水平轴线旋转180o,也产生一个倒转的像。

完整word版,全息照相实验报告

全息照相实验报告 学院土环学院班级采矿1502 学号41501556 姓名殷苑文 一、实验目的与实验仪器 实验目的 1.了解全息照相的基本原理; 2.掌握全息照相方法及底片冲洗方法; 3.观察物象再现。 实验仪器 激光器,成套全息照相光具原件及隔振光学平台,白屏,硅光电池及电压表,全息干板,被照物体,显影液和定影液等。 二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 全息记录 由光的波动理论知道,光波是电磁波。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加。因此,任何一定频率的光波都包含着振幅和位相两大信息。 全息照相的一种实验装置的光路如图1所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射后照射到感光底片上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。

全息照相实验报告标准范本

编号:QC/RE-KA5121 全息照相实验报告标准范本 The new situation in operation, especially the emergency, makes the information open and transparent by reporting the details, and then forms a closer cooperative relationship. (工作汇报示范文本) 编订:________________________ 审批:________________________ 工作单位:________________________

全息照相实验报告标准范本 使用指南:本报告文件适合在为规范管理,让所有人员增强自身的执行力,避免自身发展与集体的工作规划相违背,按固定模式形成日常报告进行上交最终实现及时更新进度,快速掌握所需了解情况的效果。文件可用word任意修改,可根据自己的情况编辑。 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相

是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个

全息照相实验实验报告

物理与光电工程学院 光电信息技术实验报告 姓名:张皓景 学号: 班级:光信息科学与技术专业2011级2班实验名称:全息照相实验 任课教师:裴世鑫

一、实验目的 1.了解光学全息照相的基本原理及其主要特点。 2.学习全息照相的拍摄方法和实验技术。 3.了解全息照相再现物像的性质、观察方法。 二、实验仪器 三、实验装置示意图 5底片 图1 全息照相光路 四、实验原理 全息照相是一种二步成像的照相技术。第一步采用相干光照明,利用干涉原理,把物体

在感光材料(全息干版)处的光波波前纪录下来,称为全息图。第二步利用衍射原理,按一定条件用光照射全息图,原先被纪录的物体光波的波前,就会重新激活出来在全息图后继续传播,就像原物仍在原位发出的一样。需要注意的是我们看到的“物”并不是实际物体,而是与原物完全相同的一个三维像。 1.全息照相的纪录——光的干涉 由光的波动理论知道,光波是电磁波。一列单色波可表示为: 2cos(t )r x A πω?λ=+- (1) 式中,A 为振幅,ω 为圆频率,λ 为波长,φ 为波源的初相位。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加: 12cos(t )n i i i i i r x A πω?λ==+- ∑ (2) 因此,任何一定频率的光波都包含着振幅(A )和位相(ωt+φ-2πr/λ)两大信息。 全息照相的一种实验装置的光路如图(1)所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射(或透射)后照射到感光底片(全息干版)上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。 2.全息照相的再现——光的衍射 由于全息照相在感光板上纪录的不是被摄物的直接形象,而是复杂的干涉条纹,因此全息照片实际上相当于一个衍射光栅,物象再现的过程实际是光的衍射现象。要看到被摄物体的像,必须用一束同参考光的波长和传播方向完全相同的光束照射全息照片,这束光叫再现光。这样在原先拍摄时放置物体的方向上就能看到与原物形象完全一样的立体虚像。如图2 所示把拍摄好的全息底片放回原光路中,用参考光波照射全息片时,经过底片衍射后有三部分光波射出。 0 级衍射光——它是入射再现光波的衰减。 +1 级衍射光——它是发散光,将形成一个虚像。如果此光波被观察者的眼睛接收,就等于接收了原被摄物发出的光波,因而能看到原物体的再现像。

全息照相实验的报告材料

全息照相实验报告 程子豪 2010035012 少年班01 一、实验目的: 1.了解全息照相记录和再现的基本原理和主要特点; 2.学习全息照相的操作技术; 3.观察和分析全息图的成像特性。 二、实验原理: 2.1全息照相原理的文字表述: 普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 全息照相在记录物光的相位和强度分布时,利用了光的干涉。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 具体来说,全息照相包括以下两个过程: 1、波前的全息记录 利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。所以全息图不是别的,正是参考光波和物光波干涉图样的记录。显然,全息照片本身和原来物体没有任何相似之处。 2、衍射再现 物光波前的再现利用了光波的衍射。用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。这是一个虚像,它具有原始物体的一切特征。此外还有一个实像,称为共轭像。应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

光全息照相实验报告

实验报告实验三十四全息照相 物理学院1300061311 二下 6 组 03 号 2015.4.15 一. 实验目的 1?了解全息照相的基本原理; 2?学习全息照相的实验技术,拍摄合格的全息图; 3 ?了解摄影暗室技术. 二. 实验仪器 光学平台,He-Ne 激光器及电源,快门及定时曝光器,扩束透镜,反射镜和 分束器,光功率计,全息底片,被摄物体,显微镜,暗室技术使用的设备. 三. 实验原理 全息照相中所记录和重现的是物光波前的振幅和相位,即全部信息,这是全 息照相名称的山来?但是,感光乳胶和一切光敬元件都是“相位盲S 不能直接记 录相位?必须借助于一束相干参考光,通过拍摄物光和参考光的干涉条纹,间接 记录下物光的振幅和相位?直接观察拍好的全息图,看不到像?只有照明光按一定 方向照在全息图上,通过全息图的衍射,才能重现物光波前,使我们看到物的立 体像?故全息照相包括波前的全息记录和重现两部分内容。下面是透射式全息照 相原理。 1?全息记录 如果将物光和参考光的干涉条纹用感光底片记录下来,那就记录了底片所在位 置物光波前的振幅和相位 物光一点发出的球面波波前: 〃0(如刃=人(忑y )exp [诫)(兀y )] 参考光波前: 则底片上总复振幅: 光强分布: Ig) = UU 感光底片在曝光后经显影和定影等暗室技术处理,成为全息图?适当控制曝光 量及显影条件,可以使全息图的振幅透过率:与曝光量E (正比于光强1)成线性关 系,即 心,刃=山一例(九y ) ? 2兀 匕(兀 y) = A r exp[/ — ysina] Ug y) = U Q (x.y)+U r (x, y)

激光全息照相

激光全息照相 普通照相记录下来的是物体光波的强度,不能记录相位,因而丢失了物体纵深方向的信息,照片看起来没有立体感。1948年英国科学家盖伯(D. Gabor)在研究电子显微镜的分辨率时,采用了一种两步无透镜成像法,可以提高电子显微镜的分辨本领。他提出的方法,利用了光的干涉原理来记录物光波并利用光的衍射原理来再现物光波,这种方法可以同时记录下物体光波的振幅和相位,这是全息照相的基本原理,为此他在1971年获得诺贝尔物理学奖。 “全息”来自希腊字“holo”,含义是“完全的信息”,即包含光波中的振幅和相位信息。利用激光全息照相得到的全息图,图上的任何一块小区域都能重现整个物体的像。激光全息照相在流场显示、无损探伤、全息干涉计量和制作全息光学元件等领域有着广泛的应用。 一、实验目的 1.加深理解激光全息照相的基本原理; 2.初步掌握拍摄全息照片和观察物体再现像的方法; 3.了解全息照相技术的主要特点,并与普通照相进行比较; 4.了解显影、定影、漂白等暗室冲洗技术。 二、实验原理 1.全息照相与普通照相的主要区别 物体上各点发出(或反射)的光(简称物光波)是电磁波,借助它们的频率、振幅和相位信息的不同,人们可以区别物体的颜色、明暗、形状和远近。普通照相是运用几何光学中透镜成像的原理,把被拍摄物体成像在一张感光底片上,冲洗后就得到了一张记录物体表面光强分布的平面图像,像的亮暗和物体表面反射光的强弱完全对应,但是无法记录光振动的相位,所以普通照相没有立体感,它得到的只能是物体的一个平面像。所谓全息照相,是指利用光的干涉原理把被拍摄物体的全部信息——物光波的振幅和相位,都记录下来,并能够完全再现被摄物的全部信息,从而再现形象逼真的物体立体像。全息照相的过程分两步:记录和再现。全息照相的数学描述见本实验附录A。 2.光的干涉——全息记录 全息照相是一种干涉技术,为了能够清晰地记录干涉条纹,要求记录的光源必须是相干性能很好的激光光源。图1是拍摄全息照片的光路示意图。 由激光器发出的激光束,通过分束镜分成两束相干的透射光和反射光:一束光经反射镜M1反射,再经扩束镜L1扩束后照射到被拍摄物体上,然后从物体投向全息底片H上,这部分光称为物光。另一束光经反射镜M2反射,再经扩束镜L2扩束直接照射到底片上,称为参考光。由于同一束激光分成的两束光具有高度的时间相干性和空间相干性,在照相底片上相遇后,形成干涉条纹。由于被摄物体发出的物光波是不规则的,这种复杂的物光光波是由无数的球面波叠加而成的,因此,在全息底片上记录的干涉图样是一些无规则的干涉条纹,这就是全息图。

全息照相实验报告(完全版).docx

实验5.5 全息照相 实验分析: 在这次光学实验中,拍出来的全息照片图像模糊,而且曝光范围小,基本算失败,对此我觉得我们必然在某处有错误,或者是由于实验仪器造成,因此我展开分析,实验失败原因可能有: 1.在曝光过程中有振动或位移,由于全息图上所记录的是参考光 和物光的干涉条纹, 而这些条纹非常细, 在曝光过程中, 极 小的振动和位移都会引起干涉条纹的模糊不清, 甚至使干涉 条纹完全不能记录下来。 2.没有更好的调整好参考光和物光的光程差。参考光和物光的光 程差不能太大也不能太小, 不能大于所用激光的相干长度, 否则两者不能相干, 无法在全息干板上获得干涉条纹。 3.没有更好的调整好参考光和物光的夹角。假设全息干板上干涉 条纹的间距为d, 光源波长为λ。根据干涉原理, d 与参考光 和物光之间的夹角θ关系为, 而干板分辨率 η 与d 的关系为。可以看出, θ愈大, 所记录的干涉条纹就越细, 对干板的分辨率要求越高,故夹角 θ不能太大。而夹角θ对全息图再现像时的观察窗(视角) 有 影响, 夹角大, 可在较大范围内从不同角度观察物象, 反之, 观察窗则小, 因此夹角θ也不能太小。 4.光路中使用过多反光镜导致光强过小,从而影响干涉效果。

5.曝光时间没有控制得很好,曝光时间太长, 导致干板太黑, 光 线的透过率降低。 C C 6.在用清水清洗干版时水温没有严格控制在30-32,影响 实验结果。 7.在显影定影时,冲洗时间不够,导致成像范围过小,成像不清 晰。 实验结论: 实验中获得清晰的再现像的关键是要选用具有良好的相干性和稳定性的激光作为光源。光路的调整更是至关重要的。一个好的光路,既要使物光和参考光能够发生干涉,还要保证干涉条纹间隔清晰,反差合适。所以要首先调整好物光和参考光的光程,以保证干涉能够发生,然后再调整物光与参考光束之间的夹角及物光和参考光的光强比, 保证全息照片的清晰度和反差。另外,在曝光时系统要稳定。

3 第3节 光的偏振 第4节 激光与全息照相

第3节光的偏振 第4节激光与全息照相 1.了解振动中的偏振现象,知道只有横波才有偏振现象,知道光是一种横波. 2.知道偏振光和自然光的区别,知道光的偏振说明光是横波.(重点+难点) 3.知道激光的产生原理和主要特点,了解激光的特性和应用.(重点) 4.知道激光在全息照相中的应用原理和特点. 一、光的偏振 1.偏振现象 (1)如果横波只沿某一个特定的方向振动,在物理学上就叫做波的偏振.只有横波才有这种特性.因为纵波的振动方向和传播方向始终在同一直线上,所以纵波不存在偏振. (2)光波属于电磁波,是横波,具有偏振性.太阳、电灯、蜡烛等普通光源发出的光不显示偏振性. 2.偏振片:只让某一方向振动的光通过,而不让其他方向振动的光通过的一种光学元件. 3.光的分类 (1)自然光:太阳、电灯等普通光源发出的光,在垂直于传播方向的平面内,光波可沿任何方向振动,光的振动在平面内是均匀分布的. (2)偏振光 ①自然光通过偏振片(起偏器)之后,只有振动方向与“狭缝”方向相同的光波才能完全通过.自然光通过偏振片后,就能获得偏振光. ②起偏器和检偏器:用于获得偏振光的偏振片叫起偏器,用于检查通过起偏器的光是不是偏振光的偏振片叫检偏器. ③偏振器的偏振化方向:偏振光能完全通过的方向. 4.偏振现象的应用 (1)立体电影. (2)在照相机镜头前装一偏振片,并适当旋转偏振镜片,能够阻挡偏振光,消除或减弱光滑物体表面的反光或亮斑.

(3)利用偏振光通过受力的塑料或玻璃时,偏振化方向会发生变化这一现象,检查应力的分布情况以及用于地震预报. 1.(1)只有横波才能发生偏振,纵波不能发生偏振.() (2)光的偏振现象证明光是横波.() (3)自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光.() 提示:(1)√(2)√(3)× 二、激光与全息照相 1.激光及其特性 (1)激光是原子受激辐射产生的光.发光的方向、频率、偏振方向均相同,两列相同的激光相遇可以发生干涉.激光是人工产生的光. (2)激光具有相干性好、单色性好、亮度高、方向性强等特点. (3)激光用途很广,在农业领域可以用来育种,在医疗领域可以用激光作为手术刀来切割组织,在军事领域可以制作各种激光武器,在工业领域可以利用激光进行切割金属等难熔物质. 2.激光与全息照相 (1)全息照相是利用光的干涉来实现的. (2)作为光源的激光被分成两部分:一部分通过凹透镜发散后射到照相胶片上,另一部分射向一个平面镜,经反射后通过另一个凹透镜发散后射向被拍照的物体,该物体把光线反射到照相胶片上并与第一束光发生干涉,两束光干涉的结果就在照相胶片上记录下被拍摄物体的三维图像信息,这就是全息照相. 2.(1)激光用于光纤通信是利用了它亮度高的特点.() (2)激光可用做“光刀”来切开皮肤,是利用了激光的相干性好.() (3)全息照相技术只能记录光波的强弱信息.() 提示:(1)×(2)×(3)×

【实验报告】全息照相实验报告

全息照相实验报告 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示:

感光底板 用激光光源照射物体,物体因漫反射发出物光波。波场上没一点的振幅和相位都是空间坐标的函数。我们用O表示物光波没一点的复振幅与相位。用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R表示,草考光通常为平面或球面波。这样在记录信息的底板上的总光场是物光与参考光的叠加。叠加后的复振幅为O+R,如图从而底板上各点的发光强度分布为 I(OR)(O*R*)OO*RR*OR*O*RIOIROR*O*R (式1) 式子中,O*与R*分别是O和R的共轭量;I。,IR分别为物光波和参考光波独立照射底版时的放光强度。 2.物相再现 3.底板经过曝光冲洗后,形成各处透光率不同的全息照片,它相当于一个复杂的光栅。一般来说,光透过这样的全息照片时,振幅以及位相都要发生变化。如果令 t=透过光的复振幅/入射光的复振幅(式2) 则复振幅透过率t一般为复数。但对于平面吸收型全息照片t为实数。如果曝光及冲洗合适,可使得 tt0KI (式3)

全息照相实验报告

全息照相实验报告 班级:XXX :XXX 学号:XXX 时间:XXX 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、曝光定时器及快门、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示: 用激光光源照射物体,物体因漫反射发出物光波。波场上没一点的振幅和相位都是空间坐标的函数。我们用O 表示物光波没一点的复振幅与相位。用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R 表示,草考光通常为平面或球面波。这样在记录信息的底板上的总光场是物光与参考光的叠加。叠加后的复振幅为O+R ,如图从而底板上各点的发光强度分布为 ********()()O R I O R O R OO RR OR O R I I OR O R =++=+++=+++ (式1) 式子中,O*与R*分别是O 和R 的共轭量;I 。,IR 分别为物光波和参考光波独立照射底版时 感光底板

激光全息照相

实验32 激光全息照相 【实验目的】 1、学习全息照相的基本原理和方法。 2、了解全息照相的主要特点。 3、学习观察全息照片的方法。 【实验装置】 全息照相的整套装置(PHYWE),如图1所示: 【全息照相的特点】 全息照相与普通照相无论在原理上还是方法上都有本质上的差别。普通照相是以几何光学的折射定律为基础,利用透镜把物体成像在平面上,记录各点的光强或振幅分布,物象之间各点一一对应,但却是二维平面像上的点与三维物体各点之间的对应,因此并不完全逼真,即使一般所谓的“立体照相”也多是利用双目视差的错觉,而不是物体的真正三维图象。而全息照相是以光的干涉、衍射等物理光学的规律为基础,借助于参考光波记录物光波的振幅与位相的全部信息, 在记录介质(如感光干版)上得到的不是物体的像,而只有在高倍显微镜下才能观察得到的细密干涉条纹,称之为全息图。(在感光版上看见的同心环,斑纹之类不是原来物体的真正信号,而是由给出参考光的发射镜上的灰尘微粒及其它散射物引起的。)条纹的明暗程度和图样反映了物光波的振幅与位相分布,好象是一个复杂的衍射光栅,只有经过适当的再照明才能重建原来的物光波。 与普通照片相比,全息照片还具有如下几个特点: 1)全息照片在适当的照明下重建物光波与原来的物光波具有相同的深度和视差。改变观察的位置,就可以看到景物被遮拦的物体,观察近距离的物体,眼睛必须重新调焦。 2)把全息照片分成小块,其中每一小块都可以再现整个图象。因为照片上每一点都受到参考光和被摄物体所有部分的光的作用,所以这些点就用编码的形式包含了整个图象的信息。但是当小块逐渐减小时,分辨率逐渐变差。这是因为分辨率是成像系统孔径的函数。 3)全息照片可以用接触法复制,但无正负片之分,不论是原来的还是复制的都再现被摄物体的正像。而且无论照明乳剂的反差特性如何,再现影象的反差同原物体的反差都非常接近。 4)全息照片绕垂直轴线转,引起一个倒转的像,让全息照片绕一水平轴线旋转,也产

光学全息照相实验报告

光学全息照相实验报告

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的

了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He —Ne 激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄 全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为a 、频率为υ、波长为λ 的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相 干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1)

全息照相原理及应用

1引言 我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅、相位、和波长。如果能看到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已经被广泛应用于近代科学研究和工业生产中。 1948年,丹尼斯·盖伯提出一种记录光波振幅和相位的方法,随后用实验验证了这一想法,即全息术,并制成世界上第一张全息图。全息术在刚开始的十多年中进展缓慢,直到激光的出现使得全息术获得巨大进展。总结全息照相的发展,可以分为四个阶段:第一阶段是用水银灯记录同轴全息图,这时是全息照相的萌芽时期,主要原因是没有好的相干光源,再现像和共轭像不能分离;第二阶段是用激光记录、激光再现的全息照相,能够把原始像和共轭像分离;第三阶段是激光记录、白光再现的全息照相,主要有反射全息、象全息、彩虹全息及合全息;第四阶段是当前所致力的方向,就是白光记录全息图。[1]

2 全息照相的原理 全息照相是一种二步成像的照相技术,它利用物光和参考光在感光胶片上进行干涉叠加形成全息照片,在运用衍射原理使之再现,因此全息照相的过程包括全息记录和全息再现两个过程。 2.1 全息记录 2-1图 全息记录 如图1所示,激光器射出的激光束通过分束镜分成两束,一束光经扩束镜扩束后直接投摄到感光底片上,这束光称为参考光,另一束光经反射镜反射及扩束镜扩束后射到被摄物体上,在经过物体反射到感光板上,这束光称为物光。两束光将在感光板上产生干涉,形成干涉条纹。设 物光波:()()()1,00,=A ,i x y U x y x y e ?-?% 参考光波:()()()2,,=A ,i x y R R U x y x y e ?-?% 式中012,,,R A A ??分别为物光波参考光波的振幅和初相位。当两束光波发生干涉,其合成光波为:

全息照相实验报告

全息照相实验报告 全息照相实验报告 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示: 感光底板 用激光光源照射物体,物体因漫反射发出物光波。波场上没一点的振幅和相位都是空间坐标的函数。我们用O表示物光波没一点的复振幅与相位。用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R表示,草考光通常为平面或球面波。这样在记录信息的底板上的总光场是物光与参考光的叠加。叠加后的复振幅为O+R,如图从而底板上各点的发光强度分布为 I(O R)(O*R*)OO*RR*OR*O*R IO IR OR*O*R (式1) 式子中,O*与R*分别是O和R的共轭量;I。,IR分别为物光波和参考光波独立照射底版时的放光强度。 2.物相再现 3.底板经过曝光冲洗后,形成各处透光率不同的全息照片,它相当于一个复杂的光栅。一般来说,光透过这样的全息照片时,振幅以及位相都要发生变化。如果令 t=透过光的复振幅/入射光的复振幅(式2) 则复振幅透过率t一般为复数。但对于平面吸收型全息照片t为实数。如果曝光及冲洗合适,可使得 t t0KI (式3) 物象再现是用光照射已经摄制好的全息照片并观察透过光。这个过程称为波

激光全息照相(大物实验总结)讲解

激光全息照相 摘要:全息的意义在于记录光波的全部信息。自从20世纪60年代激光出现以来,全息照相得到了全面的发展和广泛的应用。本文简述了全息照相的实验原理及实验技巧,并给出了其应用前景。 关键词:激光全息照相,原理,技巧,应用 引言 光是一种电磁波,它的全部信息包含:振幅(反映物体上各点发出的光的强弱,决定像的强度,位相(反映物体上各点在空间的相对位置,决定像的形状和频率(反映光的颜色。普通照相只记录了振幅,得到的是二维平面像,而全息照相在记录振幅信息的同时还记录了位相信息,即记录了光波的全部信息。因而这种照相称为全息照相。全息照相得到的是三维空间的立体像,它所依据的基本原理通常概括为“干涉记录,衍射再现”。全息摄影技术的应用十分广泛,目前,已应用于精密测量、无损探伤、指纹识别、高速摄影、全息显微术、信息处理和信息储存等许多领域。 1.全息照相术的起源 早在1948年.全息照相的奥秘由Denis Gabor所发现.它通过光的衍射使图象由平面变为立体.因而获得诺贝尔物理奖.1982年.美国加里福尼亚物理学家Steve Mc Grew 开发了从玻璃版转移到镍薄片上的操作方法。使得全息图能够以高速而低成本地压印在塑料薄膜上成为可能.八十年代中,Steve Mc Grew遇到了英国John Brown.他们合伙在英国建立了欧洲光压印公司(Light Impressions Europe。该公司在发展浮雕式全息照相工业起到了先锋作用.例如礼品业、时装业都采用了该公司的全息图标贴,作为市场促销的工具.1987年.该公司的乙烯基压敏胶全息图获得了促进应用全息图的Fasson奖. 2.实验原理及技巧

全息照相实验报告

全息照相实验报告 程子豪2010035012 少年班01 一、实验目的: 1.了解全息照相记录和再现的基本原理和主要特点; 2.学习全息照相的操作技术; 3.观察和分析全息图的成像特性。 二、实验原理: 2.1全息照相原理的文字表述: 普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 全息照相在记录物光的相位和强度分布时,利用了光的干涉。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 具体来说,全息照相包括以下两个过程: 1、波前的全息记录 利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。所以全息图不是别的,正是参考光波和物光波干涉图样的记录。显然,全息照片本身和原来物体没有任何相似之处。 2、衍射再现 物光波前的再现利用了光波的衍射。用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。这是一个虚像,它具有原始物体的一切特征。此外还有一个实像,称为共轭像。应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

全息照相实验报告

一、实验目的与实验仪器 实验目的: 1.了解全息照相的基本原理。 2.掌握全息照相的方法和冲洗底片的方法 3.观察物像再现 实验仪器: 1.氦氖激光灯,成套全息照相工具元件及防振装置 2.曝光定时器,光点检流计,硅光电池,全息底片 3.被照物体,显影液,定影液等 二、实验原理 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分布,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 相关原理图: (1)实验光路图 物象再现原理

干涉方法制作光栅方法: 三、实验步骤 1.预热激光源,调整光源 各元件大致摆放到各自的相应位臵上, 调整各元件, 使各光束都与台面平行且与各元件中心重合, 开始时不要加扩束镜,测量物光与参考光的光程, 从分束镜开始, 沿着光束的前进方向量至全息干板为止, 按等光程按排光路为好, 光程差不得大于1 cm。 2.检验光照强度,确定曝光时间 3.感光片曝光 将激光器出射的激光遮挡住,装夹好全息干板,使乳胶面向着被拍摄的物体,静置几分钟使防震台不震动后取消遮挡,激光曝光10-20s。特别要注意再曝光过程中绝对不要触及防震台

全息照相技术

全息照相技术 建电131 徐芳勤 02

内容摘要: 全息照相是应用光的干涉来实现的,它用激光作光源,通过全息记录和再现过程实现,全息照相较之普通照相有许多优点,它既记录光波的振幅,又记录位相的全部信息,是一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。为了满足产生光的干涉条件,通常要用相干性好的激光作光源,而且光和照射物体的光是从同一束激光分离出来的。感光片显影后成为全息图。所以全息照相技术有重要的实际应用。 关键词: 全息照相,波的干涉,全息照片,全息摄影 引言: 我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅、相位、和波长。如果能看到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已经被广泛应用于近代科学研究和工业生产中。

1947年匈牙利出生的英国物理学家D.伽柏(D.Gabor)最先提出全息术的设想,意图提高电子显微镜的分辨本领。方法是完全撇开电子显微物镜,用胶片纪录经物体衍射的末聚焦的电子波,得到全息图。 1962年苏前联科学家U.丹尼苏克(Denisyuk)提出了反射全息图的方法,第一次用普通的白织灯照明全息图观察到全息像。 1965年,R.L.鲍威尔,K.A.斯泰特森提出全息干涉术。物体在施加应力前后经过两次全息曝光,再现的全息像上的等高线显示物体变形的状况。 1968年,S.A.本顿发明彩虹全息术,由于可用白光观察全息图,看到记录物体的彩虹像,成为显示全息术的重要进展。它使后来通过模压技术批量生产全息图成为现实。从此全息术才真正的走出实验室,在生产实践和科学研究领域中成为了重要角色,以全息电影和全息电视,全息储存、全息显示及全息防伪商标等各种形式存在。 全息照相原理: 全息照相分为两步。第一步利用干涉法拍摄全息图(全息照片),如图1(a)所示。从激光器发出的相干光束,被分束镜分成两束光,一束光照明到被摄物体,从物体上反射或散射的物光射到感光胶片上。另一部分光束投射到反射镜,被反射的光波直接照射到感光胶片上,这束光称为参考光。物光与参考光在胶片上迭加干涉,产生的干涉图样即记录了物体振幅和位相的全部信息。这张具有干涉图样的胶片经过适当曝光与冲洗处理后,就是一张全息图(全息照片)。这一拍摄

全息照相实验报告正式样本

文件编号:TP-AR-L5746 Report The Progress In Work And Life, Including The Recent Work Situation, Practice, Experience And Feedback On Problems, And The Deployment Of The Next Stage Plan To Ensure The Effective Implementation Of The Plan. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 全息照相实验报告正式 样本

全息照相实验报告正式样本 使用注意:该报告资料可用在工作生活中按规定定期或不定期汇报进度,汇报内容包括近一段的工作情况、做法、经验以及问题的反馈,下一段计划的部署,以保证计划有效地进行。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、高频滤波器)、扩 束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干 版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发 生都有本质的区别。普通照相是用几何光学的方法记

录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示: 感光底板

相关文档