文档库 最新最全的文档下载
当前位置:文档库 › 晶振电路原理介绍

晶振电路原理介绍

晶振电路原理介绍
晶振电路原理介绍

晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串连一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串连谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率规模内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反响电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率规模很窄,所以即使其他元件的参数变更很年夜,这个振荡器的频率也不会有很年夜的变更。

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以获得晶振标称的谐振频率。

一般的晶振振荡电路都是在一个反相放年夜器(注意是放年夜器不是反相器)的两端接入晶振,再有两个电容辨别接到晶振的两端,每个电容的另一端再接到地,这两个电容串连的容量值就应该即是负载电容,请注意一般IC的引脚都有等效输入电容,这个不克不及忽略。

一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。

晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不合,无源晶振为cry

stal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才干产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法其实禁绝确;有源晶振是一个完整的谐振振荡器。

谐振振荡器包含石英(或其晶体资料)晶体谐振器,陶瓷谐振器,LC谐振器等。

晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。

石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的标的目的上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。其特点是频率稳定度很高。

石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC来共同作用来工作的。振荡器直接应用于电路中,谐振器工作

时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数为:谐振电阻(RR),谐振器没有电阻要求。RR的年夜小直接影响电路的性能,也是各商家竞争的一个重要参数。

概述

微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;基于相移电路的时钟源,如:RC (电阻、电容)振荡器。硅振荡器通常是完全集成的R C振荡器,为了提高稳定性,包含有时钟源、匹配电阻和电容、温度赔偿等。图1给出了两种时钟源。图1给出了两个分立的振荡器电路,其中图1a为皮尔斯振荡器配置,用于机械式谐振器件,如晶振和陶瓷谐振槽路。图1b为简单的R

C反响振荡器。

机械式谐振器与RC振荡器的主要区别

基于晶振与陶瓷谐振槽路(机械式)的振荡器通常能提供很是高的初始精度和较低的温度系数。相对而言,RC振荡器能够快速启动,本钱也比较低,但通常在整

个温度和工作电源电压规模内精度较差,会在标称输出频率的5%至50%规模内变更。图1所示的电路能产生可靠的时钟信号,但其性能受环境条件和电路元件选择以及振荡器电路规划的影响。需认真看待振荡器电路的元件选择和线路板规划。在使用时,陶瓷谐振槽路和相应的负载电容必须根据特定的逻辑系列进行优化。具有高Q值的晶振对放年夜器的选择其实不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、机械震动与冲击、湿度和温度。这些因素会增年夜输出频率的变更,增加不稳定性,并且在有些情况下,还会造成振荡器停振。

振荡器模块

上述年夜部分问题都可以通过使用振荡器模块避免。这些模块自带振荡器、提供低阻方波输出,并且能够在一定条件下包管运行。最经常使用的两种类型是晶振模块和集成硅振荡器。晶振模块提供与分立晶振相同的精度。硅振荡器的精度要比分立RC振荡器高,大都情况下能够提供与陶瓷谐振槽路相当的精度。

功耗

选择振荡器时还需要考虑功耗。分立振荡器的功耗主要由反响放年夜器的电源电流以及电路内部的电容值所决定。

CMOS放年夜器功耗与工作频率成正比,可以暗示为功率耗散电容值。比方,HC04反相器门电路的功率耗散电容值是90p F。在4MHz、5V电源下工作时,相当于1.8mA的电源电流。再加上20pF的晶振负载电容,整个电源电流为2.2mA。

陶瓷谐振槽路一般具有较年夜的负载电容,相应地也需要更多的电流。

相比之下,晶振模块一般需要电源电流为10mA至60m A。

硅振荡器的电源电流取决于其类型与功能,规模可以从低频(固定)器件的几个微安到可编程器件的几个毫安。一种低功率的硅振荡器,如MAX7375,工作在4MHz时只需不到2 mA的电流。

结论

在特定的微控制器应用中,选择最佳的时钟源需要综合考虑以下一些因素:精度、本钱、功耗以及环境需求。下表给出了几种经常使用的振荡器类型,并阐发了各自的优缺点。

令狐采学

晶振电路的作用

电容年夜小没有固定值。一般二三十p。晶振是给单片机提供

工作信号脉冲的。这个脉冲就是单片机的工作速度。比方 12M晶振。单片机工作速度就是每秒 12M。和电脑的 CPU概念一样。固然。单片机的工作频率是有规模的。不克不及太年夜。一般 24M 就不上去了。不然不稳定。

接地的话数字电路弄的来乱一点也无所谓。看板子上有没有模拟电路。接处所式也是不固定的。一般串连式接地。从小信号到年夜信号依次接。然后小信号连到接地来削减偕波对电路的稳定性的影响,所以晶振所配的电容在10pf50pf之间都可以的,没有什么计算公式。

可是主流是接入两个33pf的瓷片电容,所以还是随主流。

晶振电路的原理

晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串连一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串连谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率规模内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反响电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率规模很窄,所以即使其他元件的参数变更很年夜,这个振荡器的频率也不会有很年夜的变更。

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以获得晶振标称的谐振频率。

一般的晶振振荡电路都是在一个反相放年夜器(注意是放年夜

器不是反相器)的两端接入晶振,再有两个电容辨别接到晶振的两端,每个电容的另一端再接到地,这两个电容串连的容量值就应该即是负载电容,请注意一般IC的引脚都有等效输入电容,这个不克不及忽略。

一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。

晶振电路中罕见问题

晶振电路中如何选择电容C1,C2?

(1):因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。

(2):在许可规模内,C1,C2值越低越好。C值偏年夜虽有利于振荡器的稳定,但将会增加起振时间。

(3):应使C2值年夜于C1值,这样可使上电时,加快晶振起振。

在石英晶体谐振器和陶瓷谐振器的应用中,需要注意负载电容的选择。不合厂家生产的石英晶体谐振器和陶瓷谐振器的特性和品质都存在较年夜差别,在选用,要了解该型号振荡器的关键指标,如等效电阻,厂家建议负载电容,频率偏差等。在实际电路中,也可以通过示波器观察振荡波形来判断振荡器是否工作在最佳状态。示波器在观察振荡波形时,观察OSCO管脚(Oscillator output),应选择100MHz带宽以上的示波器探头,这种探头的输入阻抗高,容抗小,对振荡波形相对影响小。(由于探头上一般存在10~20pF 的电容,所以观测时,适当减小在OSCO管脚的电容可以获得更接

近实际的振荡波形)。工作良好的振荡波形应该是一个漂亮的正弦波,峰峰值应该年夜于电源电压的70%。若峰峰值小于70%,可适当减小OSCI及OSCO管脚上的外接负载电容。反之,若峰峰值接近电源电压且振荡波形产生畸变,则可适当增加负载电容。

用示波器检测OSCI(Oscillator input)管脚,容易招致振荡器停振,原因是:

部分的探头阻抗小不成以直接测试,可以用串电容的办法来进行测试。如经常使用的4MHz石英晶体谐振器,通常厂家建议的外接负载电容为10~30pF左右。若取中心值15pF,则C1,C2各取30pF 可获得其串连等效电容值15pF。同时考虑到还另外存在的电路板散布电容,芯片管脚电容,晶体自身寄生电容等城市影响总电容值,故实际配置C1,C2时,可各取20~15pF左右。并且C1,C2使用瓷片电容为佳。

问:如何判断电路中晶振是否被过分驱动?

答:电阻RS经常使用来避免晶振被过分驱动。过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的上升。可用一台示波器检测OSC输出脚,如果检测一很是清晰的正弦波,且正弦波的上限值和下限值都合适时钟输入需要,则晶振未被过分驱动;相反,如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动。这时就需要用电阻RS来避免晶振被过分驱动。判断电阻RS值年夜小的最简单的办法就是串连一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止。通过此办法就可以找到最接近的电阻RS值。

有源晶振介绍

有源晶振介绍(2008-06-10 16:46:18) 有源晶振型号纵多,而且每一种型号的引脚定义都有所不同,接发也不同,下面我介绍一下有源晶振引脚识别,以方便大家。 有个点标记的为1脚,按逆时针(管脚向下)分别为2、3、4。 有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。 有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。 有源晶振是右石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。 压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。图3是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC电路。在这个电路中,石英晶体相当于一个电感,C2为可变电容器,调节其容量即可使电路进入谐振状态。该振荡器供电电压为5V,输出波形为方波。

《有源晶振引脚》 有源晶振与无源晶振 在电子学上,通常将含有晶体管元件的电路称作“有源电路”(如有源音箱、有源滤波器等),而仅由阻容元件组成的电路称作“无源电路”。电脑中的晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。

晶振基础知识

晶振基础知识(第一版) 摘要:本文简单介绍了晶体谐振器和晶体振荡器的结构,工作原理,振荡器电路的分类,晶体振荡器的分类,晶振类器件的主要参数指标和石英晶体基本生产工艺流程。 一、振荡电路的定义,构成和工作原理 (2) 二. 晶体振荡器分类: (16) 三、石英晶体谐振器主要参数指标 (19) 四、石英晶体振荡器主要参数指标 (20) 五.石英晶体基本生产工艺流程 (26)

一、振荡电路的定义,构成和工作原理 1. 振荡器:不需外加输入信号,便能自行产生输出信号的电路,通常也被成为。 2. 振荡器构成:谐振器(选频或滤波)+驱动(谐振)电路构成振荡器电路。 3. 谐振器的种类有:RC 谐振器,LC 并联谐振器,陶瓷谐振器,石英(晶体)谐振器,原子谐振器,MEMS (硅)振荡器。本文只讨论石英晶体谐振器。 石英谐振器的结构 石英谐振器,它由石英晶片、电极、支架和外壳等部分组成。它的性能与晶片的切割方式、尺寸、电极的设置装架形式,以及加工工艺等有关。其中,晶片的切割问题是设计时首先要考虑的关键问题。由于石英晶体不是在任何方向都具有单一的振动模式(即单频性)和零温度系数,因此只有沿某些方向切下来的晶片才能满足设计要求。 Mounting clips Top view of cover Resonator

普通晶振内部结构 石英晶体振荡器主要由基座、晶片、IC 及外围电路、陶瓷基板(DIP OSC )、上盖组成。 普通晶体振荡器原理图 胶点 基座 晶片 Bonding 线 IC

4. 振荡电路的振荡条件: (1)振幅平衡条件是反馈电压幅值等于输入电压幅值。根据振幅平衡条件,可以确定振荡幅度的大小并研究振幅的稳定。 (2)相位平衡条件是反馈电压与输入电压同相,即正反馈。根据相位平衡条件可以确定振荡器的工作频率和频率的稳定。 (3)振荡幅度的稳定是由器件非线性保证的,所以振荡器是非线性电路。 (4)振荡频率的稳定是由相频特性斜率为负的网络来保证的。 (5)振荡器的组成必须包含有放大器和反馈网络,它们必须能够完成选频、稳频、稳幅的功能。(6)利用自偏置保证振荡器能自行起振,并使放大器由甲类工作状态转换成丙类工作状态。

晶振FM发射电路

晶振FM发射电路 此晶振FM发射电路经过一晚上的折腾将音质差音量小的问题显著改善,特将成果分享给爱玩的你,此电路工作非常稳定、手怎么摸电路板怎么移动电路板都不会飘频,不要和电容三点式振荡电路混为一谈 晶振找了20多个只有26.601712Mhz这个晶振音质做好、频率落在收音机的106.4频段上,变容二极管2个串联、1~5uh电感用色环电感,大家做的时候10k和两个5.1k电阻不要偏差太大、会影响音量和音质的、供电电压低于10V音质会变差,所以说供电不要低于12V。变容二极管可用V06G整流二极管代替 自我感觉经此发射电路发射出去的信号收音机接收后高音清晰低音浑厚、接收音量也已经做到可以让自己接受的量度了 最新电路图做了如下改动,将石英晶振改为陶瓷晶振、增加了一个47K电阻、减少了1个变容二极管、供电电压由12V降低为4.2V 可正常工作不影响音质。其它无改动

频率很稳定的FM发射电路图 许多无线电爱好者都希望制作一台调频发射器,特别是在87~108MHz的调频波段,可利用现成的FM收音机来接收,因而受到大家的青睐。 在许多刊物中都介绍有调频发射器的实例,但大多数采用电容三点式电路和克拉泼振荡电路。这种电路虽简单,但它的频率稳定度不高,特别是在业余条件下,稍微动动电路板或天线位置,频率就改变了。在此笔者介绍一款用晶振稳频的调频发射器。 如图1所示,由V1及相关阻容元件组成一级音频放大电路,为调制级提供足够强度的音频信号。D1是变容二极管,其等效电容量随着两极所加的反向电压变化而变化,从而使晶振及外围电路组成的振荡器中心频率随之变化,达到调频目的。振荡器输出的信号经V3倍频、放大,再由调谐变压器完成匹配与滤波后输出。 该电路用了调谐变压器,因而在制作完后要调整其磁心,使之匹配。其方法是制作一个简易场强电路(如图2所示),接至变压器的输出端,调整磁心,直到电流表指示值最大为止。电路中所用元器件尽量使用高频特性好的元器件。晶振选用标称值为29~36MHz之间的晶振,D1可用MV2105,变压器需自制,可选用电视中周作骨架,去掉屏蔽罩,用∮0.2mm左右的漆包线在骨架上初级绕3匝,次级绕1匝。天线可用1/4波长的软导线代用。 成本低于10元的FM发射器 目前市场上具备FM发射功能的MP3备受消费者关注。这种功能看起来挺新奇,也可以为MP3播放器增加卖点,其实实现起来并不难。我们也可以自己动手做一个小型的FM发射机。在这里介绍一种新型发射机,该机制作简便、音质优良,适合高保真无线音响之用。

晶振基础知识

1、晶体元件参数 1.1等效电路 作为一个电气元件,晶体是由一选定的晶片,连同在石英上形成电场能够导电的电极及防护壳罩和内部支架装置所组成。 晶体谐振器的等效电路图见图1。 等效电路由动态参数L 1、C 1、R 1和并电容C 0组成。这些参数之间都是有联系的,一个参数变化时可能会引起其他参数变化。而这些等效电路的参数值跟晶体的切型、振动模式、工作频率及制造商实施的具体设计方案关系极大。 下面的两个等式是工程上常用的近似式: 角频率ω=1/11C L 品质因数Q=ωL 1/R 1 其中 L1为等效动电感,单位mH C1为等效电容,也叫动态电容,单位fF R1为等效电阻,一般叫谐振电阻,单位Ω 图2、图3、图4给出了各种频率范围和各种切型实现参数L 1、C 1、R 1的范围。 图2常用切型晶体的电感范围 图3 常用切型的电容范围 对谐振电阻来说,供应商对同一型号的任何一批中可以有3:1的差别,批和批之间的差别可能会更大。对于一给定的频率,采用的晶体盒越小,则R 1和L 1的平均值可能越高。

1.2 晶体元件的频率, 晶体元件的频率通常与晶体盒 尺寸和振动模式有关。一般晶体尺 寸越小可获得的最低频率越高。晶 体盒的尺寸确定了所容纳的振子的 最大尺寸,在选择产品时应充分考 虑可实现的可能性,超出这个可能 范围,成本会急剧增加或成为不可 能,当频率接近晶体盒下限时,应与 供应商沟通。下表是不同晶体盒可 实现的频率范围。 图4 充有一个大气压力气体 (90%氮、10%氦) 的气密晶体元件的频率、切型和电阻范围 1.3 频差 规定工作温度范围及频率允许偏差。 电路设计人员可能只规定室温频差,但对于在整个工作温度范围内要求给定频差的应 用,除了给定室温下的频差还应给出整个工作温度范围内的频差。给定这个频差时,应充分 考虑设备引起温升的容限。 通常有两种方法规定整个工作温度范围的频差。 1)规定总频差 如从-10℃—+85℃,总频差为±50×10-6,通常这种方法一般用于具有较宽频差而不采

晶振电路原理介绍

晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。 晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。 一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。 一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。 晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。 谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。

晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。 石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。其特点是频率稳定度很高。 石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC来共同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数为:谐振电阻(RR),谐振器没有电阻要求。RR 的大小直接影响电路的性能,也是各商家竞争的一个重要参数。 概述 微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;基于相移电路的时钟源,如:RC (电阻、电容)振荡器。硅振荡器通常是完全集成的RC振荡器,为了提高稳定性,包含有时钟源、匹配电阻和电容、温度补偿等。图1给出了两种时钟源。图1给出了两个分立的振荡器电路,其中图1a为皮尔斯振荡器配置,用于机械式谐振器件,如晶振和陶瓷谐振槽路。图1b为简单的RC反馈振荡器。 机械式谐振器与RC振荡器的主要区别 基于晶振与陶瓷谐振槽路(机械式)的振荡器通常能提供非常高的初始精度和较低的温 度系数。相对而言,RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化。图1所示的电路能产生可靠的时钟信号,但其性能受环境条件和电路元件选择以及振荡器电路布局的影响。需认真对待振荡器电路的元件选择和线路板布局。在使用时,陶瓷谐振槽路和相应的负载电容必须根据特定的逻辑系列进行优化。具有高Q值的晶振对放大器的选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、机械震动与冲击、湿度和温度。这些因素会增大输出频率的变化,增加不稳定性,并且在有些情况下,还会造成振荡器停振。 振荡器模块 上述大部分问题都可以通过使用振荡器模块避免。这些模块自带振荡器、提供低阻方波

那些被晶振傻傻忽悠的曾经

那些被晶振傻傻忽悠的曾经 前不久,有个客户打电话抱怨说到,产品生产出来后,时间一会儿走一会儿不走的,由于他不懂,所以很着急。他工厂是生产电子表的,在他当时提出这个问题,时钟突然停止工作什么原因造成的呢?后而又立马随即而出的指向了晶振的问题,因为晶振是各板卡的心跳发生器, 说为什要卧装,而不像电解电容那样直立安装呢?直立安装岂不省事多了吗?而且还用一个倒U 型卡子焊在主板上,这不是其外壳应接地吗?轻轻一按则晶振与卡子间还会出现很大的间隙。大家都一致认可很有可能是晶振的安装方式不正确,最后实验得出结论,部分板卡是这个原因。其实提出这个问题,最主要还是看你是什么板卡,什么样的IC ,当然 时间存在偏差主要是频率有偏差,1PPM 的频率偏差换算成天时间误差就是0.0864S 。那么如果需要时间误差要做到准确就最好晶振两端的电容要按正常配比焊接,同时要晶振供应商帮忙通过QWA 检测找最好的0误差PPM 值,按0误差的标准来指定供货的频率范围。20PPM 的标准误差一个月60秒,这还要根据所指向的IC 和线路设计,匹配要求对不上偏差可能还会大一点。 差范围内。最好按照所提供的数据来,如果没有,一般是30pF 左右。太小了不容易起振。在某些情况下,也可以通过调整这两个电容的大小来微调振荡频率,当然可调范围一般在10ppm 量级。晶振的匹配电容的主要作用是匹配晶振和振荡电路,使电路易于启振并处于合理的激励态下,对频率也有一定的“微调”作用。对MCU ,正确选择晶振的匹配电容, 关键是微调晶体的激励状态,避免过激励或欠激励,前者使晶体容易老化影响使用寿命并导致振荡电路EMC 特性变劣,而后者则不易启振,工作亦不稳定,所以正确地选择晶体匹配电容是很重要的。 关于晶振时振时不振,其实无非是晶振负载与两端电容不匹配造成频率偏差太大,或者说晶振本身就存在着问题,寄生、阻抗值波动大、内部焊点不牢等。或遇晶振装板上不行时,用电热风吹一下或者拆下来重新装上去又可以了,其实这完全关系到晶振负载与两端电容不匹配造成频率偏差太大。然而在这里,电热风实际上是起到了改变了线路的杂散电容的作用。 许多工程师开始纠结于此了,晶振的负载与晶振两端的电容如何匹配呢?其实很简单,用个科学计算的方程式来推算,就是CL=(C1*C2)/(C1+C2)+C ”,其中CL 指的是晶振的负载电容值, C1 C2指的是晶振两端的电容值,C ”指的是线路杂散电容。 的结果只会导致因焊接时间太长将晶振内部的焊点融化,内部结构晶片倾斜碰壳而短路。然而最好的方法是PCB 板上设有两个针孔使用铜线捆绑晶振,或者使用橡胶粘结剂进行。晶振弯脚时随意弯曲,最佳的弯曲是用手指捏住圆柱晶体的外壳,用镊子夹住离晶体基座底部3mm 以上的引线处,用镊子夹住弯曲引线成90°,不要用力拉引线。用力拉引线可能造成引线根部的玻璃子破裂,而产生漏气导致电气性能损坏。如果漏气了晶振也就基本上是不能用了。因为焊接时有阻焊剂等脏污就选择使用超声波清洗PCBA 板:经超声波清洗或超声波焊接会影响和损坏石英晶体的内部结构甚至晶片破损。晶振起振时间长,开机不振关机再开机就起振,耗电量大成品电池不耐用。这主要是晶振的电阻太大造成的,低电压下晶振就无法起振了。

晶振的工作原理

晶振的工作原理 一、什么是晶振? 晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。 晶振还有个作用是在电路产生震荡电流,发出时钟信号. 晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。 晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。 晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。 晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10 ^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。 石英晶振不分正负极, 外壳是地线,其两条不分正负 二、晶振的使用 晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。 晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。 一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容

石英晶振设计电路,Oscillation Circuit Design Overview

Oscillation Circuit Design Overview Oscillation Circuit Design Key Parameters DRIVE LEVEL (DL), OSCILLATION FREQUENCY AND LOAD CAPACITANCE (CL), OSCILLATION ALLOWANCE, FREQUENCY-TEMPERATURE CURVE DRIVE LEVEL (DL) The drive level of a crystal unit is shown by the level of the operating power or the current consumption (see Figures 9,10, and 11). Operating the crystal unit at an excessive power level will result in the degradation of its characteristics, which may cause frequency instability or physical failure of the crystal chip. Design your circuit within absolute maximum drive level. OSCILLATION FREQUENCY AND LOAD CAPACITANCE (CL) The load capacitance (CL) is a parameter for determining the frequency of the oscillation circuit. The CL is represented by an effective equivalent capacitance that is loaded from the oscillation circuit to both ends of the crystal unit (see Figure 12). The oscillation frequency varies depending upon the load capacitance of the oscillation circuit. In order to obtain the desirable frequency accuracy, matching between the load capacitances of the oscillation circuit and the crystal unit is required. For the use of the crystal unit, match the load capacitances of the oscillation circuit with the load capacitances of the crystal

有源晶振的接法

有源晶振型号纵多,而且每一种型号的引脚定义都有所不同,接发也不同,下面我介绍一下有源晶振引脚识别,以方便大家 有个点标记的为1脚,按逆时针(管脚向下)分别为2、3、4。 有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。 有源晶振不需要处理器的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(有源晶振的VCC端不要直接接VCC,要做好电源滤波,典型的接法J 使用一个电容和电感构成的PI型滤波网络如下图所示: 输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。 有源晶振是右石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。当外加交

变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。 压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。图3是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC电路。在这个电路中,石英晶体相当于一个电感,C2为可变电容器,调节其容量即可使电路进入谐振状态。该振荡器供电电压为5V,输出波形为方波 《有源晶振引脚》有源晶振与无源晶振 在电子学上,通常将含有晶体管元件的电路称作“有源电路”(如有源音箱、有源滤波器等),而仅由阻容元件组成的电路称作“无源电路”。电脑中的晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。 石英晶体振荡器的频率稳定度可达10^-9/日,甚至10^-11。例如10MHz的振荡器,频率在一日之内的变化一般不大于0.1Hz。因此,完全可以将晶体振荡器视为恒定的基准频率源(石英表、电子表中都是利用石英晶体来做计时的基准频率)。从PC诞生至现在,主板上一直都使用一颗14.318MHz的石英晶体振荡器作为基准频率源。主板上除了这颗14.318MHz的晶振,还能找到一颗频率为3 2.768MHz的晶振,它被用于实时时钟(RTC)电路中,显示精确的时间和日期 方形有源晶振引脚分布:

单片机最小系统原理图

单片机最小系统 单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的 系统. 对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路. 下面给出一个51单片机的最小系统电路图. 说明

复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取8.2K.当然也有其他取法的,原则就是要让R C组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍. 晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作) 单片机:一片AT89S51/52或其他51系列兼容单片机 特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的. 复位电路: 一、复位电路的用途 单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。 单片机复位电路如下图:

二、复位电路的工作原理 在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢? 在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 开机的时候为什么为复位 在电路图中,电容的的大小是10uF,电阻的大小是10k。所以根据公式,可以算出电容充

晶振作用详细介绍

采购原装晶振就上万联芯城,万联芯城专供国内外优秀品牌晶振,谐振器等产品,主打sitime,YXC等品牌,为客户提供一站式电子元器件采购服务,节省采购成本。点击进入万联芯城 点击进入万联芯城

电路中的晶振有什么作用? 电路中的晶振即石英晶体震荡器。 由于石英晶体震荡器具有非常好的频率稳定性和抗外界干扰的能力,所以,石英晶体震荡器是用来产生基准频率的。通过基准频率来控制电路中的频率的准确性。 石英晶体震荡器的应用范围是非常广的,它质量等级、频率精度也是差别很大的。通讯系统用的信号发生器的信号源(震荡源),绝大部分也用的是石英晶体震荡器。 晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。 晶振还有个作用是在电路产生震荡电流,发出时钟信号. 晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。

振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。 晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。 晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。 电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。 石英晶振不分正负极, 外壳是地线,其两条不分正负

晶振基础知识

晶振基础知识

晶振基础知识(第一版) 摘要:本文简单介绍了晶体谐振器和晶体振荡器的结构,工作原理,振荡器电路的分类,晶体振荡器的分类,晶振类器件的主要参数指标和石英晶体基本生产工艺流程。 一、振荡电路的定义,构成和工作原理 (3) 二. 晶体振荡器分类: (23) 三、石英晶体谐振器主要参数指标 (27) 四、石英晶体振荡器主要参数指标 (30) 五.石英晶体基本生产工艺流程 (43)

一、振荡电路的定义,构成和工作原理 1. 振荡器:不需外加输入信号,便能自行产生输出信号的电路,通常也被成为。 2. 振荡器构成:谐振器(选频或滤波)+驱动(谐振)电路构成振荡器电路。 3. 谐振器的种类有:RC谐振器,LC并联谐振器,陶瓷谐振器,石英(晶体)谐振器,原子谐振器,MEMS(硅)振荡器。本文只讨论石英晶体谐振器。石英谐振器的结构 石英谐振器,它由石英晶片、电极、支架和外壳等部分组成。它的性能与晶片的切割方式、尺寸、电极的设置装架形式,以及加工工艺等有关。其中,晶片的切割问题是设计时首先要考虑的关键问题。由于石英晶体不是在任何方向都具有单一的振动模式(即单频性)和零温度系数,因此只有沿某些方向切下来的晶片才能满足设计要求。

普通晶振内部结构 Base Mounting clips Bonding area Electrodes Quartz blank Cover Seal Pins Top view of cover Metallic electrodes Resonator plate substrate (the “blank”)

晶振的基本原理及特性

晶振的基本原理及特性 晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。其中Co,C1,L1,RR是晶体的等效电路。 分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv 三个电容串联后和Co并联再和C1串联。可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。因而能“压控”的频率范围也越小。实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。 采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。 晶振的指标 总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。 说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最大频差。一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。例如:精密制导雷达。 频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。一个晶振的输出频率随时间变化的曲线如图2。图中表现出频率不稳定的三种因素:老化、飘移和短稳。

图2 晶振输出频率随时间变化的示意图 曲线1是用0.1秒测量一次的情况,表现了晶振的短稳;曲线3是用100秒测量一次的情况,表现了晶振的漂移;曲线4 是用1天一次测量的情况。表现了晶振的老化。 频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。 ft=±(f max-fmin)/(fmax+fmin) ftref =±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|] ft:频率温度稳定度(不带隐含基准温度) ftref:频率温度稳定度(带隐含基准温度) fmax :规定温度范围内测得的最高频率 fmin:规定温度范围内测得的最低频率 fref:规定基准温度测得的频率 说明:采用ftref指标的晶体振荡器其生产难度要高于采用ft指标的晶体振荡器,故ftref指标的晶体振荡器售价较高。 开机特性(频率稳定预热时间):指开机后一段时间(如5分钟)的频率到开机后另一段时间(如1小时)的频率的变化率。表示了晶振达到稳定的速度。这指标对经常开关的仪器如频率计等很有用。 说明:在多数应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需要频繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(尤其是对于在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用MCXO只需要十几秒钟)。 频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间之间的关系。这种长期频率

有源晶振电路及工作原理简述

有源晶振电路及工作原理简述 有源晶振是由石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。 压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。图3是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC电路。在这个电路中,石英晶体相当于一个电感,C2为可变电容器,调节其容量即可使电路进入谐振状态。该振荡器供电电压为5V,输出波形为方波。 有源晶振引脚排列: 有源晶振引脚识别,实物图如上图(b)所示. 有个点标记的为1脚,按逆时针(管脚向下)分别为2、3、4。 方形有源晶振引脚分布: 1、正方的,使用DIP-8封装,打点的是1脚。 1-NC;4-GND;5-Output;8-VCC 2、长方的,使用DIP-14封装,打点的是1脚。 1-NC;7-GND;8-Output;14-VCC

注:有源晶振型号众多,而且每一种型号的引脚定义都有所不同,接法也有所不同,上述介绍仅供参考,实际使用中要确认其管脚列方式. 有源晶振通常的接法: 一脚悬空,二脚接地,三脚接输出,四脚接电压。 有源晶振与无源晶振的联系与区别 无源晶振与有源晶振的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。 石英晶体振荡器的频率稳定度可达10^-9/日,甚至10^-11。例如10MHz的振荡器,频率在一日之内的变化一般不大于0.1Hz。因此,完全可以将晶体振荡器视为恒定的基准频率源(石英表、电子表中都是利用石英晶体来做计时的基准频率)。从PC诞生至现在,主板上一直都使用一颗14.318MHz的石英晶体振荡器作为基准频率源。 有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。 下图为晶体及晶振实特图,左边两个是晶振,右边14.38MHz的为晶体.

无源晶振有源晶振工作原理

无源晶振(晶体谐振器)工作原理:在石英水晶片的两边镀上电极,通过在两电极上加一定的电压,因为石英有压电效应,电压形成了,自然就会产生形变,从而给IC提供一个正弦波形。通过IC的内部整形和PLL电路后产生方波,然后输入给下级电路。有源晶振就是把频率部分和驱动PLL电路集成在IC外部,自成一体,直接输出方波供下级电路使用。 无源晶振(晶体谐振器)有插件和贴片之分,贴片又分为两脚和四脚,四脚贴片其对脚为有效脚,剩下两脚可以作为接地,也可以悬空不起太大作用。而有源晶振(晶体振荡器)均为四脚:1脚为使能端,2脚为接地端,3脚为输出端,4脚为电源端。不过振荡器的种类很多,英文缩写为OSC或XO。还有特殊功能的振荡器,例如压控振荡器(VCXO)、温度补偿振荡器(TCXO)、压控带温补偿振荡器(VC-TCXO)、恒温振荡器(OCXO)等。 无源晶振是一种无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来。无源晶振没有电压的要求,信号电平是可变的,也就是说是根据起振电路来决定的。同样的晶振可以适用于多种电压,可用于多种不同时钟信号电压要求的DSP,而且价格通常也较低,因此对于一般的应用如果条件许可建议用晶体,这尤其适合于产品线丰富批量大的生产者。无源晶振相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。使用时建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷晶体。 有源晶振是一个完整的振荡器,里面除了石英晶体外,还有晶体管和阻容元件。有源晶振不需要DSP 的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,价格相对较高。对于时序要求敏感的应用,有源晶振是个更好的选择。因为可以选用比较精密的晶振,甚至是高档的温度补偿晶振。有些DSP内部没有起振电路,只能使用有源晶振。有源晶振相比于无源晶体通常体积较大,但现在许多有源晶振是表贴的,体积和无源晶振相当,有的甚至比无源晶振还要小。 在电子学上,通常将含有晶体管元件的电路称作“有源电路”,而仅由阻容元件组成的电路称作“无源电路”。无源晶振与有源晶振的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做晶体振荡器(oscillator)。 有源晶振是有石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。

有源晶振与无源晶振的区别

有源晶振与无源晶振的比较 英文名称:Crystal 无源晶体 Oscillator 有源晶体 基本原理: 石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。 压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。图1是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC电路。在这个电路中,石英晶体相当于一个电感,C2为可变电容器,调节其容量即可使电路进入谐振状态。该振荡器供电电压为5V,输出波形为方波。 图1 串联振荡器 简单比较: 无源晶振内只有一片按一定轴向切割的石英晶体薄片,供接入运放(或微处理器的XTAL 端)以形成振荡.有源晶振内带运放,工作在最佳状态,送入电源后,可直接输出一定频率的等幅正弦波,一般至少有4引脚,体积稍大.

详细区别: 1、无源晶体——无源晶体需要用DSP片内的振荡器,在datasheet上有建议的连接方法。无源晶体没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶体可以适用于多种电压,可用于多种不同时钟信号电压要求的DSP,而且价格通常也较低,因此对于一般的应用如果条件许可建议用晶体,这尤其适合于产品线丰富批量大的生产者。无源晶体相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷警惕。 2、有源晶振——有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。对于时序要求敏感的应用,个人认为还是有源的晶振好,因为可以选用比较精密的晶振,甚至是高档的温度补偿晶振。有些DSP内部没有起振电路,只能使用有源的晶振,如TI的6000系列等。有源晶振相比于无源晶体通常体积较大,但现在许多有源晶振是表贴的,体积和晶体相当,有的甚至比许多晶体还要小。 几点注意事项: 1、需要倍频的DSP需要配置好PLL周边配置电路,主要是隔离和滤波; 2、20MHz以下的晶体晶振基本上都是基频的器件,稳定度好,20MHz以上的大多是谐波的(如3次谐波、5次谐波等等),稳定度差,因此强烈建议使用低频的器件,毕竟倍频用的PLL电路需要的周边配置主要是电容、电阻、电感,其稳定度和价格方面远远好于晶体晶振器件; 3、时钟信号走线长度尽可能短,线宽尽可能大,与其它印制线间距尽可能大,紧靠器件布局布线,必要时可以走内层,以及用地线包围; 4、通过背板从外部引入时钟信号时有特殊的设计要求,需要详细参考相关的资料。 此外还要做一些说明: 总体来说晶振的稳定度等方面好于晶体,尤其是精密测量等领域,绝大多数用的都是高档的晶振,这样就可以把各种补偿技术集成在一起,减少了设计的复杂性。试想,如果采用晶体,然后自己设计波形整形、抗干扰、温度补偿,那样的话设计的复杂性将是什么样的呢?我们这里设计射频电路等对时钟要求高的场合,就是采用高精度温补晶振的,工业级的要好几百元一个。 特殊领域的应用如果找不到合适的晶振,也就是说设计的复杂性超出了市场上成品晶振水平,就必须自己设计了,这种情况下就要选用晶体了,不过这些晶体肯定不是市场上的普通晶体,而是特殊的高端晶体,如红宝石晶体等等。

相关文档