文档库 最新最全的文档下载
当前位置:文档库 › 冷轧板带生产线开卷卷取计算书

冷轧板带生产线开卷卷取计算书

冷轧板带生产线开卷卷取计算书
冷轧板带生产线开卷卷取计算书

冷轧板带生产线开卷、卷取机计算书

1.卷取机与开卷机

1.1计算公式

张力转矩

M t=TD/2×10-3

M t—张力转矩,N·m;

T—带钢张力,N;

D—钢卷直径,mm;

张力转矩的确定,由带钢张力和钢卷直径决定,带钢张力由单位张力及带钢厚宽尺寸决定,单位张力应是经验选择、合理确定;钢卷直径的选择对张力转矩影响很大,选取为钢卷最大直径时,带钢的张力应为最大张力的70%。

塑性弯曲转矩

M w=Bh2σs/4×10-3

M w—塑性弯曲转矩,m;

B—带钢宽度,mm;

h—带钢厚度,mm;

σs—屈服极限,N/mm2;

损耗转矩

M f =μFd/2×10-3

M f—损耗转矩,N·m;

μ—轴颈摩擦系数;

F—卷重和张力的合力,N;

d—轴颈直径,mm;

动态转矩

M d =(GD12+GD22)/(2g D×10-3 ) ×(dν / d t)

M d—动态转矩, N·m;

GD12—卷筒飞轮矩,N·m2;

GD12=πρBg/4×10-15 D14

D1—卷筒直径,mm;

ρ—卷筒材料密度,kg/m3;

B—卷筒宽度,mm;

g—重力加速度,g=9.81m/s;

GD22—钢卷飞轮矩,N·m2;

GD22=πρBg/8×10-15 (D4-D04)

ρ—材料密度,kg/m3;

B—带卷宽度,mm;

D0—钢卷内径,mm;

动态转矩约占张力转矩的5%。

卷取机转矩

M1 = (M t+M w+M f±M d) /iη

M1—卷取机转矩,N·m;

i—减速机速比,

η—减速机效率,

式中M d加速时取+号,减速时取-号。

开卷机转矩

M2 = (M t-M w-M f±M d) η/i

M2—开卷机转矩,N·m;

式中M d加速时取-号,减速时取+号。

带钢运行速度

ν=πDn10-3/60i

ν—带钢运行速度,m/s;

带钢的运行线速度确定时,要根据产品产量要求及产品规格进行合理确定。

i=πDn10-3/60ν

减速机的速比确定时,工艺速度已确定,电机的额定转速在750/1000/1500等三个范围中选取,而应合理确定带卷直径,带卷直径影响减速机速比,还影响到电机的弱磁倍数的调速。在

电动机功率

P= M1n/9550(卷取机)或P= M2n/9550(开卷机)

P—电机功率,kw;

n—电动机转速,r/min;

机组生产运行时的运行参数变化过程:

卷取机电机运行过程参数变化描述:

卷取机在运行时的控制过程可分为几个工作阶段,有穿带卷取阶段、低速运行阶段、稳定运行阶段、加减速运行阶段。

穿带卷取:穿带速度运行实现穿带,卷取机夹持带钢或与助卷器联合在穿带速度卷取带钢;低速运行:建立张力,启动运行,进行升速看板形及升速限制等升速到一定速度运行,看运行稳定板形良好等再升速至工艺要求速度运行。

稳定运行:稳速运行阶段,随着运行时间的延长,卷径不断增大,电机转速不断降低,保持恒线速度运行,要保持恒线速度恒张力运行电机的转速下降电流转矩增加,频率降低。加减速运行:加减速时,转速是以一个倍数的进行增加或降低,稳定的提速或降速。

开卷机电机运行过程参数变化描述:

穿带运行:

稳定运行:

加减速运行:

1.2计算实例

1.2.1 计算实例一1700mm拉伸弯曲矫直机组计算

1. 1700mm拉伸弯曲矫直机组工艺参数

原料参数

带材材质:CQ、DQ、DDQ、HSLA

带钢板宽:850~1580 mm

带钢板厚:0.15~1.5 mm

带钢强度:

屈服极限:

CQ、DQ、DDQ σs≤280 Mpa

HSLA σs≤450 Mpa

抗拉强度极限:

CQ、DQ、DDQ σs≤370 Mpa

HSLA σs≤630Mpa

机组工艺参数

机组产量:30万吨

机组工艺速度:250m/s

开机张力:开卷张力确定时,与待用钢卷的卷取张力相适应

卷取张力:适合该工序的工艺

拉矫张力:≤200KN

2. 机组工艺参数的选择确定

卷取机单位张应力:

卷取单位张应力的选定,应该根据冷轧过程的工序特点选择、确定,拉矫机组的产品基本为最终产品,其卷取张力只要适合成品卷取的工艺要求即可。单位张应力应据带材的屈服极限确定。屈服极限的选择应该据实际生产产品的实测屈服极限进行核算,重卷机组的卷取张力要求只要卷取后不塌卷,卷取边部整齐。

一般带材深冲钢等,σs定为280Mpa(N/mm2)

q=(0.03~0.05)σs

=(0.03~0.05)×280

=8.4~14MPa(N/mm2)

=0.84~1.4kg/mm2

q—单位张应力,Mpa(N/mm2)

机组卷取张力:

T=qBh

T—卷取张力,N;

B—带钢宽度,mm;

h—带钢厚度,mm;

T=qBh=1.0×1580×1.5=2.37 T

表格数据如下;张力单位为吨

s

q=(0.03~0.05)σs

=(0.03~0.05)×450

=13.5~22.5MPa(N/mm2)

=1.35~2.25kg/mm2

q—单位张应力,Mpa(N/mm2)

机组卷取张力:

T=qBh

T—卷取张力,N;

B—带钢宽度,mm;

h—带钢厚度,mm;

T=qBh=1.45×1580×1.5=3.4365 T

带钢运行线速度:

带钢运行的线速度为工艺速度,工艺速度应满足机组的总体产量要求,根据产品大纲进行合理的计算后,确定工艺速度。经产量计算机组工艺速度确定为(60ν)250m/min(mpm)。带钢运行线速度公式

ν=πDn10-3/60i

ν—带钢运行速度,m/s;

D—带钢直径,mm;

n—电动机转速,r/min;

i—减速机速比;

减速机速比:

i=πDn10-3/60ν

此式带卷直径的确定,考虑在额定转速时能在最小卷径下提供最高工艺速度。并且在确定转速与速比的关系时,转速应与所提供的额定转矩能满足最大张力及最大卷径下所需的转矩,此时的电机静阻转矩计算式中无加减变速转矩。

i=πDn10-3/60ν=π610×750×10-3/250=5.7462

i=πDn10-3/60ν=π610×1000×10-3/250=7.6616

i=πDn10-3/60ν=π610×1500×10-3/250=11.4924

i=πDn10-3/60ν=π800×1000×10-3/250=10.053

此减速机速比过小使得电机的静阻转矩过高电机的型号就没有常规类型预期相适应,因此应使速比在6~14之间。速比在受转速的影响以外,还受带卷直径的影响,合理确定带卷在多大时才能达到最大工艺速度,并且此时传递出最大的转矩。在卷径为800时,机组达到最大工艺速度,800以下时集中不能在最高速运行,而且调速时采用弱磁调速,因为弱磁调速为恒功率调速,在高速运行时弱磁恒功率运行电机转矩较恒转矩时低提供的张力,较恒转矩运行时张力低。

卷筒飞轮矩:

GD12=πρBg×10-15 D14/8

D1—卷筒直径,mm;

ρ—卷筒材料密度,kg/m3;

B—卷筒宽度,mm;

g—重力加速度,g=9.81m/s;

GD12=πρBg×10-15 D14/8

=π7.85×103×1900×9.81×10-15×6104/8

=79515.4 N/m2

钢卷飞轮矩:

GD22=πρBg×10-15 (D4-D04) /8

ρ—材料密度,kg/m3;

B—带卷宽度,mm;

D0—钢卷内径,mm;

GD22=πρBg×10-15 (D4-D04) /8

=π7.85×103×1580×9.81×10-15×(11004-6104)/8

=63325.54 N/m2

卷取机静阻转矩:

带钢精整重卷时,卷取过程中线速度保持不变,则卷径不断增大,带卷转速不断降低,电动机的转速随带卷的卷径变化不断降低转速以达到控制要求,而在转速降低的同时要保持带卷上的张力稳定,应该是电动机的转矩随着变大,其电流值随着变大。电动机的静阻转矩的计算时,带卷直径的选择,应考虑到电机所能提供的最大转矩,不得在运行时在最大卷径下超过最大转矩电流。如果选择的张力过大而且要求在最大卷径下可提供最大的张力值,这样电机的选型时电机的余量过大,降低电机的使用效率,增大了电机的容量。

为了充分利用电机的功率及容量,应合理选择在最大张力下的带卷直径或最大卷径下的张力值。

M t=TD max/2×10-3或M t=T max D/2×10-3

M t—张力转矩,N·m;

T—带钢张力,N;

D—钢卷直径,mm;

由此上式合理择取,进行计算确定M t。

M t=TD max/2×10-3或M t=T max D/2×10-3

=22910×2100/2×10-3或34365×1400/2×10-3

=24055.55 N/m

①M1 = (M t+M w+ M f ±M d) /iη 第三种选择

=[TD/2×10-3+ Bh2σs/4×10-3+μFd/2×10-3]/iη

=[22910·2100/2·10-3+1580·1.52·450/4×10-3+0.005·300000·450/2×10-3] /10.053·0.96

=[24055.55+399.9374+337.5] / 9.65088

=24792.9874/9.65088

=2568.982N/m

②M1 = (M t+M w+ M f ±M d) /iη 第一种选择

=[TD/2×10-3+ Bh2σs/4×10-3+μFd/2×10-3+(GD12+GD22)/(2g D×10-3 ) ×(dν / d t)]/

=[35500·1100/2·10-3+1580·1.52·450/4×10-3+0.02·300000·450/2×10-3+(79515.4+63325.54)/(2×9.81×1100×10-3)×3.67/15] /7.7848·0.96

=[19525+399.9374+1350+1127.3] / 7.7848·0.96

=22402.2374/7.4734

=2997.5964(2666.114) N/m

③M1 = (M t+M w+ M f ±M d) /iη 最大的选择方法电机转矩超出太多

=[TD/2×10-3+ Bh2σs/4×10-3+μFd/2×10-3+(GD12+GD22)/(2g D×10-3 ) ×(dν / d t)]/ iη

=[35500·2100/2·10-3+1580·1.52·450/4×10-3+0.02·300000·280/2×10-3] /7.18275·0.96

=[37275+399.9375+840]/6.89544

=5585.566

卷取机电动机功率

P= M1n/9550

P—电机功率,kw;

n—电动机转速,r/min;

P= M1n/9550

=2568.982×1000/9550

= 269.00kw

开卷机静阻转矩:

M2 = (M t-M w- M f ±M d) η /i

=[TD/2×10-3- Bh2σs/4×10-3-μFd/2×10-3+(GD12+GD22)/(2g D×10-3 ) ×(dν / d t)] η/i i

=[14500×2100/2×10-3-1580×1.52×450/4×10-3-0.005·300000·450/2×10-3] ·0.96/7.7848

=[15225-399.9374-337.5] ·0.96/10.053

=14487.5626·0.96/10.053

=13908.06/10.053

=1383.4736 N/m

开卷机电动机功率

P= M2n/9550

P—电机功率,kw;

n—电动机转速,r/min;

P= M2n/9550

=1383.4736×1000/9550

=144.866 kw

说明:拉矫机组的拉伸张力如果设计为由卷取机提供拉矫初始张力并通过张力辊组进行扩大提高成拉矫段的拉矫张力。卷取张力因卷取板的原因单位张力应据带厚的变厚而降低,因此在由卷取机提供的拉矫初始张力的单位张力与拉矫段需的厚板大单位张力偏小,能否在厚板大延伸率要求时,张力提供足够。并且在卷取机选择张力时,高速状态下要保持大张力并恒张力是不可能的,是随卷径增大而受到微调降低的,这种卷取张力的变化是否影

响拉伸矫直时延伸率变化。

1.2.2计算实例二1000mm拉伸弯曲矫直机组计算

原料参数

带材材质:CQ、DQ、DDQ、HSLA

带钢板宽:500~850 mm

带钢板厚:0.25~1.2 mm

带钢强度:

屈服极限:

CQ、DQ、DDQ σs≤280 Mpa

HSLA σs≤450 Mpa

抗拉强度极限:

CQ、DQ、DDQ σs≤370 Mpa

HSLA σs≤630Mpa

机组工艺参数

机组产量:12~15万吨

机组工艺速度:220m/s

开机张力:开卷张力确定时,与待用钢卷的卷取张力相适应

卷取张力:适合该工序的工艺

拉矫张力:≤100KN

2. 机组工艺参数的选择确定

卷取机单位张应力:

卷取单位张应力的选定,应该根据冷轧过程的工序特点选择、确定,拉矫机组的产品基本为最终产品,其卷取张力只要适合成品卷取的工艺要求即可。单位张应力应据带材的屈服极限确定。屈服极限的选择应该据实际生产产品的实测屈服极限进行核算,重卷机组的卷取张力要求只要卷取后不塌卷,卷取边部整齐。

一般带材深冲钢等,σs定为280Mpa(N/mm2)

q=(0.03~0.05)σs

=(0.03~0.05)×280

=8.4~14MPa(N/mm2)

=0.84~1.4kg/mm2

q—单位张应力,Mpa(N/mm2)

机组卷取张力:

T=qBh

T—卷取张力,N;

B—带钢宽度,mm;

h—带钢厚度,mm;

T=qBh=1.00×850×1.5=1.275 T

表格数据如下;张力单位为吨

低合金高强度钢等,σs定为450Mpa(N/mm)

q=(0.03~0.05)σs

=(0.03~0.05)×450

=13.5~22.5MPa(N/mm2)

=1.35~2.25kg/mm2

q—单位张应力,Mpa(N/mm2)

机组卷取张力:

T=qBh

T—卷取张力,N;

B—带钢宽度,mm;

h—带钢厚度,mm;

T=qBh=1.55×850×1.5=1.976 T

带钢运行线速度:

带钢运行的线速度为工艺速度,工艺速度应满足机组的总体产量要求,根据产品大纲进行合理的计算后,确定工艺速度。拉矫重卷机组的最大工艺速度为220(60ν)250m/min(mpm)。带钢运行线速度公式

ν=πDn10-3/60i

ν—带钢运行速度,m/s;

D—带钢直径,mm;

n—电动机转速,r/min;

i—减速机速比;

减速机速比:

i=πDn10-3/60ν=π800×1000×10-3/220=11.423973

带卷直径在确定时,选为800

卷筒飞轮矩:

GD12=πρBg×10-15 D14/8

D1—卷筒直径,mm;

ρ—卷筒材料密度,kg/m3;

B—卷筒宽度,mm;

g—重力加速度,g=9.81m/s;

GD12=πρBg×10-15 D14/8

=π7.85×103×1090×9.81×10-15×6104/8

=4561.673 N/m2

钢卷飞轮矩:

GD22=πρBg×10-15 (D4-D04) /8

ρ—材料密度,kg/m3;

B—带卷宽度,mm;

D0—钢卷内径,mm;

GD22=πρBg×10-15 (D4-D04) /8

=π7.85×103×850×9.81×10-15×(11004-6104)/8

= N/m2

卷取机静阻转矩:

M1 = (M t+M w+M f±M d) /iη

=[TD/2×10-3+ Bh2σs/4×10-3+μFd/2×10-3+(GD12+GD22)/(2g D×10-3 ) ×(dν / d t)]/ iη

=[13173×1600/2×10-3+850×1.22×450/4×10-3+0.005×90000×450/2×10-3]/11.423973·0.96

=[10538.4+137.7+101.25]/10.967

=10777.35/10.967

=982.7072N/m

卷取机电动机功率

P= M1n/9550

P—电机功率,kw;

n—电动机转速,r/min;

P= M1n/9550

=982.7072×1000/9550

=102.9 kw

开卷机静阻转矩:

M2 = (M t-M w- M f ±M d) η /i

=[TD/2×10-3- Bh2σs/4×10-3-μFd/2×10-3+(GD12+GD22)/(2g D×10-3 ) ×(dν / d t)] η/i =[13173×1600/2×10-3-850×1.22×450/4×10-3-0.005·90000·450/2×10-3] ·0.96/11.423973

=[10538.4-137.7-101.25] ·0.96/11.423973

=10299.45·0.96/11.423973

=9887.472/11.423973

=865.5 N/m

开卷机电动机功率

P= M2n/9550

P—电机功率,kw;

n—电动机转速,r/min;

P= M2n/9550

=865.5×1000/9550

=90.628 kw

1.2.3计算实例三1700mm重卷机组计算

1. 1700mm重卷机组工艺参数

原料参数

带材性能:冷轧卷、平整卷

带材材质:CQ、DQ、DDQ、HSLA

带钢板宽:850~1580 mm

带钢板厚:0.15~1.5 mm

带钢强度:

屈服极限:

CQ、DQ、DDQσs≤280 Mpa

HSLA σs≤450 Mpa

抗拉强度极限:

CQ、DQ、DDQ σs≤370 Mpa

HSLA σs≤630Mpa

机组工艺参数

机组产量:30万吨

机组工艺速度:400m/s(≤1.0mm) (两档)

西重所200m/s(1.0mm)

其他400m/s

开机张力:开卷张力确定时,与待用钢卷的卷取张力相适应

卷取张力:适合该工序的工艺

2. 机组工艺参数的选择确定

卷取机单位张应力:

卷取单位张应力的选定,应该根据冷轧过程的工序特点选择、确定,拉矫机组的产品基本为最终产品,其卷取张力只要适合成品卷取的工艺要求即可。单位张应力应据带材的屈服极限确定。屈服极限的选择应该据实际生产产品的实测屈服极限进行核算,重卷机组的卷取张力要求只要卷取后不塌卷,卷取边部整齐。

一般带材深冲钢等,σs定为280Mpa(N/mm2)

q=(0.03~0.05)σs

=(0.03~0.05)×280

=8.4~14MPa(N/mm2)

=0.84~1.4kg/mm2

q—单位张应力,Mpa(N/mm2)

机组卷取张力:

T=qBh

T—卷取张力,N;

B—带钢宽度,mm;

h—带钢厚度,mm;

T=qBh=1.0×1580×1.5=2.37 T

表格数据如下;张力单位为吨

低合金高强度钢等,σs定为450Mpa(N/mm)

q=(0.03~0.05)σs

=(0.03~0.05)×450

=13.5~22.5MPa(N/mm2)

=1.35~2.25kg/mm2

q—单位张应力,Mpa(N/mm2)

机组卷取张力:

T=qBh

T—卷取张力,N;

B—带钢宽度,mm;

h—带钢厚度,mm;

T=qBh=1.45×1580×1.5=3.4365 T

带钢运行线速度:

带钢运行的线速度为工艺速度,工艺速度应满足机组的总体产量要求,根据产品大纲进行合理的计算后,确定工艺速度。经产量计算机组工艺速度确定为(60ν)250m/min(mpm)。

1.2.4计算实例四950mm冷轧机计算

1.2.5计算实例五950mm平整机计算

机械设计课程设计计算说明书-带式输送机传动装置(含全套图纸)

机械设计课程设计 计算说明书 设计题目:带式输送机 班级: 设计者: 学号: 指导老师: 日期:2011年01月06日

目录 一、题目及总体分析 (1) 二、选择电动机 (2) 三、传动零件的计算 (7) 1)带传动的设计计算 (7) 2)减速箱的设计计算 (10) Ⅰ.高速齿轮的设计计算 (10) Ⅱ.低速齿轮的设计计算 (14) 四、轴、键、轴承的设计计算 (20) Ⅰ.输入轴及其轴承装置、键的设计 (20) Ⅱ.中间轴及其轴承装置、键的设计 (25) Ⅲ.输出轴及其轴承装置、键的设计 (29) 键连接的校核计算 (33) 轴承的校核计算 (35) 五、润滑与密封 (37) 六、箱体结构尺寸 (38) 七、设计总结 (39) 八、参考文献 (39)

一、题目及总体分析 题目:带式输送机传动装置 设计参数: 设计要求: 1).输送机运转方向不变,工作载荷稳定。 2).输送带鼓轮的传动效率取为0.97。 3).工作寿命为8年,每年300个工作日,每日工作16小时。设计内容: 1.装配图1张; 2.零件图3张; 3.设计说明书1份。 说明: 1.带式输送机提升物料:谷物、型砂、碎矿石、煤炭等; 2.输送机运转方向不变,工作载荷稳定; 3.输送带鼓轮的传动效率取为0.97; 4.工作寿命为8年,每年300个工作日,每日工作16小时。

装置分布如图: 1. 选择电动机类型和结构形式 按工作条件和要求选用一般用途的Y 系列三相异步电动机,卧式封闭。 2. 选择电动机的容量 电动机所需的工作效率为: d w d P P η= d P -电动机功率;w P -工作机所需功率; 工作机所需要功率为: w Fv P 1000 = 传动装置的总效率为: 42d 1234ηηηηηη= 按表2-3确定各部分效率: V 带传动效率97.01=η, 滚动轴承传动效率20.97η=, 三 相电压 380V

水轮机的选型计算

一、水轮机选型计算的依据及其基本要求.....................................................................1 1 水轮机选型时需由水电勘测设计院提供下列原始数据.................................1 2 水轮机选型计算应满足下述基本要求......................................................1 二、反击式水轮机基本参数的选择计算..................................................................1 1 根据最大水头及水头变化范围初步选定水轮机的型号.................................1 2 按已选定的水轮机型号的主要综合特性曲线来计算转轮参数.................................1 3 效率修正..........................................................................................4 4 检查所选水轮机工作范围的合理性.........................................................4 5 飞逸转速计算....................................................................................5 6 轴向推力计算....................................................................................5 三、水斗式水轮机基本参数的选择计算......................................................10 1 水轮机流量.......................................................................................10 2 射流直径d 0.......................................................................................10 3 确定D1/d 0.......................................................................................10 4 水轮机转速n ....................................................................................10 5 功率与效率................................................................................................11 6 飞逸转速..........................................................................................12 7 水轮机的水平中心线至尾水位距离A ......................................................12 8 喷嘴数Z 0的确定....................................................................................12 9 水斗数目Z1的确定.................................................................................12 10 水斗和喷嘴的尺寸与射流直径的关系...................................................13 11 引水管、导水肘管及其曲率半径.........................................................13 12 转轮室的尺寸..............................................................................14 A 水机流量..........................................................................................17 B 射流直径.............................................................................................17 C 水斗宽度的选择..........................................................................................17 D D/B 的选择.............................................................................................17 E 水轮机转速的选择.......................................................................................17 F 单位流量的计算..........................................................................................17 G 水轮机效率................................................................................................18 H 飞逸转速................................................................................................18 I 转轮重量的计算..........................................................................................18 四、调速器的选择.............................................................................................20 1 反击式水轮机的调速功计算公式.....................................................................20 2 冲击式水轮机的调速功计算公式.....................................................................20 五、阀门型号、大小的选择.................................................................................21 1 球阀的选择................................................................................................21 2 蝴蝶阀的选择 (22) 目 录

皮带输送机选型设计

皮带输送机选型设计

胶带输送机的选型计算 一、概述 初步选型设计带式输送机,已给出下列原始资料: 1)输送长度m L 7= 2)输送机安装倾角?=4β 3)设计运输生产率h t Q /350= 4)物料的散集密度3/25.2m t =ρ 5)物料在输送机上的堆积角?=38θ 6)物料的块度mm a 200= 计算的主要内容为: 1)运输能力与输送带宽度计算; 2)运行阻力与输送带张力计算; 3)输送带悬垂度与强度的验算; 4)牵引力的计算及电动机功率确定。 二、原始资料与数据 1)小时最大运输生产率为A =350吨/小时; 2)皮带倾斜角度:?=4β 3)矿源类别:电炉渣; 4)矿石块度:200毫米; 5)矿石散集容重3t/m 25.2=λ; 6)输送机斜长8m ;

L ——输送机2-3段长度m 7; 1?——为槽形托辊阻力系数查带式输送机选型设 计手册04.01=?; β——输送机的倾角;其中sin β项的符号,当 胶带在该段的运行方向式倾斜向上时取正号; 而倾斜向下时取负号; 2-3段的阻力k F 为 N L q L q q F k 92.3807.0737.251997 .0035.07)55.9337.251(sin cos 0220-=??-???+=-+=ββ?)( 式中: 0q ——每米长的胶带自重m N /37.251 2q ——为折算到每米长度上的上托辊转动部分的 重量,m N /,m N q /55.932.2/8.9212=?= 式中 2G ——为每组下托辊转动部分重量N ,m N /8.205 2l ——下托辊间距m ,一般取上托辊间距的2 倍;取m l 2.22= L ——输送机3~2段长度m 7; 2?——为槽形托辊阻力系数查带式输送机选型设 计手册035.02=? 不计局部阻力时的静阻力N F F F k zh w 99.204192.3891.2080=-=+= 2、局部阻力计算 (1)图1-1中1~2段和3~4段局部阻力。在换向滚筒处的阻力ht F 近似为:

整理模板方案及完整计算书

模板施工方案 一、编制依据: 1.1国家现行《建筑施工扣件式钢管脚手架安全技术规范》 (JGJ130-2001)及相关现行施工规范。 1.2上海世茂佘山国际会议中心暨酒店施工图纸。 二、模板支撑体系设计说明: 2.1上海世茂佘山国际会议中心暨酒店模板支撑采用“满堂红”体系:排架间距1000×1000,步距1800; 2.2验算:立杆稳定性验算(取1m2计算面积) 1.相关参数: 扣件:直角,旋转扣件(抗滑)为8.0KN 钢管:φ48 t=3.5mm A=4.89cm2 2.按不组合风荷载时:

N/φA≤f 其中N:模板支架立杆轴向力设计值; N=1.2∑N GK +1.4∑ N GK 1.按最高梁900考虑,其中∑N GK——模板及支架自重、新浇 砼自重、钢筋自重轴向力的总和 ∑ N GK =0.9+24×1×0.9+1.5=24kN ∑N GK——施工荷载及振捣荷载轴向力总和 ∑N GK =1.0+2.0=3.0kN 则 N=1.2∑ N GK +1.4∑ N GK =1.2×24+1.4×3=34 kN φ——轴心受压构件稳定系数,应根据长细比入值表求得 λ=l/i=1.8÷(1.58×10-2)=113.92 查表得φ=0.489 N/φ×A=(34×103)÷(0. 489×4.89×10-4) =1.42*108

TD75-800带式输送机设计计算

TD75-800mm-75m带式输送机设计计算 一、原始参数及物料特性 1.山碧建材石料输送系统,输送能力:Q=400t/h 2.石料粒度:a=0-200mm 3.堆积密度(查表):ρ=1700kg/m3 4.静堆积角:α=40° 5.机长Ln约75m 6.提升高度H=0 7.倾斜角度δ=0 二、初步设计给定: 8.带宽B=800mm 9.带速v=1.6m/s 10.上托辊间距a0=1200mm 11.下托辊间距au=3000mm 12.托辊倾角λ=30° 13.托辊辊径?89 14.导料槽长度4000mm 15.输送带上胶厚4.5mm,下胶厚1.5mm 16.拉紧装置:垂直重锤拉紧 17.因需双向运行,采用双头架形式 18.简图如下

三、计算 1.核算输送能力 Q=3.6Svkρ 查表:由α=40°,得θ=25°,S=0.0717㎡;δ=0,得k=1 则Q=3.6Svkρ=3.6*0.0717*1.6*1*1700=702t/h>400t/h,满足要求。 2.核算带宽 B=2a+200=2*200+200=600mm<800mm,带宽满足粒度要求。 3.计算圆周驱动力和传动功率 (1)主要阻力FH FH=fLg[qro+qru+(2qB+qG)cosδ] 查表:f=0.03(多尘、物料内摩擦大) G1=7.74KG,G2=7.15KG 则qro=G1/ a0=7.74/1.2=6.45kg/m,qru=G2/a1=7.15/3=2.38kg/m qG=Q/(3.6v)=400/(3.6*1.6)=69.4kg/m qB=9.6kg/m

计算FH=0.03*75*9.81* [6.45+2.38+(2*9.6+69.4)cos0°]= 2150.5N (2)主要特种阻力FGL FGL=μ2*I2*ρ*g*l/v2*bl2 =(0.7*0.11472\2*1700*9.81*4)/(1.6\2*0.495\2)=980N (3)附加特种阻力FS FS=nFr =nApu3 清扫器个数n=5(两个头部清扫器,两个空段清扫器,空段清扫器相当于1.5个头部清扫器) 查表:A=0.008,取p=100000,u3=0.6 则FS=5*0.008*100000*0.6=2400N (4)圆周驱动力FU FU=C*FH+FS+FGL=1.92*2150.5+2400+980=7509N (5)传动功率计算 传动滚筒轴功率PA为 PA=FU*v/1000=7509*1.6/1000=12.01KW 电动机功率为 PM=PA/η=12.01/0.9/0.9=14.82KW 选电动机型号为Y160L-4,N=15KW。 查表,减速机选用ZQ50,驱动装置组合号53,驱动装置图号S2-5061-70,十字滑块联轴器图号SL190.3,规格YP80*150/YA70*135,柱销联轴器图号HL170.3,规格YA42*110/ZC50*110。 4.张力计算

水电站厂房参数设计计算书

水电站厂房 第一节几种水头的计算(1) H max=Z蓄—Z单机满出力时下游水位 H r= Z蓄—Z全机满出力时下游水位 H min=Z底—Z全机满出力时下游水位 一、H max的计算。 1 假设H max=84m 由公式Nr=K Q H 公式中 Nr为单机出力50000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03H0) Q 为该出力下的流量。 故解出Q=70.028m3/s 查下游流量高程表得下游水位为198.8m 上游水位为284m ΔH=0.03 (284—198.8)=2.6m 又因为284—84—2.6= 197.4 2 重新假设Hmax=83m 由公式Nr=K Q H 解出Q=70.87m3/s 查下游流量高程表得下游水位为199.3m 上游水位为284m ΔH=0.03 (284—199.3)=2.5m

又因为284—83—2.5=198.5 故H max=83m 二、H min的计算。 1 假设H min=60m 由公式Nr=K Q H 公式中 Nr为全机出力200000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03Ho) Q 为该出力下的流量。 故解出Q=392.16m3/s 查下游流量高程表得下游水位为203.50m 上游水位为264m ΔH=0.03 (264—203.50)=1.80m 又因为264—60—1.80=202.20< 203.50 2 重新假设Hmin=59m 由公式Nr=K Q H 解出Q=398.80m3/s 查下游流量高程表得下游水位为203.58m 上游水位为264m ΔH=0.03 (264—203.58)=1.77m 又因为264—59—1.77=203.23 = 203.58 故H min=59m 三、H r的计算。

(ST1000)钢丝绳芯输送带选型计算

胶带机更换钢丝绳芯输送带(ST1000) 选型计算 1、基本参数: 工作制度:330d/a 16h/d 拉紧形式:重车 帯机工作能力:200t/h 输送机倾角:17° 提升高度: 236m 斜长:810m 初步给定参数: 带宽:B=800mm 围包角:200° 带速:2.0m/s 2、核算输送能力 t/h,满足要求。 式中:Q为输送能力,t/h; A为输送带上物料的最大横断面积,; V为输送带运行速度m/s; 为为物料的松散密度; k为输送机的倾斜系数。 3、运行阻力计算 基本参数选取: 选取钢丝绳芯胶带型号为ST1000;

胶带每米质量为21.6kg/m; (1)主要阻力 F H=fLg[q RO+q RU+(2q B+q G)cosβ] 式中f-模拟摩擦系数; L-输送机长度,m; g-重力加速度,g=9.81m/s2 q R0-承载分支托辊组每米长度旋转部分重量,kg/m; q R0=G1/a0=14/1.2=12kg/m 式中G1-承载分支每组托辊旋转部分质量,kg; a0-承载分支每组托辊间距,m; q RU-回程分支托辊组每米长度旋转部分质量,kg; q RU= G2/a U=12/3=4kg/m 式中G2-回程分支每组托辊旋转部分质量,kg; a U-回程分支每组托辊间距,m; q B-每米长度输送带质量,kg/m; q G-每米长度输送物料质量,kg/m。 q G=Q/3.6V=27.8 kg/m q B=21.6 kg/m f=0.025 F H=fLg[q RO+q RU+(2q B+q G)cosβ] =0.025×810×9.81×[12+4+(2×21.6+27.8)×1] =17283N

模板方案及完整计算书

模板施工方案 XXXXXX宿舍楼

编制:_______________ 审核:_______________ 审批:_______________ xxxxxx有限公司 、编制依据 1 、 xxxxxx宿舍楼工程施工图纸,施工组织设计 2 、 建筑施工手册(第五版) 3 、 建筑施工规范大全 4、_、 建筑施工现场检查手册等工程概况 1 、 xxxxx佰舍楼工程,位于xxxxxxx。工程结构形式为剪力墙结构,基础为条形基础与平板式筏 板基础,建筑面积3797.22平米,地上六层,建筑高度22.05米。 三、施工准备 1 、 据工程各构件尺寸提出模板工程详细计划,包括:模板、钢管、扣件.加固穿墙螺栓.蝶形卡 及木方子等。 2 、 材料部门按计划组织周转工具进场。 3 、模板支设以前,应做好各种预留.预埋及钢管隐验。 四、施工方法 (一)墙模板工程 剪力墙全部采用木模板配o 14穿墙螺栓,用0 48X 3.5钢管和5X 10方木作为横纵龙骨进行加固。龙骨横向间距700,纵向间距20;穿墙螺栓水平方向间距700,垂直向间距600。为保证剪力墙位置及断面尺寸正确,支模前,在水平钢筋上放置定制好的混凝土支撑。

施工方法:模板位置弹好以后,先安一面模板,相邻模板搭接要紧密,然后安装斜撑及穿墙螺栓。清扫干净墙内杂物,安装另一侧模板。安装完后,安装纵横龙骨,先安纵向(用铅丝临时固定),后安横向,同时用穿墙螺栓外垫碟形卡,两端拧上双螺母固定,调整斜撑并拧紧穿墙螺栓螺母,必须保证模板牢固可靠。 验收要求:模板位置误差w 5mm,垂直误差w 6mm . 注意事项: (1)支模前先复标高及内外墙线位置,看不清线或受钢筋位移影响不支模; (2)支模前,模板表面要涂刷隔离剂; (3)外围剪力墙所用穿墙螺栓中间必须加止水片。 (二)柱模施工柱模施工采用木模板,钢管柱箍竖向龙骨、斜撑和对拉螺栓进行加固、找正。 施工方法: (1)首先根据柱断面尺寸配模。 (2)模板安装前,先配置对拉螺栓(作用及方法同前),安装时从一面开始安装,安装完毕后安装钢管柱箍(用0 48X3.5钢管及十字扣件拉紧),然后调整至正确位置再进行加固, 柱箍间距400—600mm。 (3)安装竖向钢管龙骨,用以竖向调直及增加柱模整体性。 (三)梁模板施工; 梁底模板根据图纸设计尺寸情况进行整体配模,待梁底支撑脚手架搭设完毕后进行入模、调整位置、加固,形成梁底模整体。 1、支撑系统: 梁底支撑系统采用双或三排脚手架,全部使用0 48X 3.5钢管、扣件搭设。 所有支撑脚手架均设扫地杆,因操作人员行走要求,第一大道横杆高度可为1800mm因为本工程梁较密,固搭设满堂红脚手架。架体搭设时及时加剪力撑。 2、施工方法: ( 1 )梁模 a. 放梁位置 b. 在梁两侧立钢管支柱(间距400-500mn),支柱下要夯实并铺通长木脚手架板; c. 距地200mm加设纵横扫地杆;距地1800mm 3300mm设纵横水平拉杆。 d. 按梁底标高调整支柱高度,安设梁底支撑龙骨(间距》500mn)并将龙骨找平, e. 安装梁底模,并按施工规范要求起拱; f. 安装两侧模,侧模和底模通过角模进行接连;

带式输送机设计计算书手写初表汇总

1)计算输送能力 每秒输送能力:I v =Svk= m 3/s (输送能力=输送带横截面积×带速×倾斜输送机面积折减系数) kg/ms 输送能力:I m =Svk ρ= kg/ms(输送能力=输送带横截面积×带速×倾斜输送机面积折减系数×物料堆积密度)小时输送能力:ρSvk Q 6.3= (输送能力=3.6×输送带横截面积×带速×倾斜输送机面积折减系数×物料堆积密度) (S )输送带横截面积查表3-2得:S= m 2 (V )带速根据用户提供或者运算后自行选择 (k )倾斜折减系数查表3-3得:倾斜角度:δ= °(根据用户提供数据填写)得k= 。 (ρ)物料堆积密度根据用户提供数据或查表得 h t S Q / 6.3vk 6.3=?==ρ(根据计算后验证是否满足用户要求) 2)按输送物料块度验算带宽 a= mm mm a B 8002002=+≥ 带宽B= 确定是否满足要求。 是 否。 3)输送带 预选 输送带规格为 。 纵向拉伸强度X G = N/mm 。 每米输送带质量 kg/m ,钢丝绳直径d= mm ,带厚 mm 4)托辊、托辊转速核算 预选托辊直径为φ mm 查表3-7得: 承载分支每组托辊旋转部分质量kg G 1=

承载分支托辊间距m a 0= 回程分支每组托辊旋转部分质量kg G 2= 回程分支托辊间距m a v = m kg a G q RO / 01=== m kg a G q RU / 22=== ① 托辊转速核算: r/min 30n ===r v π 查表4-12得φ 托辊理论带速[v ]≤ m/s 理论转数[n ]≤ r/min ② 辊子载荷计算 a .静载荷 承载分支托辊 N 81.9q a e 00==??? ? ??+??=B M V I P kg ===ρSvk I M 回程分支托辊 N 81.90==???=B u q a e P b .动载荷 承载分支托辊 N 00== ???='a d s f f f P P 回程分支托辊

高大模板专项施工方案(完整计算书经专家论证)

(此文档为Word格式,下载后可以任意编辑修改!)模板工程施工方案 工程名称: 编制单位: 编制人: 审核人: 批准人: 编制日期:年月日

施工组织设计(方案)报审表 方案名称: JL—A002

施工组织设计(方案)报(复)审表 工程名称:编号: 注:本表由施工单位填写,一式三份,连同施工组织设计一并送项目监理机构审查。 建设、监理、施工单位各留一份。 一、工程概况 工程地下1层,地上门卫1层、实验动物区3层、疫苗厂房及车库2层局部3层。结构形式为框架结构,基础采用独立基础,楼层次梁主要采用井字梁形

式。 二、编制依据 1.本工程施工工程图纸 2.《建筑施工扣件式钢管脚手架安全技术规程》JGJ130-2001 3.《砼结构工程施工质量验收规范》(GBJ50204-92) 4.《建筑施工手册》(第四版) 5.青岛市建筑工程脚手架及模板支撑系统安全管理暂行条例(试行) 6.本工程施工组织设计 7.本公司结累多年的模板施工的实践经验 三、施工条件 现场可用的施工场地相对较大,主体施工时安装4台塔吊,混凝土浇筑为商品混凝土采用混凝土汽车泵。 四、施工部署 根据施工组织设计规定,本工程柱、墙板、梁、顶板均使用覆膜多层板。 五、具体施工方案 5.1 混凝土墙板、框架柱施工 混凝土墙板 混凝土墙体采用覆膜多层板施工,先根据墙体尺寸将若干多层板拼成一大块大模板,然后在组装成墙模。拼装大模板以50×80木方为边框,中间竖向50×80木方为次龙骨,横向为两根48×3.5钢管主龙骨。次龙骨与多层板之间、主次龙骨间用钉子连接,次龙骨间距为100(净间距),主龙骨的间距与拉螺栓的设置相对应。对拉螺栓采用υ14钢筋,竖向间距底部不大于400,中间适当加大,顶部不大于600,横向间距不大于400。模板上墙之前先按照预定的位置打好对拉螺栓孔,并将开孔处用油漆封好,但不能涂在板面上,防止污染墙面。外墙外侧大面模板的基本单元有五块竹胶板(1.22m ×2.44m)拼接成6.1m×2.44m,以此为单元拼墙体模板,不合模数的另行加

机械设计课程设计计算说明书-带式输送机传动装置(含全套图纸)

机械设计课程设计计算说明书-带式输送机传动装置(含全套图纸)

机械设计课程设计 计算说明书 设计题目:带式输送机 班级: 设计者: 学号: 指导老师: 日期:2011年01月06日

目录 一、题目及总体分析 (1) 二、选择电动机 (2) 三、传动零件的计算 (7) 1)带传动的设计计算 (7) 2)减速箱的设计计算 (10) Ⅰ.高速齿轮的设计计算 (10) Ⅱ.低速齿轮的设计计算 (14) 四、轴、键、轴承的设计计算 (20) Ⅰ.输入轴及其轴承装置、键的设计 (20) Ⅱ.中间轴及其轴承装置、键的设计 (25) Ⅲ.输出轴及其轴承装置、键的设计 (29) 键连接的校核计算 (33) 轴承的校核计算 (35) 五、润滑与密封 (37) 六、箱体结构尺寸 (38) 七、设计总结 (39) 八、参考文献 (39)

一、题目及总体分析 题目:带式输送机传动装置 设计参数: 设计要求: 1).输送机运转方向不变,工作载荷稳定。 2).输送带鼓轮的传动效率取为0.97。 3).工作寿命为8年,每年300个工作日,每日工作16小时。设计内容: 1.装配图1张; 2.零件图3张; 3.设计说明书1份。 说明: 1.带式输送机提升物料:谷物、型砂、碎矿石、煤炭等; 2.输送机运转方向不变,工作载荷稳定; 3.输送带鼓轮的传动效率取为0.97; 4.工作寿命为8年,每年300个工作日,每日工作16小时。

装置分布如图: 1. 选择电动机类型和结构形式 按工作条件和要求选用一般用途的Y 系列三相异步电动机,卧式封闭。 2. 选择电动机的容量 电动机所需的工作效率为: d w d P P η= d P -电动机功率;w P -工作机所需功率; 工作机所需要功率为: w Fv P 1000 = 传动装置的总效率为: 42d 1234ηηηηηη= 按表2-3确定各部分效率: 三 相电压 380V

水轮机选型设计计算书 原稿

第一章 水轮机的选型设计 第一节 水轮机型号选定 一.水轮机型式的选择 根据原始资料,该水电站的水头范围为18-34m , 二.比转速的选择 水轮机的设计水头为m H r 5.28= 适合此水头范围的有HL240和ZZ450/32a 三.单机容量 第二节 原型水轮机主要参数的选择 根据电站建成后,在电力系统的作用和供电方式, 初步拟定为2台,3台,4台三种方案进行比较。 首先选择HL240 n11=72r/min 一.二台 1、计算转轮直径 水轮机额定出力:kw N P G G r 67.66669 .0106.04 =?== η 上式中: G η-----发电机效率,取0.9 G N -----机组的单机容量(KW ) 由型谱可知,与出力限制线交点的单位流量为设计工况点单位流量,则Q 11r =1.155m 3 /s,对应的模型效率ηm =85.5%,暂取效率修正值 Δη=0.03,η

=0.855+0.03=0.885。模型最高效率为88.5%。 m H Q P D r r 09.2885 .05.28155.181.967 .666681.95 .15.1111=???== η 按我国规定的转轮直径系列(见《水轮机》课本),计算值处于标准值2m 和2.25m 之间,且接近2m ,暂取D 1=2m 。 2、计算原型水轮机的效率 914.02 46 .0)885.01(1)1(155 110max =--=--=D D M M ηη Δη=η max -ηM0=0.914-0.885=0.0.029 η=ηm +Δη=0.855+0.029=0.884 3、同步转速的选择 min /18.1972 95 .0/5.2872av 1110r D H n n =?== min /223.11855 .0884 .07210 M 0 T 11011r n n =-?=-=?)( )( ηηmin /223.73223.172n 1111r 11r n n m =+=?+= 4、水轮机设计单位流量Q11r 的计算 r Q 11= r r r H D η5 .12181.9P =884.05.28281.967.66665.12???=1.2633 m /s 5、飞逸转速的计算 r n = 1 11max D H n r =73.223×28.33=212.851r/min 6、计算水轮机的运行范围 最大水头、平均水头和最小水头对应的单位转速 min)/609.66223.18.332 180.19711max 1min 11r n H nD n =-?=?-= min)/(777.70223.195 .0/5.282180.19711av 111r n H nD n a =-?=?-=

管状胶带机设计计算实例

管状胶带机设计计算实例 管带机的发展及其优势 管状带式输送机是在普通带式输送机基础上发展起来的一种新型带式输送机。它是通过呈六边形布置托辊,将胶带强制裹成边缘互相搭接的圆管来对物料进行密闭输送的。 由于管状带式输送机是从普通带式输送机发展而来的,由于它的传动原理与普通带式输送机完全相同,是一项成熟技术,因此得到用户的普遍认可。目前,管状带式输送机技术日趋标准化,它的结构特点决定了未来它将是一种应该优先选取的散料输送方法。 管状带式输送机的应用基本没有限制,只要物料粒度均匀,基本上任何散状物料都可采用。常用来输送的典型物料有矿石、煤、焦炭、石灰石、沙石、水泥烧结料、化工粉料和石油焦等。一些非常难处理的物料,如钢浓缩物、粘土、废渣、碎混凝土、金属碎渣、加湿粉煤灰、尾渣和铝土等也可用管状带式输送机输送。 管带机的特点: 1. 可广泛应用于各种粒度均匀的散状物料的连续输送; 2. 输送物料被包裹在圆管状胶带内输送,因此,物料不会散落及飞扬;反之,物料也不会因刮风、下雨而受外部环境的影响。这样即避免了因物料的撒落而污染环境,也避免了外部环境对物料的污染; 3. 胶带被六只托辊强制卷成圆管状,无输送带跑偏的情况,管带机可实现立体螺旋状弯曲布置。一条管状带式输送机可取代一个由多条普通胶带机组成的输送系统,从而节省土建(转运站)、设备投资(减少驱动装置数量),并减少了故障点,及设备维护和运行费用; 4. 管状带式输送机自带走廊和防止了雨水对物料的影响,因此,选用管状带式输送机后,可不再建栈桥,节省了栈桥费用; 5. 输送带形成圆管状而增大了物料与胶带间的磨擦系数,故管状带式输送机的输送倾角可达30度(普通带式输送机的最大输送倾角为17°),从而减少了胶带机的输送长度,节省了空间位置和降低了设备成本,可实现大倾角(提升)输送;

板模板(扣件式)专项方案含完整计算书

目录 第一章编制依据及工程概况1 第一节编制依据2 第二节工程概况2 第二章施工准备3 第一节技术准备3 第二节物资准备3 第三节劳动力准备4 第四节其它4 第三章主要施工方法4 第一节统一要求4 第二节柱模板6 第三节墙体模板7 第四节梁、板模板9 第五节其它部位模板12 第四章质量标准及技术控制措施14 第一节进场模板的质量标准14 第二节模板分项工程质量要求15 第三节模板工程质量控制19 第五章模板的拆除20 第一节模板拆除原则20 第二节模板拆除施工21 第六章施工安全保证措施21 第一节安全管理组织21 第二节施工技术措施22 第三节其它施工安全措施23 第七章成品保护措施23 第九章安全计算书25 第一章编制依据及工程概况 第一节编制依据 1施工组织设计

《×××××施工组织设计》 2计算软件及版本 广联达施工安全设施计算软件 3工程图纸 《建筑施工手册》第五版。 《建筑施工计算手册》江正荣主编 第二节工程概况

第二章施工准备 第一节技术准备 (1)组织施工技术人员在施工前认真学习技术规范、标准、工艺规程,熟悉图纸,了解设计意图,核对建筑和结构及土建与设备安装专业图纸之间的尺寸是否一致。 (2)编制模板施工方案,对施工队进行技术交底。 (3)对施工人员进行安全和技术培训,加强班组的技术素质。 第二节物资准备 1材料准备 确保材料质量合格,货源充足,按材料进场计划分期分批进场,并按规定地点存放,做好遮盖保护。同时对各种进场材料进行抽检试验并附有新钢管应有产品质量合格证; 2机具准备 根据施工机具需用量计划,做好机械的租赁和购买计划,并做好进场使用前的检验、保养工作,确保运转正常。 3周转材料准备 做好模板、扣件、钢管、U托等周转料的备料工作,分批分期进场。 第三节劳动力准备

带式输送机的选型计算

带式输送机的选型计算 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

1 带式输送机的选型计算 1.1 设计的原始数据与工作环境条件 (1)工作地点为工作面的皮带顺槽 (2)装煤点的运输生产率,0Q =(吨/时); (3)输送长度,L =1513m 与倾角β= 5以及货流方向为下运: (4)物料的散集密度,'ρ=3/m t (5)物料在输送带上的堆积角,θ=30 (6)物料的块度,a=400mm 1.2 运输生产率 在回采工作面,为综采机组、滚筒采煤机或刨煤机采煤时,其运输生产率应与所选采煤机械相适应。由滚筒采煤机的运输生产率,可知: 2.8360=Q (h t ) 1.3 设备型式、布置与功率配比 应根据运输生产率Q 、输送长度L 和倾角,设备在该地点服务时间,输送长度有无变化及如何变化确定设备型式。产量大、运距短、年限长使用DT Ⅱ型;运距大,采用DX 型的;年限短的采用半固定式成套设备;在成套设备中。由于是上山或下山运输和在平巷中输送距离变化与否采用设备也有所不同。根据本顺槽条件,初步选用 280SSJ1200/2?型可伸缩胶带输送机一部。其具体参数为: 电机功率:2?280kW 运输能力:1300h t / 胶带宽:1200 mm 带速: m/s

设备布置方式实际上就是系统的整体布置,或称为系统方案设计。在确定了输送机结构型式下,根据原始资料及相关要求,确定传动装置、改向滚筒、拉紧装置、制动装置以及其它附属装置的数量、位置以及它们之间的相对关系,并对输送线路进行整体规划布局。 功率配比是指各传动单元间所承担功率(牵引力)的比例。 1.4 输送带宽度、带速、带型确定计算 根据物料断面系数表,取458=m K 根据输送机倾角,取1=m C 则由式(),验算带宽 m C v K Q B m m 901.019.05.24582 .836'0 =???= ≥ρ 式() 按物料的宽度进行校核,见式() mm a B 9002003502200 2max =+?=+≥ 式() 式中 m ax a —物料最大块度的横向尺寸,mm 。 则输送机的宽度符合条件 1.5 基本参数的确定计算 (1)q –—输送带没米长度上的物料质量,m kg /,可由式()求的; m kg Q q /9.925 .26.32 .8366.30=?== ν 式() (2)'t q ——承载托辊转动部分线密度,m kg /,可由式()求的;

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

带式输送机毕业设计说明书最新版本

摘要 本次毕业设计是关于DTⅡ型固定式带式输送机的设计。首先对胶带输送机作了简单的概述;接着分析了胶带输送机的选型原则及计算方法;然后根据这些设计准则与计算选型方法按照给定参数要求进行选型设计;接着对所选择的输送机各主要零部件进行了校核。普通型带式输送机由六个主要部件组成:传动装置,机尾或导回装置,中部机架,拉紧装置以及胶带。最后简单的说明了输送机的安装与维护。目前,胶带输送机正朝着长距离,高速度,低摩擦的方向发展,近年来出现的气垫式胶带输送机就是其中的一个。在胶带输送机的设计、制造以及应用方面,目前我国与国外先进水平相比仍有较大差距,国内在设计制造带式输送机过程中存在着很多不足。 本次带式输送机设计代表了设计的一般过程, 对今后的选型设计工作有一定的参考价值。 关键词:带式输送机传动装置导回装置

Abstract The design is a graduation project about the belt conveyor. At first, it is introduction about the belt conveyor. Next, it is the principles about choose component parts of belt conveyor. After that the belt conveyor abase on the principle is designed. Then, it is checking computations about main component parts. The ordinary belt conveyor consists of six main parts: Drive Unit, Jib or Delivery End, Tail Ender Return End. Intermediate Structure, Loop Take-Up and Belt. At last, it is explanation about fix and safeguard of the belt conveyor. Today, long distance, high speed, low friction is the direction of belt conveyor’s development. Air cushion belt conveyor is one of them. At present, we still fall far short of abroad advanced technology in design, manufacture and using. There are a lot of wastes in the design of belt conveyor. Keywords: the belt conveyor Drive Unit Delivery End

相关文档
相关文档 最新文档