文档库 最新最全的文档下载
当前位置:文档库 › 光纤端面研磨处理工艺流程

光纤端面研磨处理工艺流程

光纤端面研磨处理工艺流程
光纤端面研磨处理工艺流程

光纤端面研磨处理工艺流程

本文主要分析了光纤端面处理熔接对光纤激光器功率影响,研究了光纤端面处理工艺流程,分析了光纤

端面切割研磨方法,对光纤熔接过程提出了具体要求,为同类激光器研制提供了参考依据。

1、前言

光纤圆柱形介质波导由纤芯、包层涂敷层3部分组成,一般单模多模光纤纤芯直径分别为5~15μ

m 40~100μm,包层直径大约为125~600μm。经过处理光纤端面,理想状态一个光滑平面。但实

际,光纤端面加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使

端面情况复杂化。对于光纤与激光器其它元件耦合以及光纤之间熔接来说,要求光纤端部必须有光滑平

整表面,否则会增大损耗。本文分类介绍了光纤损耗产生原因,通过实验验证了光纤端面质量对光纤激光

器输出功率影响,研究了光纤端面处理工艺流程,分析了光纤端面切割研磨方法,对光纤熔接过程提出

了具体要求,为同类激光器研制提供了参考依据。

2、光纤损耗种类

2.1光纤本征损耗

光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷含有金属过渡杂质OH- ,

使光传输过程产生散射、吸收色散,一般可分为散射损耗,吸收损耗色散损耗。其散射损耗由于

材料原子密度涨落,冷凝过程造成密度不均匀以及密度涨落造成浓度不均匀而产生。吸收损耗由

于纤芯含有金属过渡杂质OH-吸收光,特别红外紫外光谱区玻璃存固有吸收。光纤色散按照产生

原因可分为三类,即材料色散、波导色散模间色散。其单模光纤以基模传输,故没有模间色散。单模

光纤本征因素,对连接损耗影响最大模场直径。单模光纤本征因素引起连接损耗大约为0.014dB,当

模场直径失配20%时,将产生0.2dB 连接损耗。多模光纤归一化频率V>2.404,有多个波导模式传输,V

值越大,模式越多,除了材料色散波导色散,还有模间色散,一般模间色散占主要地位。所谓模间色散,

指光纤不同模式同一频率下相位常数β不同,因此群速度不同而引起色散。

此外,光纤几何参数如光纤芯径、包层外径、芯/包层同心度、不圆度,光学参数如相对折射率、最大理论

数值孔径等,只要一项或多项失配,都将产生不同程度本征损耗。

2.2光纤附加损耗

光纤附加损耗一般由辐射损耗应用损耗构成。其辐射损耗由于光纤拉制工艺、光纤直径、椭圆度

波动、套塑层温度变化胀缩涂层低温收缩导致光纤微弯所致;应用损耗由于光纤张力、弯曲、挤压

造成宏弯微弯所引起损耗。

3、实验装置与结果

掺Er3+光纤环形腔激光器实验装置,泵浦光由波长980nmLD尾纤输出,经波分

复用器(WDM)耦合进

入环形光纤谐振腔,经过耦合器分光后输出激光。其光纤光栅心波长为1546.3nm,掺Er3+光纤长度为3

m,掺杂浓度为400ppm,隔离器工作波长范围为1535~1565nm,各元件插入损耗均为0.4dB,经上述装置

输出功率与输入功率关系曲线,最大输出功率可达16.9mW。但由于光纤激光器

各个部件之间均熔接一

起,插入损耗熔接损耗对整个系统具有非常大影响。熔接质量比较好情况下,总体光光效率可达

5.3%,光纤焊接较差情况下,焊点漏光严重,用转换片可以看到明显泵浦光泄露,严重影响总体光光

效率,二者功率相差23%左右。因此如何降低腔内熔接损耗影响激光器输出功率关键因素。

4、光纤端面处理

光纤端面处理也称为端面制备,光纤技术关键工序,主要包括剥覆、清洁切割三个环节。端面质

量直接影响光纤激光器泵浦光耦合效率激光输出功率。

4.1光纤涂覆层剥除

去除光纤涂覆层光纤端面处理第一步。可以用剥线钳刀片两种方法进行剥除。当采用剥线钳剥除

时,左手拇指食指捏紧光纤,所露长度为5cm左右,余纤无名指小拇指之间自然打弯,以增加力度,防

止打滑,剥线钳应与光纤垂直,上方向内倾斜一定角度,然后用钳口轻轻卡住光纤,右手随之用力,顺光纤轴

向平推出去,整个过程要自然流畅,争取一次成功;当采用刀片剥除时,首先用浓硫酸浸泡3~5cm长光纤端

头1~2分钟,用酒精棉擦拭干净。左手捏紧光纤,持纤要平,防止打滑,右手用刀片沿光纤向端头方向,与光

纤成一定倾斜角度,顺次剥除表面涂敷层聚合物材料,采用这种方法克服了采用化学溶剂法长时间浸泡光纤腐

蚀严重缺点,而且比用剥线钳或刀片直接刮除更容易、去除更干净,不易损伤光纤包层侧面部分。

4.2包层表面清洁

观察光纤剥除部分包层否全部去除,若有残留必须去掉,如有极少量不易剥除涂覆层,可用棉球沾

适量酒精,边浸渍,边擦除。将脱脂棉撕成层面平整扇形小块,沾少许酒精(以两指相捏无溢出为宜),折

成V形,夹住已剥覆光纤,顺光纤轴向擦拭,力争一次成功,一块棉花使用2~3次后要及时更换,每次要使

用棉花不同部位层面,这样既可提高棉花利用率,又防止对光纤包层表面二次污染。

4.3光纤端面切割

切割光纤端面制备最关键步骤,精密优质切刀基础,严格科学操作规范保证。常用切刀有

笔式切割刀台式光纤切割刀。使用笔式切割刀切割光纤时,光纤放置手指上,另一手持刀距离端头5m

m左右位置处沿垂直光纤轴线方向切割光纤,然后轻轻将切除端头取下;使用台式光纤切割刀进行操作

时,首先要清洁切刀刀片、放置光纤V型槽定位压板,并调整切刀位置使其摆放平稳。切割时动作要平稳

自然,勿重、勿急,避免断纤、斜角、毛刺裂痕等不良端面产生。

表面清洁切割时间应紧密衔接,不可间隔过长,特别已制备端面切勿放污浊空气。移动

时要轻拿轻放,防止与其它物件擦碰。

5、光纤端面研磨

5.1研磨工艺

影响端面研磨质量主要因素主要有光纤安装与定位、端面研磨检查及测试。其研磨及测试部分对

研制优质光纤端面最为关键。直接影响光纤端面研磨效果主要因素有:研磨机运转稳定,研磨砂纸颗粒均

匀、正确使用研磨片、以及研磨参数设置(压力时间)。

目前使用研磨机按其运转原理一般可分成齿轮传动,皮带传动及连竿传动三类。采用齿轮传动方式,一

般马力较强,稳定性较高;采用皮带传动方式,一般马力较小,其转速高压情况下易发生变化,此外皮带随

时间老化后容易出现问题;采用连竿式传动方式,噪音较大,稳定性较低,机身容易抖动并且压力偏低。

加压方面,有单点心加压,气压及液压等方式。单点心加压易受外界影响变化,如每盘件数有限;

气压较难控制稳定性;而液压操控较精确,力度相对较大,但价格昂贵。

整个研磨过程,不论研磨机速度,压力,水或研磨液,都会使研磨片效果不一样,故选用

研磨处理时,必须配合各项因素作全盘考虑,采用一个最合理研磨方案。

5.2研磨工序

端面研磨过程经过4道工序:粗磨、磨、细磨、抛光。其粗磨、磨、细磨所用金刚砂纸颗粒大小

不同,分别为6,3,1 0.5。4道工序时间压力总共8个参数,配用不同方案,就可以得到端面质量不

同结果。

6、光纤熔接

把光纤放入熔接机V型槽时,要确保V型槽底部无异物且光纤紧贴V型槽底部。

机器自动熔接机器开始

熔接时,首先将左右两侧V型槽光纤相向推进,推进过程会产生一次短暂放电,其作用清洁光纤端面

灰尘,接着会把光纤继续推进,直至光纤间隙处原先所设置位置上,这时熔接机测量切割角度,并把光纤

端面附近放大图像显示屏幕上,如果出现图4所示图像就要重做。纤芯/包层对准与端面制作一样直接影

响熔接损耗,熔接机会X轴Y轴方向上同时进行对准,并且把轴向、轴心偏差参数显示屏幕上,如果误差

允许范围之内就开始熔接。

观察熔接结果熔接过后机器会自动评估,并显示当前熔接损耗,由于估计值,鼓显示0.3dB以上就必

须重新制端面。熔接过后,还要进一步观察光纤熔接形状,如果出现如图5所示情况,必须调整机器设置,

重新制作光纤端面后进行熔接,其具体实施方式如表1所示。

熔接过程还应及时清洁熔接机V形槽、电极、物镜熔接室,随时观察熔接有无气泡、过细、过粗、

虚熔、分离等不良现象,可采用OTDR跟踪监测结果,及时分析产生上述不良现象原因,采取相应改进措

施。如果多次出现虚熔现象,应检查熔接两根光纤材料、型号否匹配,切刀熔接机否被灰尘污染,

并检查电极氧化状况,若均无问题,则应适当提高熔接电流。

由于光纤连接时去掉了接头部位涂覆层其机械强度降低,因此要对接头部位进行补强保护,可采用光

纤热缩保护管(热缩管)保护光纤接头部位。热缩管应剥覆前穿入,严禁端面制备后穿入。将预先穿置光

纤某一端热缩管移至光纤接头处,使熔接点位于热缩管间,轻轻拉直光纤接头,放入加热器内加热,醋酸

乙烯内管熔化,聚乙烯管收缩后紧套接续好光纤上,由于此管内有一根不锈钢棒,不仅增加了抗拉强度

(承受拉力为1000~2300g),同时也避免了因聚乙烯管收缩而可能引起接续部位微弯。

7、盘纤

盘纤一门技术,科学盘纤方法可使光纤布局合理、附加损耗小、经得住时间恶劣环境考验,可避

免挤压造成断纤。盘纤方法有很多,可以从一侧光纤盘起,固定热缩管,然后再处理另一侧余纤,该方法可5.1研磨工艺

影响端面研磨质量主要因素主要有光纤安装与定位、端面研磨检查及测试。其研磨及测试部分对

研制优质光纤端面最为关键。直接影响光纤端面研磨效果主要因素有:研磨机运转稳定,研磨砂纸颗粒均

匀、正确使用研磨片、以及研磨参数设置(压力时间)。

目前使用研磨机按其运转原理一般可分成齿轮传动,皮带传动及连竿传动三类。采用齿轮传动方式,一

般马力较强,稳定性较高;采用皮带传动方式,一般马力较小,其转速高压情况下易发生变化,此外皮带随

时间老化后容易出现问题;采用连竿式传动方式,噪音较大,稳定性较低,机身容易抖动并且压力偏低。

加压方面,有单点心加压,气压及液压等方式。单点心加压易受外界影响变化,如每盘件数有限;

气压较难控制稳定性;而液压操控较精确,力度相对较大,但价格昂贵。

整个研磨过程,不论研磨机速度,压力,水或研磨液,都会使研磨片效果不一样,故选用

研磨处理时,必须配合各项因素作全盘考虑,采用一个最合理研磨方案。

5.2研磨工序

端面研磨过程经过4道工序:粗磨、磨、细磨、抛光。其粗磨、磨、细磨所用金刚砂纸颗粒大小

不同,分别为6,3,1 0.5。4道工序时间压力总共8个参数,配用不同方案,就可以得到端面质量不

同结果。

6、光纤熔接

把光纤放入熔接机V型槽时,要确保V型槽底部无异物且光纤紧贴V型槽底部。机器自动熔接机器开始

熔接时,首先将左右两侧V型槽光纤相向推进,推进过程会产生一次短暂放电,其作用清洁光纤端面

灰尘,接着会把光纤继续推进,直至光纤间隙处原先所设置位置上,这时熔接机测量切割角度,并把光纤

端面附近放大图像显示屏幕上,如果出现图4所示图像就要重做。纤芯/包层对准与端面制作一样直接影

响熔接损耗,熔接机会X轴Y轴方向上同时进行对准,并且把轴向、轴心偏差参数显示屏幕上,如果误差

允许范围之内就开始熔接。

观察熔接结果熔接过后机器会自动评估,并显示当前熔接损耗,由于估计值,鼓显示0.3dB以上就必

须重新制端面。熔接过后,还要进一步观察光纤熔接形状,如果出现如图5所示情况,必须调整机器设置,

重新制作光纤端面后进行熔接,其具体实施方式如表1所示。

熔接过程还应及时清洁熔接机V形槽、电极、物镜熔接室,随时观察熔接有无气泡、过细、过粗、

虚熔、分离等不良现象,可采用OTDR跟踪监测结果,及时分析产生上述不良现象原因,采取相应改进措

施。如果多次出现虚熔现象,应检查熔接两根光纤材料、型号否匹配,切刀熔接机否被灰尘污染,

并检查电极氧化状况,若均无问题,则应适当提高熔接电流。

由于光纤连接时去掉了接头部位涂覆层其机械强度降低,因此要对接头部位进行补强保护,可采用光

纤热缩保护管(热缩管)保护光纤接头部位。热缩管应剥覆前穿入,严禁端面制备后穿入。将预先穿置光

纤某一端热缩管移至光纤接头处,使熔接点位于热缩管间,轻轻拉直光纤接头,放入加热器内加热,醋酸

乙烯内管熔化,聚乙烯管收缩后紧套接续好光纤上,由于此管内有一根不锈钢棒,不仅增加了抗拉强度

(承受拉力为1000~2300g),同时也避免了因聚乙烯管收缩而可能引起接续部位微弯。

7、盘纤

盘纤一门技术,科学盘纤方法可使光纤布局合理、附加损耗小、经得住时间恶劣环境考验,可避

免挤压造成断纤。盘纤方法有很多,可以从一侧光纤盘起,固定热缩管,然后再处理另一侧余纤,该方法可5.1研磨工艺

影响端面研磨质量主要因素主要有光纤安装与定位、端面研磨检查及测试。其研磨及测试部分对

研制优质光纤端面最为关键。直接影响光纤端面研磨效果主要因素有:研磨机运转稳定,研磨砂纸颗粒均

匀、正确使用研磨片、以及研磨参数设置(压力时间)。

目前使用研磨机按其运转原理一般可分成齿轮传动,皮带传动及连竿传动三类。采用齿轮传动方式,一

般马力较强,稳定性较高;采用皮带传动方式,一般马力较小,其转速高压情况下易发生变化,此外皮带随

时间老化后容易出现问题;采用连竿式传动方式,噪音较大,稳定性较低,机身容易抖动并且压力偏低。

加压方面,有单点心加压,气压及液压等方式。单点心加压易受外界影响变化,如每盘件数有限;

气压较难控制稳定性;而液压操控较精确,力度相对较大,但价格昂贵。

整个研磨过程,不论研磨机速度,压力,水或研磨液,都会使研磨片效果不一样,故选用

研磨处理时,必须配合各项因素作全盘考虑,采用一个最合理研磨方案。

5.2研磨工序

端面研磨过程经过4道工序:粗磨、磨、细磨、抛光。其粗磨、磨、细磨所用金刚砂纸颗粒大小

不同,分别为6,3,1 0.5。4道工序时间压力总共8个参数,配用不同方案,就可以得到端面质量不

同结果。

6、光纤熔接

把光纤放入熔接机V型槽时,要确保V型槽底部无异物且光纤紧贴V型槽底部。机器自动熔接机器开始

熔接时,首先将左右两侧V型槽光纤相向推进,推进过程会产生一次短暂放电,其作用清洁光纤端面

灰尘,接着会把光纤继续推进,直至光纤间隙处原先所设置位置上,这时熔接机测量切割角度,并把光纤

端面附近放大图像显示屏幕上,如果出现图4所示图像就要重做。纤芯/包层对准与端面制作一样直接影

响熔接损耗,熔接机会X轴Y轴方向上同时进行对准,并且把轴向、轴心偏差参

数显示屏幕上,如果误差

允许范围之内就开始熔接。

观察熔接结果熔接过后机器会自动评估,并显示当前熔接损耗,由于估计值,鼓显示0.3dB以上就必

须重新制端面。熔接过后,还要进一步观察光纤熔接形状,如果出现如图5所示情况,必须调整机器设置,

重新制作光纤端面后进行熔接,其具体实施方式如表1所示。

熔接过程还应及时清洁熔接机V形槽、电极、物镜熔接室,随时观察熔接有无气泡、过细、过粗、

虚熔、分离等不良现象,可采用OTDR跟踪监测结果,及时分析产生上述不良现象原因,采取相应改进措

施。如果多次出现虚熔现象,应检查熔接两根光纤材料、型号否匹配,切刀熔接机否被灰尘污染,

并检查电极氧化状况,若均无问题,则应适当提高熔接电流。

由于光纤连接时去掉了接头部位涂覆层其机械强度降低,因此要对接头部位进行补强保护,可采用光

纤热缩保护管(热缩管)保护光纤接头部位。热缩管应剥覆前穿入,严禁端面制备后穿入。将预先穿置光

纤某一端热缩管移至光纤接头处,使熔接点位于热缩管间,轻轻拉直光纤接头,放入加热器内加热,醋酸

乙烯内管熔化,聚乙烯管收缩后紧套接续好光纤上,由于此管内有一根不锈钢棒,不仅增加了抗拉强度

(承受拉力为1000~2300g),同时也避免了因聚乙烯管收缩而可能引起接续部位微弯。

7、盘纤

盘纤一门技术,科学盘纤方法可使光纤布局合理、附加损耗小、经得住时间恶劣环境考验,可避

免挤压造成断纤。盘纤方法有很多,可以从一侧光纤盘起,固定热缩管,然后再处理另一侧余纤,该方法可根据一侧余纤长度灵活选择热缩管安放位置,方便、快捷,可避免出现急弯、小圈现象;也可以先将热缩套管

逐个放置于固定槽,然后再处理两侧余纤,该方法有利于保护光纤接点,避免盘纤可能造成损害,光纤

预留盘空间较小,光纤不易盘绕固定时,常用此种方法;当个别光纤过长或过短时,可将其放最后单独盘

绕;带有特殊光器件时,可将其单独盘绕处理,若与普通光纤共盘时,应将其轻置于普通光纤之上,两者之间

加缓冲衬垫,以防挤压造成断纤,且特殊光器件尾纤不可太长。根据实际情况,可采用采用圆、椭圆、“∝”

等多种图形盘纤,按余纤长度预留盘空间大小,顺势自然盘绕,切勿生拉硬拽,尽可能最大限度利用预留盘

空间,有效降低因盘纤带来附加损耗。

8、光纤熔接点损耗测量

光纤熔接点损耗测量度量光纤接头质量重要指标,使用光时域反射仪(OTDR)或熔接接头损耗

评估方案等测量方法可以确定光纤接头光损耗。

OTDR 原理:由于光纤模场直径影响其后向散射,因此接头两边光纤可能会产生不同后向散

射,从而遮蔽接头真实损耗。如果从两个方向测量接头损耗,并求出这两个结果平均值,便可消除单向

OTDR测量人为因素误差。加强OTDR 监测,对确保光纤熔接质量,减少因盘纤带来附加损耗封装可

能对光纤造成损耗,具有十分重要意义。整个接续工作,必须严格执行OTDR 4道监测程序:熔接

过程对每一根光纤进行实时跟踪监测,检查每个熔接点质量;每次盘纤后,对所盘光纤进行检验以确定盘

纤带来附加损耗;封装前对所有光纤进行检测,以查明有无漏测对光纤及接头有无挤压;封装后对所有光

纤进行最后检测,检查封装否对光纤有损耗。

此外某些熔接机使用一种光纤成像测量几何参数断面排列系统,通过从两个垂直方向观察光纤,计算

机处理并分析该图像来确定包层偏移、纤芯畸变、光纤外径变化其他关键参数,使用这些参数来评价接头

损耗。依赖于接头损耗评估算法求得接续损耗可能与真实值差异很大。

9、总结

本文分类介绍了各种光纤损耗产生原因,通过实验验证了光纤端面质量对光纤激光器输出功率影响,

研究了光纤端面处理工艺流程,分析了光纤端面切割研磨方法,对光纤熔接过程提出了具体要求,为同类

激光器研制提供了参考依据。

点图进入相册

采用精密涂附技术制作的光纤研磨片,国内首创,为您节省成本。

光缆工艺流程图

金属加强构件、松套层绞填充式、铝(钢)-聚乙烯粘结护套通信用室外光缆 产品标准:YD/T901-2009 产品型号:GYTS(A)系列 工艺流程: 外购光纤填充纤膏、挤PBT套管 挤LDPE SZ绞合成缆、扎纱、填充缆膏、纵包阻水无纺布、扎纱镀锌钢丝挤LDPE 纵包轧纹铝塑复合带(或钢塑复合带)、挤HDPE护套印字成轴成检包装 注:关键工序 特殊工序 材料:1.光纤;2.纤膏;3.PBT料;4.色母料;5.LDPE绝缘料;6.缆膏;7.阻水无纺布;8.聚酯纱;9.铝塑复合带;10.钢塑复合带;11.HDPE护套料;12.镀锌钢丝。

金属加强构件聚乙烯护套中心束管式全填充型通信用室外光缆 产品标准:YD/T769-2010 产品型号:GYXTY(A、S)系列; 工艺流程: 外购光纤填充纤膏、挤PBT套管层绞镀锌钢丝、绕包无纺布挤HDPE护套印字成轴成检包装 注:关键工序 特殊工序 材料:1.光纤;2.纤膏;3.PBT料;4.镀锌钢丝;5.无纺布;6.HDPE护套料;7.LDPE绝缘料;8.铝塑复合带;9.钢塑复合带。

金属加强构件夹带钢-聚乙烯粘结护套中心束管式全填充型通信用室外光缆 产品标准:YD/T769-2010 产品型号:GYXTW系列 工艺流程: 外购光纤填充纤膏、挤PBT套管纵包阻水无纺布、纵包轧纹钢塑复合带、镀锌钢丝、挤HDPE护套印字成轴成检包装 注:关键工序 特殊工序 材料:1.光纤;2.纤膏;3.PBT料;4.阻水无纺布;5.镀锌钢丝;6.钢塑复合带;7.中密度聚乙烯护套料。

FTTH皮线光缆 产品标准:YD/T1997-2009 产品型号:GJXDH、GJXFDH、GJXV系列 工艺流程: KFRP 外购光纤1-4印字成检成盘包装KFRP 注:特殊工序 材料:1.IUT G.657光纤;2.KFRP碳纤维棒或钢丝;3.PVC或LSZH护套料。

光纤端面处理工艺流程

光纤端面处理工艺流程 摘要:本文主要分析了光纤端面处理熔接对光纤激光器功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 1、前言光纤是圆柱形介质波导由纤芯、包层和涂敷层3部分组成,一般单模和多模光纤的纤芯直径分别为5~15μm和40~100μm,包层直径大约为125~600μm。经过处理的光纤端面,理想状态是一个光滑平面。但实际中,光纤端面的加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使端面情况复杂化。对于光纤与激光器中其它元件的耦合以及光纤之间的熔接来说,要求光纤端部必须有光滑平整的表面,否则会增大损耗。本文分类介绍了光纤损耗产生的原因,通过实验验证了光纤端面质量对光纤激光器输出功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 2、光纤损耗种类 2.1光纤本征损耗光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷和含有金属过渡杂质和OH- ,使光在传输过程中产生散射、吸收和色散,一般可分为散射损耗,吸收损耗和色散损耗。其中散射损耗是由于材料中原子密度的涨落,在冷凝过程中造成密度不均匀以及密度涨落造成浓度不均匀而产生的。吸收损耗是由于纤芯含有金属过渡杂质和OH-吸收光,特别是在红外和紫外光谱区玻璃存在固有吸收。光纤色散按照产生的原因可分为三类,即材料色散、波导色散和模间色散。其中单模光纤是以基模传输,故没有模间色散。在单模光纤本征因素中,对连接损耗影响最大的是模场直径。单模光纤本征因素引起的连接损耗大约为0.014dB,当模场直径失配20%时,将产生0.2dB的连接损耗。多模光纤的归一化频率

光纤端面清洗操作规范及判定标准

作业指导类文件 光纤端面清洗操作规范及判定标准 一、名称:光纤端面清洗操作规范及判定标准 二、内容:模块清洗的操作方式和判定标准,以及清洗机的使用和维护。 三、适用范围:此作业指导书适应于恒宝通单、多模组件/模块的光纤端面清洁,及清洗机的维护。

四、所需仪器、设备及工具:台式清洗机/手提式清洗机、酒精、棉签、牙签、棉、防静电手链。 电源开关 初始化按键 (B) (C)(D) SC清洗针头 探测针头LC清洗针头 LC探测针头 ) 弹簧开关 (I) (J) 6.1 检查区域的划分

Zone 1a(A区):中间直径25微米以内部分,对于单模光纤包括部分的包层(cladding),对于多模光纤就只包含纤芯的中间部分; Zone 1b(B区):从直径25微米以外至直径120微米部分,对于单模光纤包括大部分的包层部分,对于多模光纤包含纤芯的外围部分和包层的部分; Epoxy Zone Ring(C区):中间直径120微米以外,130微米以内部分,为环氧树脂区域,包层边缘10微米宽度部分; Zone 2(D区):中间直径130微米以外,250微米以内部分,扩展到陶瓷插芯部分区域。 Zone 3(E区):中间直径250微米以外的部分。 6.2 不良现象定义: 6.3 PC/UPC/APC单模连接头端面外观检查标准:

PC/UPC/APC 多模连接头端面外观检查标准: 1)多模连接头端面划痕:通过纤芯(纤芯的直径为50um 或62.5um )的划痕不允许超过2条,且划痕宽度必须小于2um ,见示例图片6.4.5.1和6.4.5.2); 2)其余各项检查标准和单模连接头相同。 注意: 1. 可清除的任何污染物一定要被清除. 2. 任何污染物过多的区域受制于最严格的标准. 3. 测量污染物的大小时应使用最大的直径. 6.4 图片示例 (说明:当肉眼无法判定污点/划痕等大小时,须依据对比图做出判定,见下图所示:) 光通道端面判定对比图(仅适用于台式显示器200X 放大时使用) 6.4.1 脏污: 5um 10um 20um 30um 50um 2um 5um

光纤光缆生产工艺及设备

光纤光缆生产工艺及设备

第五章 光纤光缆制造工艺及设备 重点内容:原料提纯工艺、预制棒汽相沉积工艺、拉丝工艺、套塑工艺、余长形成、松套水冷、绞合工艺、层绞工艺 难点: 汽相沉积工艺参数确定、拉丝环境保护、余长的控制、梯度水冷的控制、绞合参数的选择 主要内容: (1)光纤制造工艺 (2)缆芯制造工艺(成缆工艺) 二次套塑 缆芯 光纤原料质量检光纤预合拉丝二次 光纤张中心管 带状 紧套松套层绞加张 力 筛选合格性骨架式光纤防水油膏 光纤防绞光缆阻包填光纤防水油膏 性

(3)护套挤制工艺 成品光缆 图5-0-1光纤光缆制造工艺流程图 通信用光纤是由高纯度SiO 2与少量高折射 率掺杂剂GeO 2、TiO 2、Al 2O 3、ZrO 2和低折射率掺 杂剂SiF 4(F)或B 2O 3或P 2O 5等玻璃材料经涂覆高 分子材料制成的具有一定机械强度的涂覆光纤。而通信用光缆是将若干根(1~2160根)上述的成品光纤经套塑、绞合、挤护套、装铠等工序工艺加工制造而成的实用型的线缆产品。在光纤光缆制造过程中,要求严格控制并保证光纤原料的纯度,这样才能生产出性能优良的光纤光缆产品,同时,合理的选择生产工艺也是非常重要的。目前,世界上将光纤光缆的制造技术分成三大工 合格检光缆内装外打检加阻包填护

艺. 5.0.1光纤制造工艺的技术要点: 1.光纤的质量在很大程度上取决于原材料的纯度,用作原料的化学试剂需严格提纯,其金属杂质含量应小于几个ppb,含氢化合物的含量应小于1ppm,参与反应的氧气和其他气体的纯度应为6个9(99.9999%)以上,干燥度应达-80℃露点。 2.光纤制造应在净化恒温的环境中进行,光纤预制棒、拉丝、测量等工序均应在10000级以上洁净度的净化车间中进行。在光纤拉丝炉光纤成形部位应达100级以上。光纤预制棒的沉积区应在密封环境中进行。光纤制造设备上所有气体管道在工作间歇期间,均应充氮气保护,避免空气中潮气进入管道,影响光纤性能。 3.光纤质量的稳定取决于加工工艺参数的稳定。光纤的制备不仅需要一整套精密的生产设备和控制系统,尤其重要的是要长期保持加工工艺参数的稳定,必须配备一整套的用来检测和校正光纤加工设备各部件的运行参数的设施和装置。以MCVD工艺为例:要对用来控制反应气体

光纤端面处理对光纤激光器地影响

光纤端面处理对光纤激光器地影响.txt18拥有诚实,就舍弃了虚伪;拥有诚实,就舍弃了无聊;拥有踏实,就舍弃了浮躁,不论是有意的丢弃,还是意外的失去,只要曾经真实拥有,在一些时候,大度舍弃也是一种境界。光纤端面处理对光纤激光器地影响 1、前言 光纤是圆柱形介质波导由纤芯、包层和涂敷层3部分组成,一般单模和多模光纤的纤芯直径分别为5~15μm和40~100μm,包层直径大约为125~600μm。经过处理的光纤端面,理想状态是一个光滑平面。但实际中,光纤端面的加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使端面情况复杂化。对于光纤与激光器中其它元件的耦合以及光纤之间的熔接来说,要求光纤端部必须有光滑平整的表面,否则会增大损耗。本文分类介绍了光纤损耗产生的原因,通过实验验证了光纤端面质量对光纤激光器输出功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 2、光纤损耗种类 2.1光纤本征损耗 光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷和含有金属过渡杂质和OH-,使光在传输过程中产生散射、吸收和色散,一般可分为散射损耗,吸收损耗和色散损耗。其中散射损耗是由于材料中原子密度的涨落,在冷凝过程中造成密度不均匀以及密度涨落造成浓度不均匀而产生的。吸收损耗是由于纤芯含有金属过渡杂质和OH-吸收光,特别是在红外和紫外光谱区玻璃存在固有吸收。光纤色散按照产生的原因可分为三类,即材料色散、波导色散和模间色散。其中单模光纤是以基模传输,故没有模间色散。在单模光纤本征因素中,对连接损耗影响最大的是模场直径。单模光纤本征因素引起的连接损耗大约为0.014dB,当模场直径失配20%时,将产生0.2dB的连接损耗[1]。多模光纤的归一化频率V>2.404,有多个波导模式传输,V值越大,模式越多,除了材料色散和波导色散,还有模间色散,一般模间色散占主要地位。所谓模间色散,是指光纤不同模式在同一频率下的相位常数β不同,因此群速度不同而引起的色散。 此外,光纤几何参数如光纤芯径、包层外径、芯/包层同心度、不圆度,光学参数如相对折射率、最大理论数值孔径等,只要一项或多项失配,都将产生不同程度的本征损耗。 2.2光纤附加损耗 光纤的附加损耗一般由辐射损耗和应用损耗构成。其中辐射损耗是由于光纤拉制工艺、光纤直径、椭圆度的波动、套塑层温度变化的胀缩和涂层低温收缩导致光纤微弯所致;应用损耗是由于光纤的张力、弯曲、挤压造成的宏弯和微弯所引起的损耗。 3、实验装置与结果 掺Er3+光纤环形腔激光器实验装置如图1所示,泵浦光由波长980nmLD尾纤输出,经波分复用器(WDM)耦合进入环形光纤谐振腔,经过耦合器分光后输出激光。其中光纤光栅中心波长为1546.3nm,掺Er3+光纤长度为3m,掺杂浓度为400ppm,隔离器工作波长范围为1535~1565nm,各元件插入损耗均为0.4dB,经上述装置输出功率与输入功率的关系曲线如图2所示,最大输出功率可达16.9mW。但由于光纤激光器各个部件之间均熔接在一起,插入损耗和熔接损耗对整个系统具有非常大的影响。在熔接质量比较好的情况下,总体光光效率可达5.3%,在光纤焊接较差的情况下,焊点漏光严重,用转换片可以看到明显的泵浦光泄露,严重影响总体光光效率,二者功率相差23%左右。因此如何降低腔内熔接损耗是影响激光器输出功率的关键因素。 4、光纤端面处理 光纤端面处理也称为端面制备,是光纤技术中的关键工序,主要包括剥覆、清洁和切割三个环节。端面质量直接影响光纤激光器的泵浦光耦合效率和激光输出功率。

光缆制造

第五章光纤光缆制造工艺及设备 重点内容:原料提纯工艺、预制棒汽相沉积工艺、拉丝工艺、套塑工艺、余长形成、松套水冷、绞合工艺、层绞工艺 难点: 汽相沉积工艺参数确定、拉丝环境保护、余长的控制、梯度水冷的控制、绞合参数的选择 主要内容: (1)光纤制造工艺 (2)缆芯制造工艺(成缆工艺)

(3)护套挤制工艺 图5-0-1光纤光缆制造工艺流程图 通信用光纤是由高纯度SiO2与少量高折射率掺杂剂GeO2、TiO2、Al2O3、ZrO2和低折射率掺杂剂SiF4(F)或B2O3或P2O5等玻璃材料经涂覆高分子材料制成的具有一定机械强度的涂覆光纤。而通信用光缆是将若干根(1~2160根)上述的成品光纤经套塑、绞合、挤护套、装铠等工序工艺加工制造而成的实用型的线缆产品。在光纤光缆制造过程中,要求严格控制并保证光纤原料的纯度,这样才能生产出性能优良的光纤光缆产品,同时,合理的选择生产工艺也是非常重要的。目前,世界上将光纤光缆的制造技术分成三大工艺. 5.0.1光纤制造工艺的技术要点: 1.光纤的质量在很大程度上取决于原材料的纯度,用作原料的化学试剂需严格提纯,其金属杂质含量应小于几个ppb,含氢化合物的含量应小于1ppm,参与反应的氧气和其他气体的纯度应为6个9(99.9999%)以上,干燥度应达-80℃露点。 2.光纤制造应在净化恒温的环境中进行,光纤预制棒、拉丝、测量等工序均应在10000级以上洁净度的净化车间中进行。在光纤拉丝炉光纤成形部位应达100级以上。光纤预制棒的沉积区应在密封环境中进行。光纤制造设备上所有气体管道在工作间歇期间,均应充氮气保护,避免空气中潮气进入管道,影响光纤性能。 3.光纤质量的稳定取决于加工工艺参数的稳定。光纤的制备不仅需要一整套精密的生产设备和控制系统,尤其重要的是要长期保持加工工艺参数的稳定,必须配备一整套的用来检测和校正光纤加工设备各部件的运行参数的设施和装置。以MCVD工艺为例:要对用来控制反应气体流量的质量流量控制器(MFC)定期进行在线或不在线的检验校正,以保证其控制流量的精度;需对测量反应温度的红外高温测量仪定期用黑体辐射系统进行检验校正,以保证测量温度的精度;要对玻璃车床的每一个运转部件进行定期校验,保证其运行参数的稳定;甚至要对用于控制工艺过程的计算机本身的运行参数要定期校验等。只有保持稳定的工艺参数,才有可能持续生产出质量稳定的光纤产品。 5.0.2光缆缆芯制造工艺的技术要点: 每种光缆都有自己的生产工艺,因为它们之间存在着不同的性能要求和结构型式,所以各部分材料不尽相同,结构方面存在差异。故生产过程中都有自己的生产工艺流程。但是各种光缆的基本制造工艺流程是基本相同的。成缆工艺首先要做两方面的准备并应注意这样几点技术要点:

光纤制作过程

光纤研磨工艺介绍 光纤是光导纤维的简称,是由一组光导纤维组成的用于传播光束的,细小而柔韧的传输介质。它是用石英玻璃或者特制塑料拉成的柔软细丝,直径在几个μm(光波波长的几倍)到120μm。就象水流过管子一样,光能沿着这种细丝在内部传输。光纤的构造一般由3个部分组成:涂覆层,包层,纤芯,如图: 通过对光纤结构的了解我们知道,光纤结构自内向外为纤芯,包层,涂覆层。光纤内部一共有两种光折射率,纤芯的折射率为n1,包层的折射率为n2,由于所掺的杂质不同,使包层的折射率略低于纤芯的折射率,即n2

光纤端面的研磨方法总则

光纤端面的研磨方法总则 光纤是光通信中最基本及最重要的一个组成部份,光纤一词是光导纤维的简称。光纤的主要材料是石英玻璃,所以事实上光纤是一种比人的头发稍粗的玻璃丝。一般通信光纤是由纤芯和包层两部份组成而外径为125um至140um。在讨论光纤端面研磨中,不可不提光纤的损耗。在光信号通过光纤端面传送中,由于折射或某一些原因,会使光能量衰减了一部份,这就是光纤的传输损耗。所以光纤端面研磨的效果就显得非常重要了。而成熟的研磨工艺及优良的研磨系统设备是达到优质研磨效果不可或缺的因素。以下本文将以研磨优质光纤连接器端面作为讨论的重心。而本文主旨主要在于分享我们在光纤连接器端面研磨方面的实际经验,而不在于艰涩的理论性的探讨。 简介 在光纤跳线生产工艺中,主要可分为三部份。1、光缆与连接器散件的组装;2、端面研磨3、检查及测试。而其中以研磨及测试部份对生产优质光纤端面的影响最大。故厂商往往都非常重视这部份的运作。而本文亦会集中讨论这部份的工艺。 生产光纤跳线,要达到最佳效果,其中包括了8个要素: 1、使用正确的工具及组装程序; 2、使用高质素的光纤连接器散件; 3、稳定的研磨机器; 4、优质的研磨砂纸; 5、正确的操作程序; 6、精确及可靠的测试仪器; 7、有责任感与富有经验的操作员; 8、整洁及无尘的工作环境。 生产优质光纤跳线之要素

1、使用正确的工具及组装程序--所有的组装程序都必须采用合适的工具, 如脱皮钳,烘炉,针筒及胶水……等等,需要选择专为生产光纤跳线而设计的产品,故千万不能随便使用一般性的工具。另外,熟练而正确的组装方法,也是不能忽略的一点。 2、使用高质素的光纤连接器散件--高素质的连接器散件也能间接使问题减少,从而更易达到优质的研磨效果。 3、稳定的研磨机--研磨机(Polishing Machine)可说是生产光纤跳线的核心部份,在生产过程中相当大比例的品质问题,都间接或直接与研磨机的稳定性有关。可见研磨机在光纤跳线中的重要性,本文在“研磨机”一节中会作更详细的探讨。 4、优质的研磨纱纸--研磨片的使用则更直接影响到产品的质量。若能透彻地了解研磨材料的性质与操作方法,找出最适合的配套方案,对于研磨效果及成本控制有很大的帮助,在“研磨片”一节,本文会对此要素作更深入的叙述。 5、正确的操作程序--除了材料与机器的配套外,还必须依循正确的操作程序与时间的操控, 产品才能获得稳定的质量。 6、精确及稳定的测试仪器--随着科技的进步, 回损、插损及干涉仪等测试仪器的应用更为普遍,可说是光纤跳线生产线上不可缺少的,故其精确度便显得更重要了。详细的运用会在“测试仪器的重要性”一节中作出进一步讨论。 7、有责任感与富有经验的操作员--再优良的仪器工具也需要有熟练的操作员配合才能保证产品的质量,所以挑选及训练员工,也是生产优质光纤跳线不可忽视的一环。 8、整洁及无尘的环境--尘埃对光的传输有很大的影响,所以生产光纤跳线的过程中,对环境的要求也是很高的。现在已有很多生产商都采用了无尘车间,而事实上这也是生产光纤跳线不可避免的趋势。 何为优质的陶瓷芯端面呢?在国际上,一般都是以IEC的建议数据为基准,然后再根据自身的要求做一些调整以设定制造商对陶瓷芯研磨出的效果之要求标准。例如球面纤心高度应在-50至50nm的范围,而偏心最大不超过50um等,附表一的数值为一般市场上认可的PC类纤芯格式的标准, 谨供参考。 研磨机 研磨机是研磨系统中最重要的一部份,而在选择研磨机时,首先必须考虑它的运转及加压方式。现今在市场上使用的研磨机其运转原理一般可分成--齿轮带动(RB-12C,RB-550C),皮带带动(RB-12B)等。利用齿轮直接带动运转的,一般马力较强,而稳定性较高。皮带带动的,则一般马力较小,而其转速在高压环境下容易发生变化,另外皮带的胶质随时间老化后也很容易出现问题。 而在加压方面,市场上的研磨机有单点中心加压,包括重力锤,法码,气压及液压等方式。单点式中心加压(RB-12B RB-12C),如在理想的环境下运作,的确可以得到良好的效果,但其如受到外在因素的影响容易产生变化,例如每盘研磨端面的件数会受到一定的限制, 在研磨的过程中,当一盘陶瓷芯中有一部份达不到技术指标的时候,重磨是不可避免的情况,当一盘陶瓷芯中有一部分要重磨的时候,单点加压的机种,因为磨盘安装瓷芯的件数受到限制,故在研磨过程中会是一个很大的困扰及不便。而陶瓷管长度不一的问题亦会使用单点中心加压式研磨机打磨的端面容易产生偏心。在美国的机种有些采用气压,但此种方式比较难控制其稳定性,反之液压之操控较精确,力度也相对较大,但价格则比较昂贵。 四角平台式加压(RB-550C),则由磨盘及垫片之距离调整压力,所以其压力较大且比较稳定。研磨端面件数的多少,基本上不会影响其稳定性及效果。 另外制造研磨盘的材料与设计也是很重要的,陶瓷芯安装在研磨盘上,凸出的部份应为0.8mm 如果凸出的部份太长,研磨时因受压的关系,就比较容易影响效果。而材料方面,使用纯刚制造的磨盘才能达到耐用、耐磨的要求,市场上一些用塑胶做的磨盘,其可用性还是有待考验的。 除此之外,选择研磨机时亦要留意其适应性,稳定性,耐用性等。并要考虑其是否适合长时间运作及维修是否简单。现今市场上,深圳荣邦通讯设备有限公司的RB-550C研磨机是其中一种能具备以上要求的平台式加

光纤接续方法及操作步骤

光纤接续方法及操作步骤 光纤接续是一项细致的工作,特别在端面制备、熔接、盘纤等环节,要求操作者仔细观察,周密考虑,操作规范。本文为您详细介绍了其中的步骤和实际操作技巧。 1.端面的制备 光纤端面的制备包括剥覆、清洁和切割这几个环节。合格的光纤端面是熔接的必要条件,端面质量直接影响到熔接质量。 1.1光纤涂面层的剥除 光纤涂面层的剥除,要掌握平、稳、快三字剥纤法。“平”,即持纤要平。左手拇指和食指捏紧光纤,使之成水平状,所露长度以5cm为准,余纤在无名指、小拇指之间自然打弯,以增加力度,防止打滑。“稳”,即剥纤钳要握得稳。“快”即剥纤要快,剥纤钳应与光纤垂直,上方向内倾斜一定角度,然后用钳口轻轻卡住光纤右手,随之用力,顺光纤轴向平推出去,整个过程要自然流畅,一气呵成。 1.2裸纤的清洁 裸纤的清洁,应按下面的两步操作:

1)观察光纤剥除部分的涂覆层是否全部剥除,若有残留,应重新剥除。如有极少量不易剥除的涂覆层,可用绵球沾适量酒精,一边浸渍,一边逐步擦除。 2)将棉花撕成层面平整的扇形小块,沾少许酒精(以两指相捏无溢出为宜),折成“V”形,夹住以剥覆的光纤,顺光纤轴向擦拭,力争一次成功,一块棉花使用2~3次后要及时更换,每次要使用棉花的不同部位和层面,这样即可提高棉花利用率,又防止了探纤的两次污染。 1.3裸纤的切割 裸纤的切割是光纤端面制备中最为关键的部分,精密、优良的切刀是基础,而严格、科学的操作规范是保证。 1)切刀的选择。 切刀有手动(如日本CT—07切刀)和电动(如爱立信FSU—925)两种。前者操作简单,性能可靠,随着操作者水平的提高,切割效率和质量可大幅度提高,且要求裸纤较短,但该切刀对环境温差要求较高。后者切割质量较高,适宜在野外寒冷条件下作业,但操作较复杂,工作速度恒定,要求裸纤较长。熟练的操作者在常温下进行快速光缆接续或抢险,采用手动切刀为宜;反之初学者或在野外较寒冷条件下作业时,采用电动切刀。 2)操作规范

光纤跳线生产技术工艺流程

二:预制光缆生产技术工艺流程 穿散件作业指导书 1.准备工作 1.1根据生产单的要求准备好相应的工具及原料,辅料(物料盒/胶护套/止动环/卡环/胶纸)。 1.2检查散件及上道工位移交半成品。 2.操作方法 2.1仔细确认所有材料是否和生产任务相符。 2.2六条一批穿上所有散件。 2.3将散件用胶纸固定在光缆上,预留部分为0.6—0.75m。 2.4详细作好作业记录。 3.注意事项 3.1所穿散件方向不可穿反。 3.2散件不可多穿或少穿。 3.3固定的散件必须在光缆上保持整齐。 3.4保持工作台面整洁,零件应按规定物料盒放置。 粘合剂的配制作业指导书 1.作业名 粘合剂的配制 2.范围 调配353ND粘合挤 3.使用的机器和工具 称量杯、电子秤、竹签、纸巾、超声波清洗机。 4.预备 4.1把称量杯清洁干净待用。 4.2把称量杯放在电子秤上,再把电子秤回零。 4.3准备好粘合剂353ND和固化挤。 5.操作步骤 5.1按所需量把353ND粘合挤和固化挤以10:1的比例分别倒入称量杯。 5.2用竹签在称量杯按顺时针方向均匀搅拌5分钟,使其充分。 5.3粘合挤搅拌混合后有气泡,用超声波清洗机处理二十分钟把气泡完全分离掉。6.注意事项 调胶量要根据生产量而定,使用时间不得超过2小时。 光纤插入和加热固化作业指导书 1.作业名 光纤插入和加热固化 2.使用范围 适用于各种光纤活动连接器。 3.使用的机器和工具 烤炉(包括夹盘)、剪刀、小粘纸、米勒刀、酒精、擦试纸、纸巾、挂钩和适当工具。 4.预备

4.1开始这道工序之前,首先一定要根据生产任务单检查前一道工序是合格,确认以后方可进行以下操作。 4.2打开拷炉电源,检查时间和温度是否符合要求。 5.操作步骤 5.1把光纤活动连接器按10条一组剥纤。 5.2然后用擦拭纸蘸去少量酒精清洁光纤表面。 5.3检查清洁后的光纤表面是否干净。 5.4用细杆(可用笔)在垂直的两个方向拨动光纤,如光纤裂,应重新剥纤并检查。 5.5将已清洁干净的光纤从已吸好胶的插芯的尾部插入。插入时,用一只手拿住已吸好胶的插芯,另一只手拿光缆,将准备好的光纤从插芯的尾部穿入,直到∮0.9的光纤涂层插到插芯底部,光纤从插芯顶部伸出。回拉光纤约1mm,以确认是否断纤。 5.6全部的插入完毕确定无误后,用竹签蘸去少量粘合挤,把插芯尾部的粘合挤修整成锥形,并在插芯顶部的光纤处点上胶。 5.7以上各工序完成后,将插好光纤的插芯放到夹盘上并用小粘纸固定好,把夹盘放上烤炉进行固化。 5.8固化30分钟后,烤炉红色灯亮。检查确认固化完成,粘合挤呈褐色,用适当工具轻触后表现一定硬度。如不符合要求,应适当延长时间,直到合格为止。符合要求后旋开螺丝。取下夹盘。用适当工具把插芯顶部伸出的光纤折断,撕去小粘纸,把插芯从夹盘上取出,然后把光缆挂上挂钩,送到下一工序。 5.9正确填写操作传票。 6.温度和时间的控制 6.1每周用热电偶温度计监测并记录每台烤炉的最高温度,检测时用热电偶温度计的探测头持续接触夹盘槽一侧,持续观察显示的温度,记录其最高温度。检测时放下烤炉防护盖以免外界影响温度。 6.2烤炉的最高温度应为97~103℃,如不符合要求,应相应增减烤炉的温度控制旋扭,再次检测,使其符合要求。 6.3烤炉的时间旋钮设定为30分钟左右,可根据经验在正负5分钟内调整。固化的时间以粘合挤的颜色和硬度为准,可以相应提前或延长固化时间。 7.注意事项 7.1如果光纤断在插芯里,要及时进行处理,用钢丝顶出断纤,吸胶后重做插入。 7.2加热固化时,烤炉两边的螺丝不能拧得太紧,以免固化后卸不下来。 7.3注意光纤表面涂覆层是否清洗干净,否则影响粘合剂连接插芯的强度。 7.4一定要保持插芯表面和烤炉清洁,随时处理残留胶迹。 8.相关记录 操作传票 烤炉温度时间记录表 FC研磨作业指导书 1.使用机器和工具 精工研磨机一套,PC磨盘若干,挂钩、六角螺丝扳手、超声波清洗机、*、研磨油、纯净水、抛磨液、研磨纸和纸巾。 2.预备 2.1打开研磨机电源,启动研磨机空转3分钟左右。 2.2看机器上研磨纸是否要更换。如要更换,应撕去旧研磨纸后在研磨胶垫上涂上少量

光纤熔接工艺流程及施工方法

光纤熔接工艺流程及施工方法 1、前言 光纤是圆柱形介质波导由纤芯、包层和涂敷层3部分组成,一般单模和多模光纤的纤芯直径分别为5~15μm和40~100μm,包层直径大约为125~600μm。经过处理的光纤端面,理想状态是一个光滑平面。但实际中,光纤端面的加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使端面情况复杂化。对于光纤与激光器中其它元件的耦合以及光纤之间的熔接来说,要求光纤端部必须有光滑平整的表面,否则会增大损耗。 2、光纤损耗种类 2.1光纤本征损耗 光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷和含有金属过渡杂质和OH-,使光在传输过程中产生散射、吸收和色散,一般可分为散射损耗,吸收损耗和色散损耗。其中散射损耗是由于材料中原子密度的涨落,在冷凝过程中造成密度不均匀以及密度涨落造成浓度不均匀而产生的。吸收损耗是由于纤芯含有金属过渡杂质和OH-吸收光,特别是在红外和紫外光谱区玻璃存在固有吸收。光纤色散按照产生的原因可分为三类,即材料色散、波导色散和模间色散。其中单模光纤是以基模传输,故没有模间色散。在单模光纤本征因素中,对连接损耗影响最大的是模场直径。单模光纤本征因素引起的连接损耗大约为0.014dB,当模场直径失配20%时,将产生0.2dB的连接损耗。多模光纤的归一化频率V>2.404,有多个波导模式传输,V值越大,模式越多,除了材料色散和波导色散,还有模间色散,一般模间色散占主要地位。所谓模间色散,是指光纤不同模式在同一频率下的相位常数β不同,因此群速度不同而引起的色散。 此外,光纤几何参数如光纤芯径、包层外径、芯/包层同心度、不圆度,光学参数如相对折射率、最大理论数值孔径等,只要一项或多项失配,都将产生不同程度的本征损耗。 2.2光纤附加损耗

光纤光缆生产工艺流程

光纤光缆制造工艺及设备 重点内容:原料提纯工艺、预制棒汽相沉积工艺、拉丝工艺、套塑工艺、余长形成、松套水冷、绞合工艺、层绞工艺 难点: 汽相沉积工艺参数确定、拉丝环境保护、余长的控制、梯度水冷的控制、绞合参数的选择 主要内容: (1)光纤制造工艺 (2)缆芯制造工艺(成缆工艺) (3)护套挤制工艺

成品光缆 图5-0-1光纤光缆制造工艺流程图 通信用光纤是由高纯度SiO2与少量高折射率掺杂剂GeO2、TiO2、Al2O3、ZrO2和低折射率掺杂剂SiF4(F)或B2O3或P2O5等玻璃材料经涂覆高分子材料制成的具有一定机械强度的涂覆光纤。而通信用光缆是将若干根(1~2160根)上述的成品光纤经套塑、绞合、挤护套、装铠等工序工艺加工制造而成的实用型的线缆产品。在光纤光缆制造过程中,要求严格控制并保证光纤原料的纯度,这样才能生产出性能优良的光纤光缆产品,同时,合理的选择生产工艺也是非常重要的。目前,世界上将光纤光缆的制造技术分成三大工艺. 5.0.1光纤制造工艺的技术要点: 1.光纤的质量在很大程度上取决于原材料的纯度,用作原料的化学试剂需严格提纯,其金属杂质含量应小于几个ppb,含氢化合物的含量应小于1ppm,参与反应的氧气和其他气体的纯度应为6个9(99.9999%)以上,干燥度应达-80℃露点。 2.光纤制造应在净化恒温的环境中进行,光纤预制棒、拉丝、测量等工序均应在10000级以上洁净度的净化车间中进行。在光纤拉丝炉光纤成形部位应达100级以上。光纤预制棒的沉积区应在密封环境中进行。光纤制造设备上所有气体管道在工作间歇期间,均应充氮气保护,避免空气中潮气进入管道,影响光纤性能。 3.光纤质量的稳定取决于加工工艺参数的稳定。光纤的制备不仅需要一整套精密的生产设备和控制系统,尤其重要的是要长期保持加工工艺参数的稳定,必须配备一整套的用来检测和校正光纤加工设备各部件的运行参数的设施和装置。以MCVD工艺为例:要对用来控制反应气体流量的质量流量控制器(MFC)定期进行在线或不在线的检验校正,以保证其控制流量的精度;需对测量反应温度的红外高温测量仪定期用黑体辐射系统进行检验校正,以保证测量温度的精度;要对玻璃车床的每一个运转部件进行定期校验,保证其运行参数的稳定;甚至要对用于控制工艺过程的计算机本身的运行参数要定期校验等。只有保持稳定的工艺参数,才有可能持续生产出质量稳定的光纤产品。 5.0.2光缆缆芯制造工艺的技术要点: 每种光缆都有自己的生产工艺,因为它们之间存在着不同的性能要求和结构型式,所以各部分材料不尽相同,结构方面存在差异。故生产过程中都有自己的生产工艺流程。但是各种光缆的基本制造工艺流程是基本相同的。成缆工艺首先要做两方面的准备并应注意这样几点技术要点: (1)选择具有优良传输特性的光纤,此光纤可以是单模光纤也可以是多模光纤,并对光纤施加相应应力的筛选,筛选合格之后才能用来成缆; (2)对成缆用各种材料,强度元件,包扎带,填充油膏等进行抽样检测,100%的检查外形和备用长度,同时,按不同应用环境,选择专用的成缆材料。 (3)在层绞结构中要特别注意绞合节距和形式的选择,要合理科学,作到在成缆、?设和使用运输中避免光纤受力。 (4)在骨架式结构中注意光纤置入沟槽时所受应力的大小,保证光纤既不受力也不松驰跳线。 (5)中心管式结构中特别注意中心管内部空间的合理利用,同时注意填充油膏的压力与温度的控制。 5.0.3光缆外护套挤制工艺的技术要点 根据不同使用环境,选择不同的护套结构和材料,并要考虑?设效应和老化效应的影响。在挤制内外护套时,注意挤出机的挤出速度、出口温度与冷却水的温度梯度、冷却速度的合理控制,保证形成合理的材料温度性能。对于金属铠装层应注意铠装机所施加压力的控制。

光纤跳线生产技术工艺流程

光纤跳线生产技术工艺流程 穿散件作业指导书 1.准备工作 1.1根据生产单的要求准备好相应的工具及原料,辅料(物料盒/胶护套/止动环/卡环/胶纸)。 1.2检查散件及上道工位移交半成品。 2.操作方法 2.1仔细确认所有材料是否和生产任务相符。 2.2六条一批穿上所有散件。 2.3将散件用胶纸固定在光缆上,预留部分为0.6—0.75m。 2.4详细作好作业记录。 3.注意事项 3.1所穿散件方向不可穿反。 3.2散件不可多穿或少穿。 3.3固定的散件必须在光缆上保持整齐。 3.4保持工作台面整洁,零件应按规定物料盒放置。 粘合剂的配制作业指导书 1.作业名 粘合剂的配制 2.范围 调配353ND粘合挤 3.使用的机器和工具 称量杯、电子秤、竹签、纸巾、超声波清洗机。 4.预备 4.1把称量杯清洁干净待用。 4.2把称量杯放在电子秤上,再把电子秤回零。 4.3准备好粘合剂353ND和固化挤。 5.操作步骤 5.1按所需量把353ND粘合挤和固化挤以10:1的比例分别倒入称量杯。 5.2用竹签在称量杯按顺时针方向均匀搅拌5分钟,使其充分。 5.3粘合挤搅拌混合后有气泡,用超声波清洗机处理二十分钟把气泡完全分离掉。 6.注意事项 调胶量要根据生产量而定,使用时间不得超过2小时。 光纤插入和加热固化作业指导书 1.作业名 光纤插入和加热固化 2.使用范围 适用于各种光纤活动连接器。 3.使用的机器和工具 烤炉(包括夹盘)、剪刀、小粘纸、米勒刀、酒精、擦试纸、纸巾、挂钩和适当工具。4.预备 4.1开始这道工序之前,首先一定要根据生产任务单检查前一道工序是合格,确认以后方

可进行以下操作。 4.2打开拷炉电源,检查时间和温度是否符合要求。 5.操作步骤 5.1把光纤活动连接器按10条一组剥纤。 5.2然后用擦拭纸蘸去少量酒精清洁光纤表面。 5.3检查清洁后的光纤表面是否干净。 5.4用细杆(可用笔)在垂直的两个方向拨动光纤,如光纤裂,应重新剥纤并检查。 5.5将已清洁干净的光纤从已吸好胶的插芯的尾部插入。插入时,用一只手拿住已吸好胶的插芯,另一只手拿光缆,将准备好的光纤从插芯的尾部穿入,直到∮0.9的光纤涂层插到插芯底部,光纤从插芯顶部伸出。回拉光纤约1mm,以确认是否断纤。 5.6全部的插入完毕确定无误后,用竹签蘸去少量粘合挤,把插芯尾部的粘合挤修整成锥形,并在插芯顶部的光纤处点上胶。 5.7以上各工序完成后,将插好光纤的插芯放到夹盘上并用小粘纸固定好,把夹盘放上烤炉进行固化。 5.8固化30分钟后,烤炉红色灯亮。检查确认固化完成,粘合挤呈褐色,用适当工具轻触后表现一定硬度。如不符合要求,应适当延长时间,直到合格为止。符合要求后旋开螺丝。取下夹盘。用适当工具把插芯顶部伸出的光纤折断,撕去小粘纸,把插芯从夹盘上取出,然后把光缆挂上挂钩,送到下一工序。 5.9正确填写操作传票。 6.温度和时间的控制 6.1每周用热电偶温度计监测并记录每台烤炉的最高温度,检测时用热电偶温度计的探测头持续接触夹盘槽一侧,持续观察显示的温度,记录其最高温度。检测时放下烤炉防护盖以免外界影响温度。 6.2烤炉的最高温度应为97~103℃,如不符合要求,应相应增减烤炉的温度控制旋扭,再次检测,使其符合要求。 6.3烤炉的时间旋钮设定为30分钟左右,可根据经验在正负5分钟内调整。固化的时间以粘合挤的颜色和硬度为准,可以相应提前或延长固化时间。 7.注意事项 7.1如果光纤断在插芯里,要及时进行处理,用钢丝顶出断纤,吸胶后重做插入。 7.2加热固化时,烤炉两边的螺丝不能拧得太紧,以免固化后卸不下来。 7.3注意光纤表面涂覆层是否清洗干净,否则影响粘合剂连接插芯的强度。 7.4一定要保持插芯表面和烤炉清洁,随时处理残留胶迹。 8.相关记录 操作传票 烤炉温度时间记录表 FC研磨作业指导书 1.使用机器和工具 精工研磨机一套,PC磨盘若干,挂钩、六角螺丝扳手、超声波清洗机、*、研磨油、纯净水、抛磨液、研磨纸和纸巾。 2.预备 2.1打开研磨机电源,启动研磨机空转3分钟左右。 2.2看机器上研磨纸是否要更换。如要更换,应撕去旧研磨纸后在研磨胶垫上涂上少量净水,将新研磨纸与橡胶垫完全粘贴,让研磨纸粘接牢固,间隙不产生气泡才能和研磨纸粘接

光纤端面处理的三环节

所谓光纤端面处理也称为端面制备,是光纤技术中的关键工序,主要包括剥覆、清洁和切割三个环节。如下: 1、光纤涂覆层的剥除 去除光纤涂覆层是光纤端面处理的第一步。可以用剥线钳和刀片两种方法进行剥除。当采用剥线钳剥除时,左手拇指和食指捏紧光纤,所露长度为5cm左右,余纤在无名指和小拇指之间自然打弯,以增加力度,防止打滑,剥线钳应与光纤垂直,上方向内倾斜一定角度,然后用钳口轻轻卡住光纤,右手随之用力,顺光纤轴向平推出去,整个过程要自然流畅,争取一次成功;当采用刀片剥除时,首先用浓硫酸浸泡3~5cm长的光纤端头1~2分钟,用酒精棉擦拭干净[2]。左手捏紧光纤,持纤要平,防止打滑,右手用刀片沿光纤向端头方向,与光纤成一定倾斜角度,顺次剥除表面涂敷层聚合物材料,采用这种方法克服了采用化学溶剂法长时间浸泡光纤腐蚀严重的缺点,而且比用剥线钳或刀片直接刮除更容易、去除更干净,不易损伤光纤包层侧面部分。 2、包层表面的清洁 观察光纤剥除部分的包层是否全部去除,若有残留必须去掉,如有极少量不易剥除的涂覆层,可用棉球沾适量酒精,边浸渍,边擦除。将脱脂棉撕成层面平整的扇形小块,沾少许酒精(以两指相捏无溢出为宜),折成V形,夹住已剥覆的光纤,顺光纤轴向擦拭,力争一次成功,一块棉花使用2~3次后要及时更换,每次要使用棉花的不同部位和层面,这样既可提高棉花利用率,又防止对光纤包层表面的二次污染。 3、光纤端面切割 切割是光纤端面制备中最关键的步骤,精密优质的切刀是基础,严格科学的操作规范是保证。常用切刀有笔式切割刀和台式光纤切割刀。使用笔式切割刀切割光纤时,光纤放置在手指上,另一手持刀在距离端头5mm左右的位置处沿垂直光纤轴线方向切割光纤,然后轻轻将切除的端头取下;使用台式光纤切割刀进行操作时,首先要清洁切刀刀片、放置光纤的V型槽和定位压板,并调整切刀位置使其摆放平稳。切割时动作要平稳自然,勿重、勿急,避免断纤、斜角、毛刺和裂痕等不良端面的产生。 表面的清洁和切割的时间应紧密衔接,不可间隔过长,特别是已制备的端面切勿放在污浊的空气中。移动时要轻拿轻放,防止与其它物件擦碰。

光纤端面加工技术及其发展趋势

Mechanical Engineering and Technology 机械工程与技术, 2016, 5(1), 1-8 Published Online March 2016 in Hans. https://www.wendangku.net/doc/dd655461.html,/journal/met https://www.wendangku.net/doc/dd655461.html,/10.12677/met.2016.51001 Optical Fiber End Face Processing Technology and Its Development Trend Bing Chen, Qilin Shu School of Mechanical Engineering, Shenyang Ligong University, Shenyang Liaoning Received: Feb. 14th, 2016; accepted: Feb. 27th, 2016; published: Mar. 2nd, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/dd655461.html,/licenses/by/4.0/ Abstract In this paper, the development of optical fiber and the optical fiber end face processing technology are reviewed all over the world. Firstly, the need and course of the development of optical fiber are simply summed up. Then, the analysis is focused on lapping, fused taper, rating carving, chem-ical corroding, and micro grinding processing of optical fiber, etc. At last, the further trend of opt-ical fiber end face processing technology is discussed. Keywords Optical Fiber, Face Processing, Grinding and Polishing, Micro Grinding 光纤端面加工技术及其发展趋势 陈兵,舒启林 沈阳理工大学机械工程学院,辽宁沈阳 收稿日期:2016年2月14日;录用日期:2016年2月27日;发布日期:2016年3月2日 摘要 回顾光纤的发展历程及国内外光纤端面加工技术的发展情况,本文针对国内外光纤的发展的需求、历程,

相关文档