文档库 最新最全的文档下载
当前位置:文档库 › 弹性力学习题第2,3章

弹性力学习题第2,3章

弹性力学习题第2,3章
弹性力学习题第2,3章

习 题 第二章

2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 2.2证明:若ij

ji a a =,则0ijk jk e a =。

2.3设a 、b 和c 是三个矢量,试证明:

2

[,,]??????=???a a a b a c

b a b b b

c a b c c a c b c c

2.4设a 、b 、c 和d 是四个矢量,证明:

()()()()()()×?×=?????a b c d a c b d a d b c

2.5设有矢量i i u =u e 。原坐标系绕z 轴转动θ角度,得到新坐标系,如图2.4所示。试

求矢量u 在新坐标系中的分量。

2.6设有二阶张量ij i j T =?T e e 。当作和上题相同的

坐标变换时,试求张量T 在新坐标系中的分量

11T ′′、12T ′′、13T ′′和33T ′′。

2.7设有3n

个数12

n

i i i A ???,对任意m 阶张量12

m

j j j B ???

定义 121212

12

n m

n

m

i i i j j j i i i j j j C A B ????????????=

若1212

n

m

i i i j j j C ??????为n m +阶张量,试证明12n

i i i A ???是

n 阶张量。

2.8设A 为二阶张量,试证明tr ?=?I A A 。 2.9设a 为矢量,A 为二阶张量,试证明:

(1)()T T ×=?×a A A a ,(2)()T T ×=?×A a a A 2.10已知张量T 具有矩阵

123[]456789=??

??????

T

求T 的对称和反对称部分及反对称部分的轴向矢量。 2.11已知二阶张量T 的矩阵为

310[]130001?=?????????

T

求T 的特征值和特征矢量。

2.12求下列两个二阶张量的特征值和特征向量:

αβ=+?A I m m ,=?+?B m n n m

其中,α和β是实数,m 和n 是两个相互垂直的单位矢量。 2.13设a 和b 是矢量,证明:

(1)2()()?×?×=?????a a a

(2)()()()()()?××=?????+?????a b b a a b a b b a

2.14设2321232x yz xz xz =?+a e e e ,求1

)2

=???w a a 及其轴向矢量。

2.15设S 是一闭曲面,r 是从原点O 到任意一点的矢径,试证明:

(1)若原点O 在S 的外面,积分30S

dS r ?=∫n r

(2)若原点O 在S 的内部,积分3

4S

dS r

π?=∫n r

2.16设

123(2)y x xz xy =+??f e e e ,试计算积分()S

dS ?×?∫f n 。式中S 是球面

2222x y z a ++=在xy 平面的上面部分。

第三章

3.1设r 是矢径、u 是位移,=+r

r u %。求d d r r %,并证明:当,1i j u 时,d d r

r

%是一个可逆 的二阶张量。

3.2设位移场为=?u A r ,这里的A 是二阶常张量,即

A 和r 无关。求应变张量ε、反对

称张量()/2=????u u 及其轴向矢量ω。

3.3设位移场为=?u A r ,这里的A 是二阶常张量,且,1i j u 。请证明: (1)变形前的直线在变形后仍为直线;

(2)变形前的平面在变形后仍然是一个平面;

(3)变形前的两个平行平面在变形后仍为两个平行的平面。

3.4在某点附近,若能确定任意微线段的长度变化,试问是否能确定任意两条微线段之间

夹角的变化;反之,若能确定某点附近任意两条微线段之间的夹角变化,试问能否确定任意微线段的长度变化。

3.5设位移场为=?u A r ,其中A 是二阶常张量,n 和m 是两个单位矢量,它们之间的夹

角为θ。求变形后θ的减小量。

3.6设n 和m 是两个单位矢量,d dr =r n 和r δδ=r m 是两个微小的矢量,变形前它们

所张的平行四边形面积为

A d δ=×r r ,试用应变张量把变形时它的面积变化率

/A A Δ表示出来,其中A Δ是面积变形前后的改变量。

3.7设在一个确定的坐标系中的应变分量为ij ε,让坐标系绕z 轴转动θ角,得一个新的坐

标系,求在新坐标系中的应变分量。 3.8在Oxy 平面上,Oa 、Ob 、Oc 和x 轴正方

向之间的夹角分别为0o 、60o 、120o ,如图3.9所示,这三个方向的正应变分别为a ε、b ε和c ε。求平面上任意方向的相对伸长度n ε。 3.9试说明下列应变分量是否可能发生: 2x

axy ε=,2y ax y ε=,z axy ε=,

22yz

ay bz γ=+,22xz ax by γ=+,0xy γ=

其中a 和b 为常数。

3.10确定常数0A ,1A ,0B ,1B ,0C ,1C ,2C 之间的关系,使下列应变分量满足协

调方程 224401()x A A x y x y ε=++++, 224401()y B B x y x y ε=++++,

22012()xy C C xy x y C γ=+++,

0z zx zy εγγ===。

3.11若物体的变形是均匀的,即应变张量和空间位置无关,试写出位移的一般表达式。

3.12设x

ax ε=,y by ε=,z cz ε=,0xy yz zx εεε===,其中a ,b ,c 是常量,求位

移的一般表达式。

弹性力学-第三章-应变状态分析

第三章应变状态分析知识点 位移与变形 正应变 纯变形位移与刚性转动位移 应变分量坐标转轴公式主应变齐次方程组 体积应变 变形协调方程 变形协调方程证明变形与应变分量 切应变 几何方程与应变张量 位移增量的分解 应变张量 应变状态特征方程 变形协调的物理意义 变形协调方程的数学意义多连域的变形协调 一、内容介绍 本章讨论弹性体的变形,物体的变形是通过应变分量确定的。因此,首先确定位移与应变分量的基本关系-几何方程。由于应变分量和刚体转动都是通过位移导数表达的,因此必须确定刚体转动位移与纯变形位移的关系,才能完全确定一点的变形。 对于一点的应变分量,在不同坐标系中是不同的。因此,应变状态分析主要是讨论不同坐标轴的应变分量变化关系。这个关系就是应变分量的转轴公式;根据转轴公式,可以确定一点的主应变和应变主轴等。当然,由于应变分量满足二阶张量变化规律,因此具体求解可以参考应力状态分析。 应该注意的问题是变形协调条件,就是位移的单值连续性质。假如位移函数不是基本未知量,由于弹性力学是从微分单元体入手讨论的,因此变形后的微分单元体也必须满足连续性条件。这在数学上,就是应变分量必须满足变形协调方程。在弹性体的位移边界,则必须满足位移边界条件。 二、重点 1、应变状态的定义:正应变与切应变;应变分量与应变张量; 2、几 何方程与刚体转动;3、应变状态分析和应变分量转轴公式;4、应变 状态特征方程和应变不变量;主应变与应变主轴;5、变形协调方程 与位移边界条件。

§3.1 位移分量与应变分量几何方程 学习思路: 由于载荷的作用或者温度的变化,物体内各点在空间的位置将发生变化,就是产生位移。这一移动过程,弹性体将同时发生两种可能的变化:刚体位移和变形位移。变形位移是与弹性体的应力有着直接的关系。 弹性体的变形通过微分六面体单元描述,微分单元体的变形分为两个部分,一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化,分别使用正应变和切应变表示这两种变形的。 由于是小变形问题,单元变形可以投影于坐标平面分析。根据正应变和切应变定义,不难得到应变与位移的关系-几何方程,或者称为柯西方程。 几何方程给出的应变通常称为工程应变。几何方程可以表示为张量形式,应该注意的是,正应变与对应应变张量分量相等;而切应变等于对应的应变张量分量的两倍。 几何方程给出了位移分量和应变分量之间的关系。 学习要点: 1、位移函数; 2、变形与应变分量; 3、正应变表达式; 4、切应 变分量;5、几何方程与应变张量。 1、位移函数 由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发生变化,即产生位移。这个移动过程,弹性体将可能同时发生两种位移变化。 第一种位移是位置的改变,但是物体内部各个点仍然保持初始状态的相对位置不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。 第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位置,而且改变了物体内部各个点的相对位置,这是物体形状变化引起的位移,称为变形。 一般来说,刚体位移和变形是同时出现的。当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。 根据连续性假设,弹性体在变形前和变形后仍保持为连续体。那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连

弹性力学试题

第一章绪论 1、所谓“完全弹性体”是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识是(A )。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的是(D )。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于(弹性)阶段的(应力)、(应变)和(位移) 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围和精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围和精度。 7、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力和位移分析要用什么分析方法?(C)

A 、材料力学 B 、结构力学 C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞和键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都是体力。(√) 11、下列外力不属于体力的是(D ) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它是质量力。 13、在弹性力学和材料力学里关于应力的正负规定是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D ) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 1 τ2 τ3 τ4 τO x z 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

弹性理论习题及答案

第三章弹性理论 姓名班级学号考试时间:20分钟 一、单项选择题 1、点弹性和弧弹性之间()关系 A、有 B、没有 C、不确定 2、冰棒的需求价格弹性()药品的需求价格弹性 A、大于 B、小于 C、等于 D、大于或等于 3、供给弹性()点弹性和弧弹性的区分 A、有 B、没有 C、不确定 4、垂直的需求曲线是()弹性 A、完全有 B、富有 C、完全无 5、水平的供给曲线是()弹性 A、完全有 B、富有 C、完全无 6、一种商品价格下降,另外一种商品需求上升,则两种商品之间是()关系 A、互补品 B、替代品 C、正常品 D、劣品 7、在长期中,供给曲线更()弹性 A、缺乏 B、富有 C、不确定 D、依商品而定 8、容易被替代的商品,其需求弹性() A、大 B、小 C、不确定 二、多项选择题 1、弹性一般分为()弹性 A、供给 B、需求 C、价格 D、收入 2、利用价格需求弹性可以区分出() A、生活必须品 B、奢侈品 C、经济商品 D、免费物品 三、简答题 1、影响商品需求价格弹性的因素 2、需求价格弹性的五种情况

答案 一.单项选择题 2. A 二.多项选择题 三.简答题 1. 影响商品需求价格弹性的因素 (1). 必需品与奢侈品 一般地说,奢侈品需求对价格是有弹性的,而必需品则是缺乏弹性的。 (2). 相近替代品的可获得性 一般来说,相近替代品越多的商品越富有弹性。替代品多,消费者从这种商品转向购买其他商品较为容易,对商品价格更敏感(如,香烟)。 (3). 商品所划定范畴的大小 一般来说,如果某产品存在着很接近的替代品的数量愈多,其需求价格弹性愈大。 (4). 时间的长短 计算某种商品价格弹性系数所考虑的时间愈长,其系数会愈大。当某一商品价格上升时,消费者需要一段时间去寻找可以接受的替代品,因此,短期内对该商品的需求量变化不大,而长期内消费者更可能转向其他替代品,因此,该提价商品的需求量变化会更加明显些。 2. 需求价格弹性的五种情况 (1). 当e=0时,需求对价格是完全无弹性的,即需求量与价格无关。则需求曲线为一条垂直于x轴的直线。如,垄断价格;婚丧用品,特效药等接近于完全无弹性。 (2). 当e=1时,需求对价格为单位弹性,即价格变化的百分比与需求量变化的百分比相等。 (3). 当e=∞时,需求对价格是完全有弹性,即需求曲线为一条垂直于P轴的直线。如,银行以某一固定的价格收购黄金;实行保护价的农产品。 (4). 当e>1时,需求对价格富有弹性,即需求变化的幅度大于价格变化的幅度。如,奢侈品。 (5). 当e<1时,需求队价格缺乏弹性,即需求变化的幅度小于价格变化的幅度。如,生活必需品。

弹性力学试题

第一章绪论 1、所谓“完全弹性体”就是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识就是(A )。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都就是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的就是(D )。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于(弹性)阶段的(应力)、(应变)与(位移) 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围与精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围与精度。 7、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力与位移分析要用什么分析方法?(C) A、材料力学 B、结构力学

C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞与键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都就是体力。(√) 11、下列外力不属于体力的就是(D) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它就是质量力。 13、在弹性力学与材料力学里关于应力的正负规定就是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 1τ2 τ3τ4τO x z 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

弹性力学教材习题及解答

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 2-1. 选择题 a. 所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁 横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。试写出球体的面力边界条件。

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:

弹性力学教案.doc

弹性力学教案 第一章绪论(4学时) 介绍弹性力学研究的内容、基本概念和基本假设。 1、主要内容: 第一节弹性力学的内容 第二节弹性力学的基本概念 第三节弹性力学的基本假设 2、本章重点: 弹性力学的基本概念。 3、本章难点: 弹性力学的基本概念。 4、本章教学要求: 理解弹性力学的基本假设、基本概念。 5、教学组织: 弹性力学是在学习了理论力学、材料力学等课程的基础上开设的专业课程。学生已经建立了关于应力、应变、位移的概念。而且能够用材料力学的方法对杆件进行应力计算;并进一步对其进行强度、刚度和稳定性的分析。 在本章第一节的教学中,要明确弹性力学、材料力学和结构力学在研究对象上的分工的不同;在研究方法上的不同;及其不同的原因。并且让学生初步了解弹性力学的研究方法。 在本章第二节的教学中,要进一步深入研究作用在弹性体上的力。明确内力与外力、体力与面力、应力矢量与应力张量等概念及其表达方式。 在本章第三节的教学中,研究弹性力学的基本假设。通过基本假设的讲解,让学生明白合理的科学假设在科学研究中的必要性和重要性。要启发学生理解弹性力学的各个假设及其限定的缘由。 第二章弹性力学平面问题的基本理论(14学时) 本章研究平面问题的基本方程、边界条件及其解法。 1、主要内容: 第一节平面问题 第二节平衡微分方程 第三节斜截面上的应力、主应力 第四节几何方程、刚体位移 第五节斜截面上的应变及位移 第六节物理方程 第七节边界条件 第八节圣维南原理 第九节按位移求解的平面问题 第十节按应力求解的平面问题、相容方程 第十一节常体力情况下的简化 第十二节应力函数、逆解法与半逆解法 2、本章重点: 平面问题的基本方程、应力函数及边界条件。 3、本章难点: 平面问题的基本方程及边界条件的确定。

《弹性力学》试题

《弹性力学》试题 一.名词解释 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2.圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 二.填空 1.最小势能原理等价于弹性力学基本方程中:平衡微分方程,应力边界条件。 2.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移边界条件、应力边界条件和混合边界条件。 3.一组可能的应力分量应满足:平衡微分方程,相容方程(变形协调条件)。 4.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 5.平面问题的应力函数解法中,Airy应力函数 在边界上值的物理意义为边界上某一点(基准点)到任一点外力的矩。 6.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 7.弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 8.利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

弹性力学复习题(水工)要点

弹性力学复习题(06水工本科) 一、选择题 1. 下列材料中,()属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 2 关于弹性力学的正确认识是()。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 3. 弹性力学与材料力学的主要不同之处在于()。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 4. 所谓“完全弹性体”是指()。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 5. 所谓“应力状态”是指()。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 6. 变形协调方程说明()。 A. 几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的; B. 微分单元体的变形必须受到变形协调条件的约束; C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件; D. 变形是由应变分量和转动分量共同组成的。 7. 下列关于弹性力学基本方程描述正确的是()。 A. 几何方程适用小变形条件; B. 物理方程与材料性质无关; C. 平衡微分方程是确定弹性体平衡的唯一条件; D. 变形协调方程是确定弹性体位移单值连续的唯一条件; 8、弹性力学建立的基本方程多是偏微分方程,最后需结合()求解这些微分方程,以

应用弹性力学教程第三章

第三章薄壁结构的构造与传力——板与壳3.1 飞机薄壁结构所承受的载荷 3.2 结构元件的功用 ·现代飞机结构是由蒙皮、横向加强件、纵向加强件组成的薄壁结构。他们中绝大多数用金属材料制成。近年来部分结构元件开始采用复合材料,包括金属基和陶瓷基复合材料。

·飞机结构的主要功用是支撑和传递飞机在使用中所遇到的载荷,提供最佳的气动外形,以及保障乘员、有效载重等免遭飞行和着路时所处外部环境条件的危害。 ·无论是机翼尾翼还是机身都可看作是蒙皮外壳+纵横加强元件组成: 每种元件在承力和传力过程中都有其各自独有的作用,实际人员可根据不同的传力方案来进行薄壁结构的不同布局。 (一) 机翼 机翼结构由蒙皮、翼肋、翼梁以及长桁等组成,如图3.1所示。 机翼支承在机身上,机身一侧的半个机翼?? ?比)像一根悬臂板(小展弦比)像一根悬臂梁(大展弦 机翼上的???? ? ????? ???????→?????????? ???????→→???????传到机身支承端 翼梁腹板剪流蒙皮剪流通过剪切扭转来承受蒙皮正应力翼梁腹板正应力翼梁突缘轴力长桁轴力由弯曲机翼上发生外挂载荷等油箱载荷起落架载荷气动力

?? ?? ?? ?? ? →?? ?→???? ???????→?? ?? ??????????→?翼梁腹板剪流 翼梁气动力蒙皮剪流翼肋腹板剪流翼肋气动力长桁气动力 拉伸剪切弯曲蒙皮气动力转变通过蒙皮 注意:(1)长桁支撑在翼肋上,就像一根具有多支点(即翼肋支点)的连续梁,将其上的空气动力转变为支点上的集中力而作用在翼肋上; (2)翼肋上的空气动力,加上长桁传来的集中力,通过翼肋本身的受力, 而以剪流形式传给蒙皮和翼梁腹板。 (二) 蒙皮 机翼蒙皮的主要作用是形成飞机结构光滑而密闭的表面,产生、支承并传递不均匀分布的空气动力。机翼之所以能成为飞机的主要升力面,就由于它能产生这种不均匀分布的空气动力(图 3.3和图3.4)。 蒙皮具有较强的抗拉能力。但是,薄的蒙皮却缺乏较高的抗压和抗剪能力。蒙皮愈薄,愈容易在受压和受剪时失去稳定性而发生屈曲。

弹性力学重点复习题及其答案

弹性力学重点复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规 定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。 其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部 分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量 应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为 了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

弹性力学课后习题详解

第一章习题 1-1 试举例证明,什么是均匀的各向异性体,什么是非均匀的各向同性体,什么是非均匀的各向异性体。 1.均匀的各向异性体: 如木材或竹材组成的构件。整个物体由一种材料组成,故为均匀的。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 2.非均匀的各向同性体: 实际研究中,以非均匀各向同性体作为力学研究对象是很少见的,或者说非均匀各向同性体没有多少可讨论的价值,因为讨论各向同性体的前提通常都是均匀性。设想物体非均匀(即点点材性不同),即使各点单独考察都是各向同性的,也因各点的各向同性的材料常数不同而很难加以讨论。 实际工程中的确有这种情况。如泌水的水泥块体,密度由上到下逐渐加大,非均匀。但任取一点考察都是各向同性的。 再考察素混凝土构件,由石子、砂、水泥均组成。如果忽略颗粒尺寸的影响,则为均匀的,同时也必然是各向同性的。反之,如果构件尺寸较小,粗骨料颗粒尺寸不允许忽略,则为非均匀的,同时在考察某点的各方向材性时也不能忽略粗骨料颗粒尺寸,因此也必然是各向异性体。因此,将混凝土构件作为非均匀各向同性体是很勉强的。 3.非均匀的各向异性体: 如钢筋混凝土构件、层状复合材料构件。物体由不同材料组成,故为非均匀。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 1-2一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体一般的岩质地基和土质地基能否作为理想弹性体 理想弹性体指:连续的、均匀的、各向同性的、完全(线)弹性的物体。 一般的混凝土构件(只要颗粒尺寸相对构件尺寸足够小)可在开裂前可作为理想弹性体,但开裂后有明显塑性形式,不能视为理想弹性体。 一般的钢筋混凝土构件,属于非均匀的各向异性体,不是理想弹性体。 一般的岩质地基,通常有塑性和蠕变性质,有的还有节理、裂隙和断层,一般不能视为理想弹性体。在岩石力学中有专门研究。 一般的土质地基,虽然是连续的、均匀的、各向同性的,但通常具有蠕变性质,变形与荷载历史有关,应力-应变关系不符合虎克定律,不能作为理想弹性体。在土力学中有专门研究。 1-3 五个基本假定在建立弹性力学基本方程时有什么用途 连续性假定使变量为坐标的连续函数。完全(线)弹性假定使应力应变关系明确为虎克定律。均匀性假定使材料常数各点一样,可取任一点分析。各向同性使材料常数各方向一样,坐标轴方位的任意选取不影响方程的唯一性。小变形假定使几何方程为线性,

弹性力学简明教程 课后习题答案

《弹性力学简明教程》 习题提示和参考答案 第二章习题的提示与答案 2-1 是 2-2 是 2-3 按习题2-1分析。 2-4 按习题2-2分析。 2-5 在的条件中,将出现2、3阶微量。当略去3阶微量后,得出的切应力互等定理完全相同。 2-6 同上题。在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。其区别只是在3阶微量(即更高阶微量)上,可以略去不计。 2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。 2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。 2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。 2-10 参见本章小结。 2-11 参见本章小结。 2-12 参见本章小结。 2-13 注意按应力求解时,在单连体中应力分量必须满足 (1)平衡微分方程, (2)相容方程, (3)应力边界条件(假设)。 2-14 见教科书。 2-15 见教科书。 2-16 见教科书。 2-17 取 它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。 2-18 见教科书。 2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得出。 第三章习题的提示与答案 3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解: (1)校核相容条件是否满足, (2)求应力, (3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。

3-2 用逆解法求解。由于本题中l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。 3-3 见3-1例题。 3-4 本题也属于逆解法的问题。首先校核是否满足相容方程。再由求出应力后,并求对应的面力。本题的应力解答如习题3-10所示。应力对应的面力是: 主要边界: 所以在边界上无剪切面力作用。下边界无法向面力;上边界有向下的法向面力q。 次要边界: x=0面上无剪切面力作用;但其主矢量和主矩在x=0 面上均为零。 因此,本题可解决如习题3-10所示的问题。 3-5 按半逆解法步骤求解。 (1)可假设 (2)可推出 (3)代入相容方程可解出f、,得到 (4)由求应力。 (5)主要边界x=0,b上的条件为 次要边界y=0上,可应用圣维南原理,三个积分边界条件为 读者也可以按或的假设进行计算。 3-6 本题已给出了应力函数,应首先校核相容方程是否满足,然后再求应力,并考察边界条件。在各有两个应精确满足的边界条件,即 而在次要边界y=0 上,已满足,而的条件不可能精确满足(否则只有A=B=0, 使本题无解),可用积分条件代替: 3-7 见例题2。 3-8 同样,在的边界上,应考虑应用一般的应力边界条件(2-15)。

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1 MT -2 。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa , =2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa , =2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa , =2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

同济【弹性力学试卷】2008年期终考试A-本科

同济大学课程考核试卷(A 卷) 2008 — 2009 学年第 一 学期 命题教师签名: 审核教师签名: 课号:030192 课名: 弹性力学 考试考查:考试 此卷选为:期中考试( )、期终考试(√ )、重考( )试卷 年级 专业 学号 姓名 得分 一.是非题(正确,在括号中打√;该题错误,在括号中打×。)(共30分,每小题2分) 1. 三个主应力方向必定是相互垂直的。( ) 2. 最小势能原理等价于平衡方程和面力边界条件。( ) 3. 轴对称的位移对应的几何形状和受力一定是轴对称的。( ) 4. 最大正应变是主应变。( ) 5. 平面应力问题的几何特征是物体在某一方向的尺寸远小于另两个方向的尺寸。( ) 6. 最大剪应力对应平面上的正应力为零。( ) 7. 弹性体所有边界上的集中荷载均可以按照圣维南原理放松处理边界条件。( ) 8. 用应力函数表示的应力分量满足平衡方程,但不一定满足协调方程。( ) 9. 经过简化后的平面问题的基本方程及不为零的基本未知量(应力、应变和位移)均为8 个。( ) 10. 运动可能的位移必须满足已知面力的边界条件。( ) 11. 实对称二阶张量的特征值都是实数。( ) 12. 对单、多连通弹性体,任意给出的应变分量只要满足协调方程就可求出单值连续的位 移分量。( ) 13. 若整个物体没有刚体位移,则物体内任意点处的微元体都没有刚体位移。( ) 14. 出现最大剪应力的微平面和某两个应力主方向成45度角。( ) 15. 对任意弹性体,应力主方向和应变主方向一致。( ) 二.分析题(共20分,每小题10分) 1.已知应力张量为()()2211e e e e σ?-+?+=b a b a ,0>>a b (1) 设与xy 平面垂直的任意斜截面的法向矢量为21sin cos e e n θθ+=,试求该斜截面上的正应力与剪应力。 (2) 求最大和最小剪应力值。

弹性力学习题集

1 《弹性力学》习题 第一章:绪论 第二章:平面问题的基本理论 一、试导出求解平面应力问题的用应力分量表示的相容方程。 二、试叙述弹性力学两类平面问题的几何、受力、应力、应变特征,并指出这两类平面问题 中弹性常数间的转换关系。 三、弹性力学问题按应力和位移求解,分别应满足什么方程? 四、写出直角坐标下弹性力学平面问题的基本方程和边界条件? 五、求解弹性力学问题时,为什么需要利用圣维南原理? 六、试判断下列应变场是否为可能的应变场?(需写出判断过程) , , 。 七、试写出应力边界条件: (a )图用极坐标形式写出;(b )图用直角坐标形式写出。 八、已知受力物体中某点的应力分量为:0,2,,,0,2x y z xy yz zx a a a a σσστττ======。试求 作用在过此点的平面31x y z ++=上的沿坐标轴方向的应力分量,以及该平面的正应力和切应力。 九、图示矩形截面悬臂梁,长为l ,高为h ,在左端面受力P 作用。不计体力,试求梁的应 力分量。(应力函数取为3Axy Bxy ?=+) 十、试用下面的应力函数求解如图所示挡水墙的应力分量。已知挡水墙的密度为ρ,厚度为 h ,水的密度为γ。

2 五、 2、(10分)如图所示为处于平面应力状态下的细长薄板条,上下边界受 P 力的作用,其余边界上均无面力作用。试证明A 点处为零应力状态。 第三章:平面问题的直角坐标解答 三、写出下列平面问题的定解条件 1、(10分)楔型体双边受对称均布剪力q 。 2、(10分)楔形体在一面受有均布压力q 和楔顶 A y 2233 3 3161066x y x Axy Bxy C x y D Exy ???=-++++ ???

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

“弹性力学”期末试卷(2003).

华中科技大学土木工程与力学学院 《弹性力学》试卷 2003~2004学年度第一学期 一. 如图所示为两个平面受力体,试写出其应力边界条件。(固定边不考虑) x (a)(b) 二.已知等厚度板沿周边作用着均匀压力σx=σy= - q ,若O点不能移动或转动, 试求板内任意点A(x,y)的位移分量。 q x 三.如图所示简支梁,它仅承受本身的自重,材料的比重为γ, 考察Airy应力函 数:y Dx Cy By y Ax2 3 5 3 2+ + + = ? 1.为使?成为双调和函数,试确定系数A、B、C、D之间的关系; 2.写出本问题的边界条件。并求各系数及应力分量。

四. 如图所示一圆筒,内径为a ,外径为b ,在圆筒内孔紧套装一半径为a 的刚性圆柱体,圆筒的外表面受压力q 的作用,试确定其应力r σ,θσ。

五. 如图所示单位厚度楔形体,两侧边承受按 τ=qr 2(q 为常数)分布的剪应力作用。试利用应力函数 θθθφ2cos 4cos ),(4244r b r a r += 求应力分量。 O y 六. 设]27 4)3(1[),(22 32 2 a xy x a y x m y x F ---+=,试问它能否作为如图所示高为a 的等边三角形杆的扭转应力函数(扭杆两端所受扭矩为M)?若能,求其应力分 量。 (提示:截面的边界方程是3a x -=,3 323a x y ±= 。)

1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)薄板小挠度弯曲时,体力可以由薄板单位面积内的横向荷载q 来等代。 (√) (2)对于常体力平面问题,若应力函数),(y x ?满足双调和方程02 2 =???,那么由) ,(y x ?确定的应力分量必然满足平衡微分方程。 (√) (3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的结 果会有所差别。 (×) (4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。 (×) (5)无论是对于单连通杆还是多连通杆,其载面扭矩均满足如下等式: ??=dxdy y x F M ),(2,其中),(y x F 为扭转应力函数。 (×) (6)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。 (√) (7)平面应力问题和平面应变问题的应变协调方程相同,但应力协调方程不同。 (√) (8)对于两种介质组成的弹性体,连续性假定不能满足。 (×) (9)位移变分方程等价于以位移表示的平衡微分方程及以位移表示的静力边界条件。(√) (10)三个主应力方向一定是两两垂直的。 (×) 2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。)(共20分,每小题2分) (1)弹性力学是研究弹性体受外界因素作用而产生的 应力、应变和位移 的一门学科。 (2)平面应力问题的几何特征是: 物体在一个方向的尺寸远小于另两个方向的尺寸 。 (3)平衡微分方程则表示物体 内部 的平衡,应力边界条件表示物体 边界 的平衡。 (4) 在通过同一点的所有微分面中,最大正应力所在的平面一定是 主平面 。 (5)弹性力学求解过程中的逆解法和半逆解法的理论基础是: 解的唯一性定律 。 (6)应力函数()4 2 2 4 ,cy y bx ax y x ++=Φ如果能作为应力函数,其c b a ,,的关系应该是 033=++c b a 。

相关文档
相关文档 最新文档