文档库 最新最全的文档下载
当前位置:文档库 › 阿波罗尼奥斯问题

阿波罗尼奥斯问题

阿波罗尼奥斯问题

阿波罗尼奥斯问题

问题是由公元前3世纪下半叶古希腊数学家阿波罗尼奥斯提出的几何作图问题,载于他的《论接触》中,惜原书已失传。后来公元4世纪学者帕波斯记载了其中所提出的一个作图问题:设有3个图形,可以是点、直线或圆,求作一圆通过所给的点(如果3个图形中包含点的话)并与所给直线或圆相切。当中共有10种可能情形,其中最著名的是:求作一圆与3个已知圆相切,常称为阿波罗尼奥斯问题(Apollonius'problem)。据说阿波罗尼奥斯本人解决了问题,可惜结果没有流传下来。

1600年法国数学家韦达在一篇论着中应用了两个圆相似中心的欧几里得解法,通过对每一种特殊情况的讨论,严格陈述了该问题的解。后来牛顿、蒙日、高斯等许多数学家都对这一问题进行过研究,得到多种解决方法。其中以法国数学家热尔岗约于1813年给出的解法较有代表性。以上所说都是通常的标尺作图法。如果放宽作图条件限制,则有多种简捷的解法。

(完整版)阿波罗尼斯圆及其应用

阿波罗尼斯圆及其应用 数学理论 1.“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且满足,λ=PB PA 当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。 (1=λ时P 点的轨迹是线段AB 的中垂线) 2.阿波罗尼斯圆的证明及相关性质 定理:B A ,为两已知点,Q P ,分别为线段AB 的定比为)1(≠λλ的内外分点,则以PQ 为直径的圆O 上任意点到B A ,两点的距离之比为.λ 证 (以1>λ为例) 设λ===QB AQ PB AP a AB ,,则 1 ,1,1,1-=-=+=+=λλλλλλa BQ a AQ a PB a AP . 由相交弦定理及勾股定理知 ,1,1222222222 -=+=-=?=λλλa BC AB AC a BQ PB BC 于是,1,122-=-=λλλa AC a BC .λ=BC AC 而C Q P ,,同时在到B A ,两点距离之比等于λ的曲线(圆)上,不共线的三点所确定的圆是唯一的,因此,圆O 上任意一点到B A ,两点的距离之比恒为.λ 性质1.当1>λ时,点B 在圆O 内,点A 在圆O 外; 当10<<λ时,点A 在圆O 内,点B 在圆O 外。 性质2.因AQ AP AC ?=2 ,过AC 是圆O 的一条切线。 若已知圆O 及圆O 外一点A ,可以作出与之对应的点,B 反之亦然。 性质3.所作出的阿波罗尼斯圆的直径为122-=λλa PQ ,面积为.12 2?? ? ??-λλπa 性质4.过点A 作圆O 的切线C AC (为切点),则CQ CP ,分别为ACB ∠的内、外角平分线。 性质5.过点B 作圆O 不与CD 重合的弦,EF 则AB 平分.EAF ∠

阿波罗尼斯圆专题汇编(史上最全原创)

阿波罗尼斯圆性质及其应用 背景展示 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一 (人教A 版124页B 组第3题)已知点M 与两个定点O(0,0),A(3,0)点距离的比为,求点M 的轨迹方程。 (人教A 版144页B 组第2题)已知点M 与两个定点 距离的比是一个正数m,求点M 的轨迹方程,并说明轨迹是什么图形(考虑m=1和m )。 公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下著名结果:到平面上两定点距离比等于定值的动点轨迹为直线或圆.(定值为1时是直线,定值不是1时为圆) 定义:一般的平面内到两顶点A ,B 距离之比为常数( )的点的轨迹为圆,此圆称为阿波罗尼斯圆 类型一:求轨迹方程 1.已知点M 与两个定点()0,0O ,()0,3A 的距离的比为21,求点M 的轨迹方程 2.已知()02>=a a AB ,()0≥=λλMB MA ,试分析M 点的轨迹 3.(2006年高考四川卷第6题)已知两定点A (-2,0),B (1,0),如果动点P 满足条件 ,则点P 的轨迹所包围的图形面积等于( ) A . B. C. D.9 类型二:求三角形面积的最值 4.(2008江苏卷)满足条件AB = 2,AC = BC 的?ABC 的面积的最大值是 5.(2011浙江温州高三模拟)在等腰 ABC 中,AB=AC ,D 为AC 的中点,BD=3,则 ABC 面积的最大值为 6.在ABC 中,AC=2,AB=mBC(m>1),恰好当B=时 ABC 面积的最大,m=

阿波罗尼斯问题详细解答

――――――阿波罗尼斯问题详细解答
1

序号 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 附录




阿波罗尼斯是一个什么样的人?
什么是阿波罗尼斯问题?
阿波罗尼斯问题有多少个子问题?
怎样作一条线段的垂直平分线?
怎样过线段上一点作该线段的垂线?
怎样过圆上一点作该圆的切线?
怎样作两个圆的公切线?
什么叫反演变换?
怎样作反演圆内一点的反演点?
怎样作反演圆外一点的反演点?
怎样作一条直线的反演图形?
怎样作一个圆的反演图形?
怎样才能让一条直线经过反演变换后保持不变?
怎样才能让一个圆经过反演变换后保持不变?
怎样作线段 a、b 的比例中项 c?
什么叫圆的幂?怎样作出圆的幂?
什么是圆的根轴(或等幂轴)?怎样作出圆的根轴?
什么是圆的根心?怎样作出圆的根心?
什么叫相(位)似中心?怎样作出相(位)似中心?
什么叫相(位)似点?什么叫正相(位)似点?什么叫逆相似点?
什么叫两圆周的共同幂?
什么叫相似轴?怎样作出相似轴?
阿波罗尼斯问题之一:点点点
阿波罗尼斯问题之二:线线线
阿波罗尼斯问题之三:点线线
阿波罗尼斯问题之四:点点线
阿波罗尼斯问题之五:点点圆
阿波罗尼斯问题之六:点圆圆
阿波罗尼斯问题之七:点线圆
阿波罗尼斯问题之八:线圆圆
阿波罗尼斯问题之九:线线圆
阿波罗尼斯问题之十:圆圆圆
米勒问题和米勒定理
页码 03 03 03 03 04 04 05 06 06 06 07 08 10 10 10 11 11 13 13 14 16 17 17 18 19 22 26 31 35 41 47 55 69
2

阿波罗尼斯圆性质及其应用探究

阿波罗尼斯圆性质及其应用探究 背景展示 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一。 1.“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且满足 ,λ=PB PA 当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。 (1=λ时P 点的轨迹是线段AB 的中垂线) 2.阿波罗尼斯圆的证明. . 角坐标系中点为原点建立平面直轴,所在的直线为证明:以AB x AB ()()(), 不妨设y x P a B a A ,,0,,0,-()()22 222222,,,,PA PA PB PA PB x a y x a y PB λλλ??=∴==∴++=-+??Q ()( )()() 0112112222222=-++--+-∴a ax y x λλλλ ( ) () 2 22 2 222222 221211,01112??? ??-=+??? ? ??-+-∴=-+-+-+∴λλλλλλλa y a x a ax y x λλλλλ=??? ??-=+???? ? ?-+-∴PB PA a y a x 的解都满足又以上过程均可逆,2 22 2 221211 .120,11222为半径的圆上运动为圆心,以在以综上,动点-=???? ??-+λλλλa r a C P 3.阿波罗尼斯圆的性质. 性质1 点A 、点B 在圆心C 的同侧; 当1>λ时,点B 在圆C 内,点A 在圆C 外; 当10<<λ时,点A 在圆C 内,点B 在圆C 外。 (). ,1 1 ,012111122222的右侧当然也在点的右侧, 在点点所示,时,如图证明:当A B C a a a a a ∴>-+∴>-=--+>λλλλλλ

阿波罗尼斯圆

阿波罗尼斯圆 一、适用题型 1、已知两个线段长度之比为定值; 2、过某动点向两定圆作切线,若切线张角相等; 3、向量的定比分点公式结合角平分线; 4、线段的倍数转化; 二、基本理论 (一)阿波罗尼斯定理(又称中线长公式) 设三角形的三边长分别为c b a ,,,中线长分别为c b a m m m ,,,则: 2 2222 222222222 1221221c b a m c b a m b c a m a c b +=++=++= + (二)阿波罗尼斯圆 一般地,平面内到两个定点距离之比为常数(1)λλ≠的点的轨迹是圆,此圆被叫做“阿波罗尼斯圆” ()()()()则,若设不妨设,,1,0,0,0,,0,y x P a BP AP a B a A ≠>>=-λλλ ()()2222y a x y a x +-=++λ 化简得:2 22 2 221211??? ??-=+???? ? ?-+-a y a x λλλλ 轨迹为圆心a a 12011222-??? ? ??-+λλλλ,半径为,的圆

(三)阿波罗尼斯圆的性质 1、满足上面条件的阿波罗尼斯圆的直径的两端是按照定比λ内分AB 和外分AB 所得的两个分点; 2、直线CM 平分ACB ∠,直线CN 平分ACB ∠的外角; 3、 BN AN BM AM = 4、CN CM ⊥ 5、内在圆点内; 在圆时,点O A O B ,101<<>λλ; 6、若AD AC ,是切线,则CD 与AO 的交点即为B ; 7、若点B 做圆O 的不与CD 重合的弦EF ,则AB 平分EAF ∠; 三、补充说明 1、关于性质1的证明 定理:B A ,为两已知点,Q P ,分别为线段AB 的定比为()1≠λλ的内、外分点,则以PQ 为直径的圆O 上任意点到B A ,两点的距离之比等于常数λ。 证明:不妨设1>λ 1 ,1,1,1,-= -=+=+==λλλλλλa BQ a AQ a BP a AP CD PQ O B a AB ,则 垂直的弦的与直径作圆过点设 由相交弦定理及勾股定理得:

赫伦的三角形面积公式全解

赫伦的三角形面积公式 (约公元75年) 阿基米德之后的古典数学 阿基米德在数学景观上投下了长长的影子。其后的古代数学家虽然都有自己的建树,但却没有一个人能够比得上叙拉古城这位伟大的数学家,随着希腊文明的衰落和罗马的同时兴起,事情益发明显。阿基米德死于罗马人之手,预示了以后所发生的事情,这种看法也许有点儿简单化,但并非没有道理。希腊人专注于自己的理念世界,在罗马强大的军事力量面前,确实不堪一击,而罗马人则忙于建立政治秩序和征服世界,完全无视希腊人热中的抽象思维。如同对阿基米德一样,罗马新秩序同样也不能容许希腊传统的存在。 一些资料也许有助于我们的认识。我们已看到,叙拉古城于公元前212年陷落于罗马的马塞卢斯之手。三次残酷的布匿战争最终以公元前146年罗马消灭迦太基而告终,罗马人从此确立了对中地中海两岸的控制。同一年,希腊的最后一座重要城邦科林斯向罗马军投降。一百年后,尤利乌斯·凯撒征服了高卢;公元前30年,在安东尼与克娄巴特拉的统治失败后,埃及落入屋大维之手。甚至野蛮的不列颠也于公元30年臣服于罗马。自此,罗马正式成为帝国,对西方世界行使着史无前例的统治。 随着罗马的征服,他们复杂的工程项目也随之发展起来:桥梁、道路和沟渠遍布欧洲大陆。然而,曾强烈吸引希波克拉底、欧几里得和阿基米德的纯粹数学却未能像以前那样兴盛。 但是,依然保持辉煌的是亚历山大图书馆。这座环境优美的图书馆吸引了地中海地区最优秀的学者,是一个最令人兴奋的地方。阿基米德的一位同时代人,著名数学家厄拉多塞(公元前约284—192年)就曾大半生在这里担任馆长。厄拉多塞身居学术要职,是一位阅读广泛、著作等身的学者,许多关于纯数学、哲学、地理学,特别是天文学的著作都出自他的手,这最后一项,不仅包括许多学术论文,而且还包括一部题为《赫耳墨斯》的长诗,将天文学的基本知识写成了诗歌!像众多的古代著作家一样,厄拉多塞的著作大部分散失了,我们只能依靠后来注释者的描述来了解他。但他身为当时的学界名流,似乎是没有疑问的。阿基米德至少有一篇著作是题献给厄拉多塞的,并视其为一个伟大的天才。

古希腊数学史

古希腊数学史 古希腊的地理范围,除了现在的希腊半岛外,还包括整个爱琴海区域和北面的马其顿 和色雷斯、意大利半岛和小亚细亚等地。 公元前5、6世纪,特别是希、波战争以后,雅典取得希腊城邦的领导地位,经济生活高度繁荣,生产力显著提高,在这个基础上产生了光辉灿烂的希腊文化,对后世有深 远的影响。 希腊数学的发展历史可以分为三个时期。第一期从伊奥尼亚学派到柏拉图学派为止,约为公元前七世纪中叶到公元前三世纪;第二期是亚历山大前期,从欧几里得起到公 元前146年,希腊陷于罗马为止;第三期是亚历山大后期,是罗马人统治下的时期, 结束于641年亚历山大被阿拉伯人占领。 从古代埃及、巴比伦的衰亡,到希腊文化的昌盛,这过渡时期留下来的数学史料 很少。 不过希腊数学的兴起和希腊商人通过旅行交往接触到古代东方的文化有密切关系。 伊奥尼亚位于小亚细亚西岸,它比希腊其他地区更容易吸收巴比伦、埃及等古国积累 下来的经验和文化。 在伊奥尼亚,氏族贵族政治为商人的统治所代替,商人具有强烈的活动性,有利于思 想自由而大胆地发展。 城邦内部的斗争,帮助摆脱传统信念在希腊没有特殊的祭司阶层,也没有必须 遵守的教条,因此有相当程度的思想自由。 这大大有助于科学和哲学从宗教分离开来。古希腊第一位科学家—泰勒斯 米利都是伊奥尼亚的最大城市,也是泰勒斯的故乡,泰勒斯是公认的希腊哲学鼻祖。 早年是一个商人,曾游访巴比伦、埃及等地,很快就学会古代流传下来的知识,并加 以发扬。 以后创立伊奥尼亚哲学学派,摆脱宗教,从自然现象中去寻找真理,以水为万物的根源。 当时天文、数学和哲学是不可分的,泰勒斯同时也研究天文和数学。

他曾预测一次日食,促使米太(在今黑海、里海之南)、吕底亚(今土耳其西部)两国停止战争,多数学者认为该次日食发生在公元前585年5月28日。他在埃及时曾利用日影及比例关系算出金字塔的高,使法老大为惊讶。 泰勒斯在数学方面的贡献是开始了命题的证明,它标志着人们对客观事物的认识从感性上升到理性,这在数学史上是一个不寻常的飞跃。伊奥尼亚学派的著名学者还有阿纳克西曼德和阿纳克西米尼等。他们对后来的毕达哥拉斯有很大的影响 毕达哥拉斯毕达哥拉斯公元前580年左右生于萨摩斯,为了摆脱暴政,移居意大利半岛南部的克罗顿。在那里组织一个政治、宗教、哲学、数学合一的秘密团体。后来在政治斗争中遭到破坏,毕达哥拉斯被杀害,但他的学派还继续存在两个世纪之久。 毕达哥拉斯学派企图用数来解释一切,不仅仅认为万物都包含数,而且说万物都是数。 他们以发现勾股定理(西方叫做毕达哥拉斯定理)闻名于世,又由此导致不可通约量的发现。 这个学派还有一个特点,就是将算术和几何紧密联系起来。他们找到用三个正整数表示直角三角形三边长的一种公式,又注意到从 1起连续的奇数和必为平方数等等,这既是算术问题,又和几何有关,他们还发现五种正多面体。 伊奥尼亚学派和毕达哥拉斯学派有显著的不同。前者研习数学并不单纯为了哲学的兴趣,同时也为了实用。而后者却不注重实际应用,将数学和宗教联系起来,想通过数学去探索永恒的真理。 公元前五世纪,雅典成为人文荟萃的中心,人们崇尚公开的精神。在公开的讨论或辩论中,必须具有雄辩、修辞、哲学及数学等知识,于是“智人学派”应运而生。他们以教授文法、逻辑、数学、天文、修辞、雄辩等科目为业。 在数学上,他们提出“三大问题”:三等分任意角;倍立方,求作一立方体,使其体积是已知立方体的二倍;化圆为方,求作一正方形,使其面积等于一已知圆。这些问题的难处,是作图只许用直尺(没有刻度的尺)和圆规。 希腊人的兴趣并不在于图形的实际作出,而是在尺规的限制下从理论上去解决这些问题,这是几何学从实际应用向系统理论过渡所迈出的重要的一步。这个学派的安提丰提出用“穷竭法”去解决化圆为方问题,这是近代极限理论的雏形。先作圆内接正方形,以后每次边数加倍,得8、16、32、…边形。安提丰深信“最后”的多边形与圆的“差”必会“穷竭”。这提供了求圆面积的近似方法,和中国的刘徽的割圆术思想不谋而合

超级名圆—阿波罗尼斯圆及应用

超级名圆——阿波罗尼斯圆 一、问题背景 1.(苏教版选修2-1,P63例2)求平面内到两个定点A,B 的距离之比等于2的动点M 的轨迹. 【解】以B A ,所在的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系xOy , 令a AB 2=,则B A ,两点的坐标分别为()()0,,0,a a -. 设M 点坐标为()y x ,,依题意,点M 满足 2=MB MA , 由2 2 22)(,)(y a x MB y a x MA +-=++=得2)()(2 2 22=+-++y a x y a x , 化简整理,得0310332 2 2 =+-+a ax y x , 所以动点M 的轨迹方程为0310332 22=+-+a ax y x . 2.(苏教版必修2,P112第12题)已知点M(x,y)与两个定点O(0,0),A(3,0)的距离之比为1:2, 那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线. 【解】由两点间距离公式得22y x MO += ,22)3(y x MA +-=, 则2:1)3(:2 222=+-+y x y x ,化简得4)1(2 2 =++y x , 即点M 是以(-1,0)为圆心,2=r 的圆.(图略) 二、阿波罗尼斯圆 阿波罗尼斯(Apollonius of Perga Back ),古希腊人(262BC~190BC ),与阿基米德、欧几里德一起被誉为古希腊三大数学家,他写了八册《圆锥曲线论》(Conics ),其中有七册流传下来,书中详细讨论了圆锥曲线的各种性质,如切线、共轭直径、极与极轴、点到锥线的最短与最长距离等,圆锥曲线的性质几乎囊括殆尽,阿波罗尼斯曾研究了众多的平面轨迹问题,阿氏圆是他的论著中的一个著名问题: 已知平面上两定点A 、B ,则所有满足 ()1≠=λλPB PA 的点P 的轨迹是一个以定比n m :内分和外分定线段AB 的两个分点的连线为直径的圆. 这是著名的阿波罗尼斯轨迹定理,以内外分点为直径的圆被后人称为阿波罗尼斯圆,简称阿氏圆.

阿波罗尼斯圆问题

1 A P B 阿波罗尼斯圆问题 一【问题背景】 苏教版《数学必修2》P .112第12题: 已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为1 2 ,那么点M 的坐标应满足 什么关系?画出满足条件的点M 所构成的曲线. 二、【阿波罗尼斯圆】 公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius )在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果: 到两定点距离之比等于已知数的动点轨迹为直线或圆. 如图,点B A ,为两定点,动点P 满足PB PA λ=, 则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆, 后世称之为阿波罗尼斯圆. 证:设PB PA m m AB λ=>=,02) (.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -) ,(0m B . 又设),(y x C ,则由PB PA λ=得2 2 2 2 )()(y m x y m x +-=++λ,

2 两边平方并化简整理得)()()()(2 2 2 2 2 2 2 11121λλλλ-=-++--m y x m x , 当1=λ时,0=x ,轨迹为线段AB 的垂直平分线; 当1>λ时,2 2 2 22222)1(4)11(-=-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,122-λλm 长为半径的圆. 上述课本习题的一般化情形就是阿波罗尼斯定理. 三、【范例】 例1 满足条件BC AC AB 2,2= =的三角形ABC 的面积的最大值是 . 解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则), ,(01-A ) ,(01B ,设),(y x C ,由BC AC 2=得22 22121y x y x +-?=++)()(, 平方化简整理得883162 2 2 ≤+-- =-+-=)(x x x y ,∴22≤y ,则 2222 1 ≤??= ?y S ABC ,∴ABC S ?的最大值是22. 变式 在ABC ?中,边BC 的中点为D ,若AD BC AB 2,2==,则ABC ?的面积的 最大值是 . 解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(01-A ) ,(01B , 由AD BC CD BD 2,==知,BD AD 2=,D 的轨迹为阿波罗尼斯圆,方程为

最著名的五位女数学家

最著名的五位女数学家 翻开数学史,有许许多多的数学家,他们仿佛天上的繁星,在数学王国的上空闪闪发光.可我们不难发现,其中女性的名字寥寥无几.女数学家甚至比女王还要少,这是为什么呢?难道女人的智商真的比男人低吗?当然不是.是旧社会、旧思想对女人的偏见、迫害造成的.下面,我们就来看一看几位卓越的女数学家,她们充满坎坷的一生. 有史记载的第一位女数学家--希帕蒂娅 希帕蒂娅是有史记载的第一位女数学家,也是古希腊文明中最杰出的女科学家、哲学家.其父是亚历山大的赛翁(Theon of Alexandria),当时知名的学者与教师,曾就教于亚历山大博物院,那是专门传授和研讨高深学问的场所.希帕蒂娅早年跟随父亲学习,成年后帮助赛翁评注过天文学家托勒玫(Ptolemy)的天文及数学名著《大汇编》(Almagest).她很可能协助其父编辑了欧几里得的《几何原本》,这里的“编辑”指对原著的重写,使之更适合当时的学生阅读.赛翁版的《几何原本》是该书所有现代版本的基础.据古代一本辞典记载,希帕蒂娅还评注了丢番图(Diophantus)的《算术》(Arithmetica)和阿波罗尼奥斯(Apollonius)的《圆锥曲线》(Conics)等名著,可惜这些评注本都已失传. 希帕蒂娅本人也在亚历山大从事科学与哲学活动,讲授数学以及普罗提诺(Plotinus)和扬布里柯(lamblichus)的新柏拉图主义哲学.新柏拉图主义将柏拉图的学说、亚里士多德的学说及新毕达哥拉斯主义综合在一起,核心内容是由普罗提诺首创的关于存在物的统一与等级结构学说.属于这一哲学流派的有以普罗提诺为首的罗马学派(公元3世纪),以扬布里柯为首的叙利亚学派(公元4世纪).希帕蒂娅的哲学兴趣比较倾向于研究学术与科学问题,而较少追求神秘性和排他性. 约在公元400年左右,希帕蒂娅成为亚历山大的新柏拉图主义学派的领袖.由于她的学术声望,甚至有的基督徒也拜她为师,著名的有昔兰尼加(Cyrene)的西内修斯(Synesius),后来出任托勒梅厄斯城(Ptolemais)的主教.他向希帕蒂娅请教学问的信件至今尚存,信中问及如何制作星盘(一种借助投影原理制作的反映星空的天文仪器)和滴漏(古代计时工具).但是,早期的基督徒在很大程度上把科学视为异端邪说,把传播希腊传统文化的人视为异教徒.约公元391年,罗马皇帝狄奥多西一世(TheodosiusⅠ)就曾下令拆毁希腊神庙;亚历山大的赛拉庇斯(Sarapis)神庙被毁,藏书尽散,庙宇改为修道院.希帕蒂娅崇尚自由,以其丰富的学识和脍炙人口的讲学继续宣传她的哲学,加上她与该市主教的政敌奥雷斯特斯(Orestes)市长交往甚密 ,公元415年,她被信奉基督教的一群暴民私刑处死.

第二讲:古代希腊数学

第二讲古代希腊数学 1、古典时期的希腊数学 公元前600-前300年。 1.1 爱奥尼亚学派(米利都学派) 泰勒斯(公元前625-前547年),被称为“希腊哲学、科学之父”。 1.2 毕达哥拉斯学派 数学:数学研究抽象概念的认识归功于毕达哥拉斯学派,毕达哥拉斯定理,完全数、亲和数,正五角星作图与“黄金分割”,发现了“不可公度量”。 1.3 伊利亚学派 芝诺的功绩在于把动和静的关系、无限和有限的关系、连续和离散的关系以非数学的形态提出,并进行了辩证的考察。 1.4 诡辩学派(智人学派) 古典几何三大作图问题:三等分任意角、化圆为方、倍立方。 1.5 柏拉图学派 柏拉图不是数学家,却赢得了“数学家的缔造者”的美称,创办雅典学院(前387-公元529),讲授哲学与数学。 1.6 亚里士多德学派(吕园学派) 亚里士多德(公元前384-前322年)是古希腊最著名的哲学家、科学家。集古希腊哲学之大成,把古希腊哲学推向最高峰,堪称“逻辑学之父”,为欧几里得演绎几何体系的形成奠定了方法论的基础,被后人奉为演绎推理的圣经。 2、亚历山大学派时期 希腊数学黄金时代,先后出现了欧几里得、阿基米德和阿波罗尼奥斯三大数学家,他们的成就标志了古典希腊数学的巅峰。 2.1 欧几里得(公元前325-前265年) 公元前300年成为亚历山大学派的奠基人,用逻辑方法把几何知识建成一座巍峨的大厦,成为后人难以跨跃的高峰。 《原本》13卷:由5条公理,5条公设,119条定义和465条命题组成,构成

了历史上第一个数学公理体系。 2.2阿基米德(公元前287-前212年) 数学之神,与牛顿、高斯并列有史以来最伟大的三大数学家之一。 最为杰出的数学贡献是《圆的度量》,把希腊几何学几乎提高到西方17世纪后才得以超越的高峰。墓碑:球及其外切圆柱。 2.3 阿波罗尼奥斯(约公元前262-前190年) 贡献涉及几何学和天文学,最重要的数学成就是《圆锥曲线》,希腊演绎几何的最高成就。《圆锥曲线》全书共8卷,含487个命题。 克莱因(美,1908-1992年):它是这样一座巍然屹立的丰碑,以致后代学者至少从几何上几乎不能再对这个问题有新的发言权。这确实可以看成是古希腊几何的登峰造极之作。 3、希腊数学的衰落 背景:罗马帝国简史。 罗马帝国的建立,唯理的希腊文明被务实的罗马文明所取代。同气势恢弘的罗马建筑相比,罗马人在数学领域远谈不上有什么显赫的功绩。从公元前30-公元600年常称为希腊数学的“亚历山大后期”。 3.1 托勒密(埃及,90-165年) 最重要的著作是《天文学大成》13卷,总结了在他之前的古代三角学知识,其中最有意义的贡献是包含有一张正弦三角函数表。三角学的贡献是亚历山大后期几何学最富创造性的成就。 3.2 丢番图(公元200-284年) 希腊算术与代数成就的最高标志是丢番图的《算术》,这是一部具有东方色彩、对古典希腊几何传统最离经叛道的算术与代数著作,创用了一套缩写符号,一种“简写代数”。 亚历山大女数学家希帕蒂娅(公元370-415年)被害预示了在基督教的阴影笼罩下整个中世纪欧洲数学的厄运。

完整版阿波罗尼斯圆问题

一【问题背景】 苏教版《数学必修 2》P.112第12题: 1 已知点M (x,y)与两个定点0(0,0), A(3,0)的距离之比为—,那么点M 的坐标应满足 2 什么关系?画出满足条件的点 M 所构成的曲线. 二、【阿波罗尼斯圆】 公元前3世纪,古希腊数学家阿波罗尼斯( Apollonius )在《平面轨迹》 究了众多的平面轨迹问题,其中有如下结果: 到两定点距离之比等于已知数的动点轨迹为直线或圆. 如图,点A, B 为两定点,动点 P 满足PA PB , 则 1时,动点P 的轨迹为直线;当 1时,动点P 的轨迹为圆, 后世称之为阿波罗尼斯圆 证:设AB 2m ( m 0),PA PB ?以AB 中点为原点,直线 AB 为x 轴建立平面 直角坐标系,则 A ( m,0), B (m,0) ? 又设 C (x , y ),则由 PA PB 得..(x m)2 y 2 长为半径的圆. 上述课本习题的一般化情形就是阿波罗尼斯定理. 三、【范例】 AB 为x 轴建立平面直角坐标系,则 A ( 1,0), 、、2BC 得.(x 1)2 y 2 2 .(x 1)2 阿波罗尼斯圆问题 两边平方并化简整理得 (2 1 ) x 2 2m ( 2 1) x 2 1) y 2 m 2(1 2 ), 1 时, 0,轨迹为线段 AB 的垂直平分线; 1 时, (x 2 1m)2 y 2 1 4 2m 2 6 ,轨迹为以点 (丁」m,0)为圆心, 1 (X m)2 例1满足条件AB 2, AC .2BC 的三角形ABC 的面积的最大值是 解:以AB 中点为原点,直线 B (1,0),设 C (x , y ),由 AC 书中,曾研

教学设计《阿波罗尼斯圆及其简单应用》

《阿波罗尼斯圆及其简单应用》教学设计 一.教学目标 根据课程标准与教学内容并结合学生实际,确定本节课的教学目标为: 1.知识与技能 了解阿波罗尼斯圆及其文化背景,掌握阿波罗尼斯圆的简单性质并能应用性质解决问题。 2.过程与方法 通过具体例子引导学生自主合作、探究、抽象概括,对阿波罗尼斯圆由感性认识上升到理性认识的过程,体会从特殊到一般的数学研究方法,渗透数形结合的思想. 3.情感、态度与价值观 通过学生对问题的自主探究,培养学生的独立思考能力和抓主要矛盾解决问题的能力.在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观. 二.重难点分析 重点:阿波罗尼斯圆及其性质的理解和应用. 难点:阿波罗尼斯圆性质的推导及其应用. 三.教学过程 (一)引入:由椭圆、双曲线定义提出问题:到两定点距离之比为定值的点的轨迹是什么? 引例点M到椭圆 22 22 1 1312 x y +=的左焦点和右焦点的距离的比为2:3. 求点M满足的 方程,并画出草图. 设计意图:先提出问题,激发学生进一步探究的欲望.再以课本练习题引入,说明问题源于课本,但又高于课本,提醒学生重视课本,用好课本,发掘课本的潜在价值。 (二)抽象概括: 阿波罗尼斯 (Apollonius of Perga,也有文献上将其名字翻译为“阿波罗尼奥斯”)约公元前262~前190,古希腊人.阿波罗尼斯与欧几里得、阿基米德合称为亚历山大时期的“数学三杰”.在其巨著《圆锥曲线论》给出了一个著名的几何问题: “在平面上给定相异两点A、B,设点P在同一平面内且满足,P点的

轨迹是个圆”,这个圆我们称之为“阿波罗尼斯圆”,又称阿氏圆.这个结论称作“阿波罗尼斯轨迹定理”. 以阿波罗尼斯圆为背景的考题在历年高考中频频出现,备受青睐。《普通高中数学课程标准(实验)》在不同部分对数学文化的内涵和价值做了阐述,首次明确提出数学课程要“体现数学的文化价值”。 设计意图:抽象概括,形成概念,渗透数学文化,体现课程标准. (三)阿波罗尼斯圆再探究 1.设定点(,0),(,0)(0)A c B c c ->,点P 在同一平面上且满足(0,1)PA PB λλλ=>≠P 点的 轨迹是以__________为圆心,半径为_________的圆. 2.在平面上给定相异两点A 、B ,点P 在同一平面上且满足 (0,1)PA PB λλλ=>≠ ,则P 点的轨迹是圆.若此圆与直线AB 交于,M N 两点,则 ____,____.MA NA MB NB == 由此你能得到什么结论?(提示:以引例为研究对象,再抽象概括) 设计意图:分解难点,提炼重点,从两个不同角度给出阿波罗尼斯圆的快速作 图法,为后面的应用做好铺垫.培养学生合作交流的能力和抽象概括能力. (四)阿波罗尼斯圆的应用 巩固练习1.(06四川)已知两定点).0,1(),0,2(B A -如果动点P 满足PB PA 2=,则点P 的轨迹所围成的平面图形的面积是________________. 解析:此题若用常规思路先求点P 的轨迹方程,再求半径和面积自然可以求解.但对于填空题大可不必“小题大做”,若应用性质2可以很快确定点P 的轨

一些外国数学家的成就与故事

数学之父——泰勒斯,(约公元前624 --- 公元前547或546年)古希腊时期的思想家、科学家、哲学家,希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人。希腊七贤之一,西方思想史上第一个有记载有名字留下来的思想家。“科学和哲学之祖”,泰勒斯是古希腊及西方第一个自然科学家和哲学家。泰勒斯的学生有阿那克西曼德、阿那克西米尼等。 柏拉图(Plato,约前427年-前347年)古希腊伟大的哲学家,也是全部西方哲学乃至整个西方文化最伟大的哲学家和思想家之一,他和老师苏格拉底,学生亚里士多德并称为古希腊三大哲学家。另有其他概念包括:柏拉图主义、柏拉图式爱情、经济学图表等含义。 亚历山大里亚的欧几里得(约公元前330年—前275年)古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人。 力学之父——阿基米德(公元前287年—公元前212年)阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。阿基米德螺旋永动机。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。他的著作集中探讨了求积问题,主要是曲边图形的面积和曲面立方体的体积,其体例深受欧几里德《几何原本》的影响,先是设立若干定义和假设,再依次证明,作为数学家,他写出了《论球和圆柱》、《圆的度量》、《抛物线求积》、《论螺线》、《论锥体和球体》、《沙的计算》数学著作。作为力学家,他着有《论图形的平衡》、《论浮体》、《论杠杆》、《原理》等力学著作。 对于阿基米德来说,机械和物理的研究发明还只是次要的,他比较有兴趣而且阿基米德投注更多时间的是纯理论上的研究,尤其是在数学和天文方面。在数学方面,他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。他更研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是为纪念他而命名。另外他在《恒河沙数》一书中,他创造了一套记大数的方法,简化了记数的方式。阿基米德在他的著作《论杠杆》(可惜失传)中详细地论述了杠杆的原理。

古希腊的数学为何从巅峰走向衰落

引言:可以说曾经绚烂辉煌古希腊数学是人类数学史上的一枚瑰宝,一朵奇葩,一块里程碑。然而最终它走向了衰落,是偶然还是必然?是客观社会现实所致还是其具有很大局限性?其中的原因一定很值得人们探索,以古鉴今。所以大胆写了这个题,虽然文笔很稚嫩,剖析有些偏激,观点或许偏离轨道。 摘要:古希腊数学曾经光芒万丈,数不胜数的定理和一些重要结论等为人类创 造了巨大的精神财富,不论从数量上还是质量上来衡量,在世界上都是首屈一指的。其无论是对后来数学的发展还是思维的启示都具有深远意义并绵延至今。然而,千年后,时过境迁,曾经的灿烂陨落了。原本自由和平学风盛行的古希腊被愚昧野蛮的罗马人统治,学园图书馆被毁坏,文化交流被禁止;再加上古希腊数学的本身具有的局限性和片面性(将结构严密的数学聚焦在几何与理想状态下的不变量关系),数学由此停滞并开始衰落,走下时代的舞台。悲剧的上演,带给我们无尽的感慨。 关键词:古希腊数学数学家辉煌衰落 古希腊数学曾经辉煌一时,当雅典成为古希腊的政治、文化中心之后,各种学术思想在雅典争奇斗妍,演说和辩论时有所见,在这种政治民主、思想自由、学术氛围浓厚气氛下,数学开始从个别学派闭塞的围墙里跳出来,来到更广阔的天地里,得到了蓬勃的发展。芝诺的乌龟发人深省,柏拉图学园精神影响千年,《几何原本》流传至今。可以说古希腊数学的成就一潮高过一潮,创造的精神财富无与伦比。然而好景终将暗淡,鲁莽愚昧的古罗马人最终占领了古希腊,数学开始从巅峰滑入低谷。 大约在公元前七世纪,在今天的意大利南部、希腊和小亚细亚一带兴起了古希腊文明。古希腊人不愿意因袭传统,勇于开拓,追求创新,注重精神文化,理性看待自然界,再加上古希腊离两大河谷文明不远,大批游历埃及和巴比伦的古希腊商人带回了那里的数学和科学知识,于是在民主和唯理主义的氛围下,古希腊数学茁壮发展,欣欣向荣,诞生了一批又一批的伟大的数学家,出现了百家争鸣的景象,丰富并博大了数学的宝库。第一个扬名后世的数学家就是古希腊的泰勒斯(Thales)。他出生在思想自由开放的米利都城,曾游历埃及和巴比伦,将

阿波罗尼斯圆

A P B 阿波罗尼斯圆专题 公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius )在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果: 到两定点距离之比等于已知数的动点轨迹为直线或圆. 如图,点B A ,为两定点,动点P 满足PB PA λ=, 则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆, 后世称之为阿波罗尼斯圆. 证:设PB PA m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -) ,(0m B . 又设),(y x C ,则由PB PA λ=得2 2 2 2 )()(y m x y m x +-=++λ, 两边平方并化简整理得)()()()(2 22222211121λλλλ-=-++--m y x m x , 当1=λ时,0=x ,轨迹为线段AB 的垂直平分线; 当1>λ时,2 2 2 22222)1(4)11(-=-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,122-λλm 长为半径的圆. 【例1】设圆的半径都是1, ,过动点分别作圆 的切线 ( 分别为切点) 的轨迹方程。 解:以1O ,2O 的中点O 为原点,1O ,2O 所在直线为x 轴,建立如图所示平面直角坐 标系,

则)0,2(1-O ,)0,2(2O ,由已知PN PM 2= 得222PN PM =, 因为两圆的半径都为1,所以有:)1(212 22 1-=-PO PO ,设P (x,y ), 则]1)2[(21)2(2 2 2 2 -+-=-++y x y x , 即33)6(2 2 =+-y x ,此即P 的轨迹方程. 【例2】满足条件 面积最大值为 【例3】古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点(,0)A a -,(,0)B a , 动点P 满足|| || PA PB λ=(其中a 和λ是正常数,且1λ≠),则P 的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”,该圆的半径为 答案: 2 2|1| a λ λ- 【例4】等腰△中,,若边上中线的长为6,则△面积最大值 为 . 【例5】如图,已知平面α⊥平面β,A 、B 是平面α与 平面β的交线上的两个定点,,DA CB ββ??,且DA α⊥,CB α⊥,4AD =,8BC =, 6AB =,在平面α上有一个动点P ,使得APD BPC ∠=∠,求PAB ?的面积的最大值.

阿波罗尼斯圆专题汇编(史上最全原创)

阿波罗尼斯圆性质及其应用 背景展示阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一 (人教A 版124页B 组第3题)已知点M 与两个定点O(0,0),A(3,0)点距离的比为12,求点M 的轨迹方程。 (人教A 版144页B 组第2题)已知点M 与两个定点M 1,M 2距离的比是一个正数m,求点M 的轨迹方程,并说明轨迹是什么图形(考虑m=1和m ≠1两种情形)。 公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下著名结果:到平面上两定点距离比等于定值的动点轨迹为直线或圆.(定值为1时是直线,定值不是1时为圆) 定义:一般的平面内到两顶点A ,B 距离之比为常数λ(λ≠1)的点的轨迹为圆,此圆称为阿波罗尼斯圆 类型一:求轨迹方程 1.已知点M 与两个定点()0,0O ,()0,3A 的距离的比为 21,求点M 的轨迹方程 2.已知()02>=a a AB , ()0≥=λλMB MA ,试分析M 点的轨迹 3.(2006年高考四川卷第6题)已知两定点A (-2,0),B (1,0),如果动点P 满足条件 PA =2 PB ,则点P 的轨迹所包围的图形面积等于()

A.π B. 4πC.8πD.9π 类型二:求三角形面积的最值 4.(2008江苏卷)满足条件AB = 2,AC =2BC的?ABC的面积的最大值是 5.(2011浙江温州高三模拟)在等腰△ABC中,AB=AC,D为AC的中点,BD=3,则△ABC面积的最大值为 6.在△ABC中,AC=2,AB=mBC(m>1),恰好当B=π 3 时△ABC面积的最大,m= 类型三:定点定值问题 7.已知圆O:x2+y2=9,点B(-5,0),在直线OB上存在定点A(不同于点B),满 足对于圆O上任意一点P,都有PA PB 为一常数,试求所有满足条件的点A的坐标, 并求PA PB 8.(2014湖北文科卷17题)已知圆O:x2+y2=1,点A(-2.0),若定点B(b,0)(b≠?2)和常数λ满足:对圆O上任意一点M,都有MB=λMA,则b= ,λ= 类型四:阿波罗尼斯圆的性质 9.已知圆C:(x?1)2+(y?1)2=1,定点O0,0,B2,0,其中P为圆C上的动点,则2PO+PB的最小值为 10.已知函数fα=2(cosα+1 2)2+sin2α? cos2α+(sinα?1 2 )2,若集合 α∈R fα>m≠?,则实数m的取值范围为

古希腊数学发展史初探

盐城师范学院数学史小论文 古希腊发展史的初探 学生姓名唐莹琪 学院数学科学学院 专业数学与应用数学 班级 11(1)班 学号 11211117 2014年6月10号

古希腊数学史初探 【摘要】“古希腊数学”是一个习惯用语,它不是说这个数学是希腊这个国家或地区所创造,而是希腊半岛,整个爱琴海区域和北面的马其顿褐色雷斯,意大利半岛和小亚西亚,以及非洲北部等地。从时间上看,是从公元前600年左右到公元641年年间,一共持续了1300年的数学的统称。本文,我就这一时间段的数学发展,也就是古希腊数学发展进行初探。 【关键词】古希腊数学,发展,学派,数学家

前言 古代希腊从地理疆城上讲,包括巴尔干半岛南部、小亚细亚半岛西部、意大利半岛南部、西西里岛及爱琴海诸岛等地区。这里长期以来由许多大小奴隶制城邦国组成,直到约公元前325年,亚历山大大帝征服了希腊和近东、埃及,他在尼罗河口附近建立了亚历山大里亚城。亚历山大大帝死后,他创建的帝国分裂为三个独立的王国,但仍联合在古希腊文化的约束下,史称希腊化国家。统治了埃及的托勒密一世大力提倡学术,多方网罗人才,在亚历山大里亚建立起一座空前宏伟的博物馆和图书馆,使这里取代雅典,一跃而成为古代世界的学术文化中心,繁荣几达千年之久! 希腊人的思想毫无疑问地受到了埃及和巴比伦的影响,但是他们创立的数学与前人的数学相比较,却有着本质的区别,其发展可分为雅典时期和亚历山大时期两个阶段。 1 雅典时期 1.1 爱奥尼亚学派 泰勒斯是现在所知的最早的希腊数学家。泰勒斯是一个精明的商人,他流转于各地经商,并从巴比伦河埃及等地带回了数学知识,故而创立了爱奥尼亚学派。泰勒斯领导的爱奥尼亚学派据说开了希腊命题证明的先河,因此他被认为是希腊几何的先驱。 我们对泰勒斯在数学上的贡献的最可靠证据是来自公元五世纪新柏拉图派哲学家普洛克鲁斯所著的《欧几里得(原本)第一卷评注》。在《评注》中我们知道泰勒斯曾经证明了以下四条定理: 1圆的直径将圆平分; 2等腰三角形两底角相等; 3两条直线相交,对顶角相等; 4有两角夹一边分别相等的两个三角形全等。 “泰勒斯定理”也是泰勒斯证明的。“泰勒斯定理”的命题:半圆上的圆周角是直角。 泰勒斯证明了或视图证明这些命题,使得数学从具体的,实验的阶段开始向抽象的,理论的阶段过渡,这是数学史上的一个重大创举。也就是说,泰勒斯对于数学科学的发展的贡献并比仅是存在于他发现了这些定理,更重要的是泰勒斯为它们提供了某种的逻辑证明。

相关文档
相关文档 最新文档