文档库 最新最全的文档下载
当前位置:文档库 › B题-全国大学生数学建模竞赛赛题讲评(2016B)

B题-全国大学生数学建模竞赛赛题讲评(2016B)

小区开放对道路通行的影响

——CUMCM2016B

国防科学技术大学 吴孟达

小区开放对道路通行的影响

1. 题目及命题背景

2. 解题思路

3. 评阅综述

1. 题目及命题背景

题目:小区开放对道路通行的影响

2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。

除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。

城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题:

1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。

2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。

3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关,请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。

4. 根据你们的研究结果,从交通通行的角度,向城市规划和

交通管理部门提出你们关于小区开放的合理化建议。

命题背景

?命题目的:通过建立数学模型,给出小区开放对道路通行影响的定量效果评价,为管理部门提供定量化的决策依据。

?本问题设置的四个子问题,有很强的内在逻辑关联性,其主题分别为:指标—建模—应用—建议,环环相扣。

命题背景

?关于道路通行的数学模型已有很多,作为竞赛题目,本问题并非希望同学们建立一个完全自主提出的新的数学模型,这也不现实。能够合理地组合应用已有的交通数学模型,得出与本问题有关的有价值的结论,就是好模型。

2.解题思路

第一问 指标体系

l指标选择要素

?针对性:反映小区开放前后周边道路通行的变化。

?全局性:反映道路通行整体影响。

?可计算性:不是抽象的、描述性的概念,而是可定量计算的。

?广泛性:应包含主要要素,一般有三类:通行能力度量;安全性度量;

脆弱性度量。

第一问 指标体系

l典型评价指标

?通行能力评价

单位时间通行流量,车辆通过时间,通行延误时间,流量饱和度,……

注意整体性指标

第一问 指标体系

A

B

D C

第一问 指标体系

?安全性评价

统计路口冲突次数,作为安全性评价指标。

文献[8]给出了无信号灯交通路口车辆小时冲突次数的理论估计:Array

其中 分别为主干道和小区道路上的车流量(辆/秒), 是

小区道路和主干道车辆先后到达统计截面的时间间隔阈值。

第一问 指标体系

A

B

D C ?脆弱性评价

路网结构度量指标,可以按照车道数计算堵塞概率的变化。

第二问建立车辆通行的数学模型

该问题的困难之处在于没有小区开放后的直接数据可供使用,因此,建立小区开放前后车辆行驶的仿真模型是评价小区开放带来的影响的有效手段。好的仿真模型应该重点考虑以下几个方面:

l 小区周边道路(含小区道路)的流量分配;

l无信号灯控制交叉路口的通行模型;

l周边道路和小区道路上车辆的最大行驶速度的区别。

第二问建立车辆通行的数学模型

l小区周边道路(含小区道路)流量分配

小区周边道路(含小区内部道路)车流量的分配,考察以下几种流量分配方案:

(1)均匀分配:将进入讨论的小区周边道路区域的车辆按车道数均匀分配到该区域的每一条路径中。

第二问建立车辆通行的数学模型

l小区周边道路(含小区道路)流量分配

(2)随机均衡分配:流量分配不事先确定,在仿真中,车辆在每一个路口根据一定概率随机选择下一条道路,此概率与路径长短或行驶时间长短有关。

第二问建立车辆通行的数学模型

l小区周边道路(含小区道路)流量分配

(3)Wardrop均衡:当道路的使用者确切知道网络的交通状态并试图选择最短路径时,网络将会达到均衡状态。此时,每个OD对的各条被使用的路径具有相等而且最小的行驶时间,没有被使用的路径的行驶时间大于或等于最小行驶时间。数学上可表示为:

其中 为分配在道路a上的交通流量, 为道路a上的通行时间, 为从入口r到出口s中的第k条路径 上的流量, 为从入口r 到出口s的总流量。若采用仿真模型,可使用时间步长法近似计算,每一时间步长内的车流量近似认为是不变的,每次分配选择通行时间最小的路径进行分配。

满足:

第二问建立车辆通行的数学模型

(4)Logit函数分配:由于出行者对交通网络的总体出行状况一般缺乏充分的了解,因此出行者对每一条路径都有一个“理解阻抗值”,它与真实阻抗值之间存在一定的误差,在误差服从Weibull分布的假设下,路径流量可按照如下Logit

函数来分配:

其中:m是路口,R是道路数量,q是流量,T是阻抗,θ是参数。

全国大学生数学竞赛预赛试题

第一届全国大学生数学竞赛预赛试题 一、填空题(每小题5分,共20分) 1.计算__ ,其中区域由直线与两坐标轴所围成三角形区域. 2.设是连续函数,且满足, 则____________. 3.曲面平行平面的切平面方程是__________. 4.设函数由方程确定,其中具有二阶导数,且,则_____. 二、(5分)求极限,其中是给定的正整数. 三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性. 四、(15分)已知平面区域,为的正向边界,试证: (1);(2) . 五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线过原点.当时,,又已知该 抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小. 七、(15分)已知满足, 且, 求函 数项级数之和. 八、(10分)求时, 与等价的无穷大量.

第二届全国大学生数学竞赛预赛试题 一、(25分,每小题5分) (1)设其中求(2)求。 (3)设,求。 (4)设函数有二阶连续导数,,求。 (5)求直线与直线的距离。 二、(15分)设函数在上具有二阶导数,并且 且存在一点,使得,证明:方程在恰有两个实根。 三、(15分)设函数由参数方程所确定,其中具 有二阶导数,曲线与在出相切,求函数。 四、(15分)设证明:(1)当时,级数收敛; (2)当且时,级数发散。 五、(15分)设是过原点、方向为,(其中的直线,均 匀椭球,其中(密度为1)绕旋转。(1)求其转动惯量;(2)求其转动惯量关于方向的最大值和最小值。 六、(15分)设函数具有连续的导数,在围绕原点的任意光滑的简单闭曲线上,曲线积分的值为常数。(1)设为正向闭曲线

数学建模知识竞赛题库

数学建模知识竞赛题库 1.请问计算机中的二进制源于我国古代的哪部经典? D A.《墨经》 B.《诗经》 C.《周书》 D.《周易》 2.世界上面积最大的高原是?D A.青藏高原 B.帕米尔高原 C.黄土高原 D.巴西高原 3.我国海洋国土面积约有多少万平方公里? B A.200 B.300 C.280 D.340 4.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是B A.猫 B.飞鸽 C.海鸥 D.鹰 5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?B A.红色 B.蓝色 C.灰色 D.绿色 6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D ) A. [1 0 1] B. [1 1 1] C. [0 0 1] D. [0 0 0] 7.秦始皇之后,有几个朝代对长城进行了修葺? A A.7个 B.8个 C.9个 D.10个 8.中国历史上历时最长的朝代是?A A.周朝 B.汉朝 C.唐朝 D.宋朝 9我国第一个获得世界冠军的是谁?C A 吴传玉 B 郑凤荣 C 荣国团 D 陈镜开 10.我国最早在奥运会上获得金牌的是哪位运动员?B A.李宁 B.许海峰 C.高凤莲 D.吴佳怩

11.围棋共有多少个棋子?B A.360 B.361 C.362 D.365 12下列属于物理模型的是:A A水箱中的舰艇 B分子结构图 C火箭模型 D电路图 13名言:生命在于运动是谁说的?C A.车尔尼夫斯基 B.普希金 C.伏尔泰 D.契诃夫 14.饱食后不宜剧烈运动是因为B A.会得阑尾炎 B.有障消化 C.导致神经衰弱 D.呕吐 15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?A A.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役 17色盲患者最普遍的不易分辨的颜色是什么?A A.红绿 B.蓝绿 C.红蓝 D.绿蓝 18下列哪种症状是没有理由遗传的? A.精神分裂症 B.近视 C.糖尿病 D.口吃 19下面哪个变量是正无穷大变量?(A )

原创!!全面大学生数学竞赛试题

2011年数学竞赛练习题C_3解答 1. 设数列{}n x 满足: 11 sin (2)sin 11 n n x n n n <<+++, 则1 1lim 1n k n k x n →∞==+∑_______。 11 sin (2)sin 111 n n n x n x n n <<+∴→++解 ; Q 1 1 1 1lim lim lim lim 1111n n k k n k k k n n n n k x x n n x n n n n n ==→∞→∞→∞→∞ =∴=?=?=+++∑∑∑ 2.设曲线()y f x =与sin y x =在原点相切, 则极限lim n ________。 (0)0,(0)1n n f f '===已知有: 2. 设(1n n a b =+, 其中,n n a b 为正整数,lim n n n a b →∞=__ 2224 113 (1) 1)3)(13)3) )()3) ) n n n n n n n C C C C C C =+++ =+++++ 224 41133(1(1)() n n n n n C C C C =++-++ (1=+(1=n n n n n n a b a b a b -所以,若则解得:

lim =n n n n n a b →∞∴= 3. 设()f x 有连续导数且0 () lim 0x f x a x →=≠, 又20 ()()()x F x x t f t dt =-?, 当0x →时()F x '与n x 是同阶无穷小, 则n =________。 2020 ()()()()()x x x F x x t f t dt x f t dt tf t dt =-=-? ?? 20 ()2()()()x F x x f t dt x f x xf x '=+-? 0() lim 0x F x x →'=显然 20 2 02()()() lim x x x f t dt x f x xf x x →+-?考虑: 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim 0x x x f t dt f x x x →→=-+?0a =-≠ 2n ∴= 5. ()f x ∞设在[1,+)上可导,下列结论成立的是:________。 +lim ()0()x f x f x →∞ '=∞A.若,则在[1,+)上有界;

2015年美国数学建模竞赛第二次模拟赛题

Problem A Warmer Days or Sour Grapes ? The high quality of wines(葡萄酒)produced in the Finger Lakes Region(五指湖区)of upstate (北部)New York is widely known. Proximity(接近)to lakes tempers the climate and makes it more suitable for growing several varieties of premium(独特)grapes: R iesling(雷司令), G ewürztraminer(琼瑶浆), C hardonnay(霞多丽), M erlot(梅洛), P inot Noir(黑比诺), and Cabernet F ranc(品丽珠). (There are many more, but we will restrict(限制)the discussion to these six to simplify(简化)the modeling.) Each variety has its own preferred “average temperature” range but is also different in its susceptibility(感受性)to diseases and ability to withstand(抵抗)short periods of unusually cold temperature. As our local climate changes, the relative suitability of these varieties will be changing as well. A forward-looking winery(酒厂)has hired your team to help with the long-term planning. You will need to recommend a) the proportion(比例)of the total vineyard(葡萄园)to be used for growing each of the above six varieties; b) and when should these changes be implemented (实施)(based on observed temperatures and/or current market prices for each type of wine). Naturally, the winery is interested in maximizing its annual profit. But since the latter (后者)is weather-dependent, it might vary a lot year-to-year. You are also asked to evaluate the trade-offs (权衡)between optimizing the expected/average case versus the worst(-realistic-)scenario(情景). Things to keep in mind: Climate modeling is complicated(复杂)and predicting the rate of “global warming” is a hotly debated area. For the purposes of this problem, assume that the annual average temperature in Ithaca(伊萨卡), NY will increase by no more than 4°C by the end of this century. It is not all about the average temperature – a short snap(临时)of sub- zero(零度)temperature in late Ferburay or early March (after the vines already started getting used to warmer weather) is far more damaging than the same low temperature would be in the middle of the winter. It takes at least 3 years for a newly planted vine to start producing grapes suitable for winemaking. Problem B Outlook of Car-to-Car Tech SAN FRANCISCO -- After more than a decade of research into car-to-car communications, U.S. auto safety regulators took a step forward today by unveiling their plan for requiring cars to have wireless gear that will enable them to warn drivers of danger.

全国大学生数学竞赛试题及答案

河北省大学生数学竞赛试题及答案 一、(本题满分10 分) 求极限))1(21(1 lim 222222--++-+-∞→n n n n n n Λ。 【解】 ))1(21(12 22222--++-+-= n n n n n S n Λ 因 21x -在]1,0[上连续,故dx x ?1 02-1存在,且 dx x ? 1 2 -1=∑-=∞→-1 21 .)(1lim n i n n n i , 所以,= ∞ →n n S lim n dx x n 1lim -11 2∞→-? 4 -1102π ==?dx x 。 二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1 lim 22 0c t dt t ax x x b x =+-?→ 【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b ,当0=b 时使用洛必达法则得到 22 022 01)(cos lim 1sin 1lim x a x x t dt t ax x x x x +-=+-→→?, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则 21)1(cos lim 1sin 1lim 22 220-=+-=+-→→?x x x t dt t ax x x x b x , 综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。 三、(本题满分10 分) 计算定积分? += 2 2010tan 1π x dx I 。

【解】 作变换t x -= 2 π ,则 =I 22 20π π = ?dt , 所以,4 π= I 。 四、(本题满分10 分) 求数列}{1n n - 中的最小项。 【解】 因为所给数列是函数x x y 1- =当x 分别取ΛΛ,,,3,2,1n 时的数列。 又)1(ln 21-=--x x y x 且令e x y =?='0, 容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。 所以,x x y 1-=有唯一极小值e e e y 1)(-=。 而3 3 1 2 132> ? <

数学建模全国赛07年A题一等奖论文

关于中国人口增长趋势的研究 【摘要】 本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。 首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。 然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。 为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。在模型求解的过程中,还对政府部门提出了一些有针对性的建议。此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。 在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。 最后,本文对模型进行了评价,特别指出了各个模型的优缺点,同时也对模型进行了合理性分析,针对我国的人口情况给政府提出了建议。 关键字:Logistic模型灰色预测动态模拟 Compertz函数

2019数学建模国赛a题答案

中国大学生数学建模竞赛: 全国大学生数学建模竞赛创办于1992年,每年一届,已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2018年,来自全国34个省/市/区(包括香港、澳门和台湾)及美国和新加坡的1449所院校/校区、42128个队(本科38573队、专科3555队)、超过12万名大学生报名参加本项竞赛。 赛事设置: 竞赛宗旨 创新意识团队精神重在参与公平竞争。 指导原则 指导原则:扩大受益面,保证公平性,推动教学改革,提高竞赛质量,扩大国际交流,促进科学研究。 规模与数据 全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一。该竞赛每年9月(一般在上旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。同学可以向该校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系。 全国大学生数学建模竞赛创办于1992年,每年一届,成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞

赛。2014年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。 比赛时间 2017年比赛时间是9月14号20:00到9月17号24:00,总共76小时,采取通讯方式比赛,比赛地点在各个高校。比赛时间全国统一的,不可以与老师交流,可以在互联网查阅资料。 同学们在比赛期间应该注意安排时间,以免出现时间不够用的情况。 组委名单 注:第五届专家组任期两年(2010-2011)。2011年底任期届满后,组委会对专家组进行了调整,并决定此后不再对外公布专家组成员名单。 第五届组委会成员名单(2010-2013)及下属专家组成员名单 第四届组委会成员名单及下属专家组成员名单 第一、二、三届组委第一、二、三届组委会成员名单及下属专家组成员名单引各赛区组委会各赛区联系方式列表引 [注1] 各赛区联系人请注意:若本赛区联系e-mail地址发生变化,请通知全国组委会进行修改。 [注2] 全国已成立赛区的有28个省、市、自治区,国内尚未成立赛区的区域组成联合赛区,其他(境外参赛学生)组成国际赛区,共30个赛区。

历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1. 计算()ln(1) d y x y x y ++=??,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足22 ()3()d 2f x x f x x =--? ,则()f x =. 3.曲面2 222 x z y =+-平行平面022=-+z y x 的切平面方程是. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且 1≠'f ,则=22d d x y . 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()() g x f xt dt =?,且A x x f x =→) (lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)??-=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5d d π?≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3 1.试确定 c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且n e u n =)1(,求 函数项级数∑∞ =1 )(n n x u 之和.

数学建模比赛总结

数学建模比赛总结 我是广西电力职业技术学院发电厂及电力系统专业的一名学生,我很高兴有机会参加20XX年的数学建模竞赛并幸运地获得了广西二等奖。首先要感谢的是学校、学院领导及老师对我们队的支持和帮助。特别要感谢施宁清老师、覃州老师、麦宏元老师、陶国飞老师等老师一直以来对我们精心的辅导和鼓励,才有我们队获奖的机会。参加数学建模竞赛是一件很有意义的事情,它不仅能锻炼每个参赛者连续工作的能力、创造性的思维、把各方面的知识综合运用的能力、熟练使有用计算机以及计算机软件的能力,而更重要的是锻炼了参赛者与伙伴合作、共同完成某项工作的能力。 今年的这个暑假是个不平凡的暑假,我们参加20XX全国数目竞赛的同学都只有一般的时间,因为还有一半的时间是用来进行培训的。起初参加学校的数学建模选修课,我只是对于数学的爱好,那是的我根本不知道什么是数学建模,更不知道它的魅力何在?我们有一个30多人组成数模之家,其中有几个大家长,那就是我们的指导老师。他们为了我们花了很多功夫和时间。我们培训只有短短的一个月,而要在一个月内让一个初学者变成一个能参加全国比赛的选手,是多么大的挑战啊?老师在图书馆的阅览室为我们上模模培训课,从最数模软件Lingo到Mathematic,再到Spss等,

从简单的线性规划到层次分析法,从牛奶配送问题到NBA赛事分析,老师指导我们一步一步走向数模,去零落数模的魅力! 在这次竞赛当中,我们队的三个人我,黄国志,张高做了很好的分工,一个人主要写论文、另一个人主要收集资料还要协助写论文,而我主要在计算机上编程序进行计算。我们队首先选择了题目C,开赛第一天我们就在讨论C题,确定了基本思路,但是到了下午,我们的思路断了,3个人都没了思路然后我开始看题目D,题目D是学生宿舍的分析,这个题很类似于我们培训时老师讲评过的NBA赛事分析题,于是我们想可不可以运用相同或者类似的方法思路去求解D 题呢?我们就开始集中全力对D题展开分析进行计算。下午我们已经有了比较清晰的思路去求解D题了,最后在晚上决定悬着D题来做。第二天,我们在网上查阅了很多相关的资料,数据。然后我进行计算机模拟,即根据我得到的数据用数学软件如Matlab把我们要的图形模拟出来,把实际的东西转化为数字来计算,然后我负责编辑图形和输入软件进行求解,而他们两个人负责去讨论并把他们想到的新思路告诉我,然后开始写论文。写论文是一件很繁琐的事,因此要用的时间也多,这样等到我把一些基本的结果得出来时正好给他们加到论文里面去,在模拟时要用很多时间,而这些时间都是计算机在工作,所以我就利用这段时间去他们写论文,

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

全国大学生数学竞赛决赛试题(非数学类)

首届全国大学生数学竞赛决赛试卷 (非数学类) 考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分. 一、 计算下列各题(共20分,每小题各5分,要求写出重要步骤). (1) 求极限1 21lim (1)sin n n k k k n n π-→∞=+∑. (2) 计算 2∑其中∑ 为下半球面z =0a >. (3) 现要设计一个容积为V 的一个圆柱体的容器. 已知上下两底的材料费为单位面积a 元,而侧面的材料费为单位面积b 元.试给出最节省的设计方案:即高与上下底的直径之比为何值时所需费用最少? (4) 已知()f x 在11,42?? ???内满足 331()sin cos f x x x '=+,求()f x .

二、(10分)求下列极限 (1) 1lim 1n n n e n →∞????+- ? ? ?????; (2) 111lim 3n n n n n a b c →∞??++ ? ? ???, 其中0,0,0a b c >>>. 三、(10分)设()f x 在1x =点附近有定义,且在1x =点可导, (1)0,(1)2f f '==. 求 220(sin cos )lim tan x f x x x x x →++. 四、(10分) 设()f x 在[0,)+∞上连续,无穷积分0()f x dx ∞?收敛. 求 0 1lim ()y y xf x dx y →+∞?.

五、五、(12分)设函数()f x 在[0,1]上连续,在(0,1)内可微,且 1(0)(1)0,12f f f ??=== ???. 证明:(1) 存在 1,12ξ??∈ ???使得()f ξξ=;(2) 存在(0,)ηξ∈使得()()1f f ηηη'=-+. 六、(14分)设1n >为整数, 20()1...1!2!!n x t t t t F x e dt n -??=++++ ????. 证明: 方程 ()2n F x =在,2n n ?? ???内至少有一个根.

美国大学生数学建模竞赛赛题翻译

2015年美国大学生数学建模竞赛赛题翻译 2015年美国大学生数学竞赛正在进行,比赛时间为北京时间:2015年2月6日(星期五)上午9点—2月10日上午9点.竞赛以三人(本科生)为一组,在四天时间内,就指定的问题,完成该实际问题的数学建模的全过程,并就问题的重述、简化和假设及其合理性的论述、数学模型的建立和求解(及软件)、检验和改进、模型的优缺点及其可能的应用范围的自我评述等内容写出论文。 2015 MCM/ICM Problems 总计4题,参赛者可从MCM Problem A, MCM Problem B,ICM Problem C orICM Problem D等四道赛题中自由选择。 2015Contest Problems MCM PROBLEMS PROBLEM A: Eradicating Ebola The worldmedical association has announced that theirnewmedicationcould stop Ebola andcurepatients whose disease is not advanced. Build a realistic, sensible, andusefulmodel thatconsiders not onlythespread of the disease,thequantity of themedicine needed,possible feasible delivery systems(sending the medicine to where itis needed), (geographical)locations of delivery,speed of manufacturing of the va ccine ordrug, but also any othercritical factors your team considers necessaryas partof themodel to optimize theeradicationofEbola,orat least its current strain. Inadd ition to your modeling approach for thecontest, prepare a1—2 page non-technical letter for the world medicalassociation touse intheir announcement. 中文翻译: 问题一:根除埃博拉病毒 世界医学协会已经宣布他们的新药物能阻止埃博拉病毒并且可以治愈一些处于非晚期疾病患者。建立一个现实的,合理的并且有用的模型,该模型不仅考虑了疾病的蔓延,需要药物的量,可能可行的输送系统,输送的位置,疫苗或药物的生产速度,而且也要考虑其他重要的因素,诸如你的团队认为有必要作为模型的一部分来进行优化而使埃博拉病毒根除的一些因素,或者至少考虑当前的状态。除了你的用于比赛的建模方法外,为世界医学协会准备一份1-2页的非技术性的信,方便其在公告中使用。 PROBLEMB: Searchingforalost plane Recall the lostMalaysian flight MH370.Build agenericmathematicalmodel that could assist "searchers" in planninga useful search for a lost planefeared to have crashed in open water suchas the Atlantic, Pacific,Indian, Southern,or Arctic Ocean whil eflyingfrom PointA to Point B. Assume that there are no signals fromthe downed plane。Your model should recognize thattherearemany different types of planes forw

数学建模竞赛模拟赛题

问题A 如果以非线性器件的输入u(t)与输出y(t)的关系是y(t)=u(t)+ u2 (t)(其中t 是时间),那么当输入是包含频率f1, f2的信号u(t)=cos2pif1t+cos2pif2t时,输出y(t)中不仅包含输入新好f1, f2, 而且还会出现2 f1, f1± f2 等新的频率成分,这些新的频率称为交调,如果交频出现在原有频率 f1, f2 的附近,就会形成噪声干扰,因此工程设计中队交品德出现有一定的要求 A3= 45是输入信号振幅,对输入信号的频率f1, f2, f3的设计要求为 1) 36≤ f1 ≤40, 41 ≤ f2≤50, 46≤ f3≤55; 2)输出的交调均不得出现在fi ± 5 的范围内(i=1,2,3),此范围称为f i 的接收带(参见附图) 3) 定义输出中的信噪比SNR = 10 log10(B i2 / C n2 ) (单位:分贝)其中B i是输出中对应于频率为f i的信号的振幅C n为某一频率为f n的交调的振幅若f n出现在fn = fi± 6 处( i = 1,2,3)则对应的SNR 应大于10 分贝(参 见附图) 4)f i 不得出现在f j 的接收带内(i, j = 1,2,3; i ≠ j ) 5)为简单起见f i 只取整数值且交调只需考虑二阶类型(即{ f i± f j } i, j = 1,2,3;) 和三阶类型(即{ f i ± f j ± f k } i, j,k = 1,2,3; )试按上述要求设计输入信号频率f1, f2, f3 问题B 下表给出了我国12 只足球队在1988—1989 年全国足球甲级联赛中的成绩要求 1) 设计一个依据这些成绩排出诸队名次的算法并给出用该算法排名次的结果 2) 把算法推广到任意N 个队的情况 3) 讨论数据应具备什么样的条件用你的方法才能够排出诸队的名次 对下表的说明

数学建模模拟试题

数学建模模拟试题

2012年数学建模竞赛试题 注意事项(请参赛队员详细阅读!) 1.凯里学院校内数学建模竞赛于2012年6月29日8:00至7月 1日20:00举行。 2.参赛队可在A、B两题中任选其中一题,可以使用各种图书资料、网络信息、计算机和软件以及各种实验手段。 3.答卷论文请提交WORD文档方式的A4纸电子稿。并按下列要求制作。 论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。 封面:只需填上所选论文题目(注明A或B)及参赛队序号,其他一律 不要。 首页:论文题目、摘要(含模型的主要特点、建模方法和主要结果)。 正文:问题提出、问题分析、模型假设、符号说明、模型建立、模型求解、计算方法设计和软件实现、模型结果分析和检验、模型优缺点分析等。 4、论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词), 在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。 5.竞赛评奖以模型假设的合理性、建模的创造性、结果的正确性、文字表述的清晰程度为主要标准。 6.答卷(电子稿)务必于2012年7月1日20:00—22:00交到凯里学院数学实验室潘东云或雷学红老师处。 凯里学院数学建模领导小组 2012年06月28日

历届全国大学生数学竞赛真题

高数竞赛预赛试题(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln ) (y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,?=10d )()(t xt f x g ,且A x x f x =→) (lim 0,A 为常数,求) (x g '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)?? -=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5 d d π? ≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线 与x 轴及直线1=x 所围图形的面积为3 1 .试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小. 七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n , 且n e u n =)1(, 求函数项级数 ∑∞ =1 )(n n x u 之和. 八、(10分)求- →1x 时, 与∑∞ =0 2 n n x 等价的无穷大量.

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

相关文档
相关文档 最新文档