文档库 最新最全的文档下载
当前位置:文档库 › 大学物理2复习提纲2010-2011.1

大学物理2复习提纲2010-2011.1

大学物理2复习提纲2010-2011.1
大学物理2复习提纲2010-2011.1

第五章 静电场(是保守力场)

重点:求电场强度和电势。(点电荷系、均匀带点体、对称性电场),静电场的高斯定理和安培环路定理。 主要公式: 一、 电场强度

12.点电荷系场强:n E E E E

+???++=21(矢量和)

3(五步走积分法)(建立坐标系、取电荷元、写E d

、分解、积分)

4.对称性带电体场强:二、电势

12.点电荷系电势:n V V V V

+???++=21(代数和)

3(四步走积分法)(建立坐标系、取电荷元、写dV 、积分)

4.已知场强分布求电势:???=?=l

v p

dr E l d E V 0

三、电势差:

?

?=?B

A

AB l d E U

四、电场力做功:

?

?=?=2

1

00l l l d E q U q A

五、基本定理

(1) 静电场高斯定理:

物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。

(3)静电场安培环路定理:

物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。

【例题1】 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强和电势. 解:(1)求场强。建立如图坐标系;在圆上取电荷元?λλd d d R l q

==,?

Rd dl =它在O 点产生场强大小为:2

0π4d d R R E ε?λ=

方向沿半径向外。分解:

??ελ

?d sin π4sin d d 0R

E E x =

= 相互抵消y E d 。

积分R

R E O

000

π2d sin π4ελ

??ελπ

==?

,沿X 轴正方向。

注意此题中若?角度选取不同,积分上下限也会随之不同,但结果一样。 (2)求电势。 建立如图坐标系; 在圆上取电荷元?λλd d d R l q

==,?Rd dl =;

它在O 点产生电势大小为:R

R V

0π4d d ε?

λ=

积分0

4d π4ελ?ελπ

=

=

?

O V

【例题2】 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?

解: (1)由高斯定理0

d εq

S E s

?=

?

立方体六个面,当q 在立方体中心时,每个面上电通量相等。∴ 各面电通量0

6εq e

=

Φ.

(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正

方形上电通量0

6εq e

=

Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则0

24εq e

=

Φ,

如果它包含q 所在顶点则0=Φe

【例题3】 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×5

10

-C ·m -3

求距球心5cm ,8cm ,12cm

各点的场强.

解: 高斯定理

d ε∑?

=?q S E s

,0

2

π4ε∑=q r E 当5=r cm 时,

0=

∑q ,0=E

8=r cm 时,∑q 3

π4p =3(r )3内r -∴ ()

2

02

3π43π4r

r r E ερ

-=41048.3?≈1C N -?, 方向沿半径向外.12=r

cm 时,3

π4∑=ρ

q -3(外r )内3

r ∴ ()

42

03

31010.4π43π4?≈-=

r r r E

ερ

1C N -?

沿半径向外.

【例题4 】半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.

解: 高斯定理0

d ε∑?=?q

S E s

取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E S

π2d =??

对(1)1R r

<

0,0==∑E q (2)21R r R <<

λl q =∑∴r

E 0π2ελ

=

沿径向向外

(3) 2

R r

>

=∑q ∴ 0=E

【例题5】 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2

σ

解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,

两面间, n E )(21210

σσε-=

1σ面外, n E )(21210σσε+-=2σ面外, n E

)(21210

σσε+= n

:垂直于两平面由1σ面指为2σ面.

【例题6】 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.(补偿法)

解: 此题用补偿法的思路求解,将此带电体看作带正电ρ的均匀球与带电ρ-

的均匀小球的组合,见图

(a).由高斯定理可求得球对称性电场的场强分布。

(1) ρ+球在O 点产生电场010=E

, 球在O 点产生电场d π4π343

03

20

OO r E ερ= ∴ O 点电场'd 33

030OO r E ερ

= ;

(2) ρ+

在O '产生电场'd

π4d 343

0301E ερπ='

球在O '产生电场002='E

∴ O ' 点电场 0

03ερ

='E 'OO (3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r

(如 (b)图)

则 03ερr

E PO =

,0

3ερr E O P '

-=' ,

∴ 0

0033)(3ερερερd

r r E E E O P PO P

=

='-=+=' ∴腔内场强是均匀的.

【例题7 】 两点电荷1q =1.5×10-8

C ,2q =3.0×10-8

C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功

?

解:

??==?=222102120

21π4π4d d r r r r q q r r q q r F A εε

)11(21r r -61055.6-?-=J

外力需作的功

61055.6-?-=-='A A J

【例题8】如图所示,在

A ,

B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一

正试验点电荷0q 从O 点经过半圆弧移到

C

解:

0π41ε=

O U 0)(=-R

q

R q

0π41ε=

O U )3(R q

R q -R

q 0π6ε-

= ∴

R

q

q U U q A o C O 00π6)(ε=

-=

【例题9】如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于

R .试求环中心O

解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =

则θλd d R q

=产生O 点E

d 如图,由于对称性,O 点场强沿y 轴负方向

θ

εθ

λπ

π

cos π4d d 22

2

0??-==R R E E y R

0π4ελ

=

[)2

sin(π

-

2

sin

π

-]R

0π2ελ

-=

(2)

AB 电荷在O 点产生电势,以0=∞U

?

?===A

B

20

0012ln π4π4d π4d R R x x x x U ελελελ

同理CD 产生 2ln π402

ελ=

U 半圆环产生 0

034π4πελελ==R R U

第七章 恒定磁场(非保守力场)

重点:任意形状载流导线磁感应强度、对称性磁场的磁感应强度,安培力,磁场的高斯定理和安培环路定理。 主要公式:

1.毕奥-

1)有限长载流直导线,垂直距离r (其中。向之间的夹角流方向与到场点连线方分别是起点及终点的电

和21θθ)

2)无限长载流直导线,垂直距离r

3)半无限长载流直导线,过端点垂线上且垂直距离r

4)圆形载流线圈,半径为R ,在圆心O

5)半圆形载流线圈,半径为R ,在圆心O

6)圆弧形载流导线,圆心角为)(弧度制θ,半径为R ,在圆心O (θ用弧度代入)

2.安培力:??=l

B l Id F

(方向沿B l Id ?方向,或用左手定则判定)

3.洛伦兹力: B v q F

?=(磁场对运动电荷的作用力)

4.磁场高斯定理:

物理意义:表明稳恒磁场中,通过任意闭合曲面的磁通量(磁场强度沿任意闭合曲面的面积分)等于0。

5

物理意义:表明稳恒磁场中,磁感应强度B 沿任意闭合路径的线积分,等于该路径内包围的电流代数和的

0μ倍。0μ称真空磁导率

【例题1】 如图所示,AB 、CD 为长直导线,C B

为圆心在O 点的一段圆弧形导线,其半径为R .若

通以电流I ,求O 点的磁感应强度. 解: O 点磁场由

AB 、C B

、CD 三部分电流产生.其中:

产生 01=B

产生R

I

B 1202

μ=

,方向垂直向里

段产生 )23

1(2)60sin 90(sin 2

4003

-πμ=-πμ=

??R I R I B ,方向⊥向里 ∴)6

231(203210π

πμ+-=

++=R I B B B B ,方向⊥向里. 【例题2】在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,

1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为

5.0cm .试求

A ,

B

解:如图所示,A B

方向垂直纸面向里。

42

01

0102.105

.02)

05.01.0(2-?=?+

-=

πμπμI I B A T

(2)设0=B

在2L 外侧距离2L 为r 处 则

02)1.0(22

0=-

+r

I r I

πμπμ 解得1.0=r m 【例题3】如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环

的粗细均匀,求环中心O 的磁感应强度. 解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,

∞A 和∞B 在O 点产生的磁场为零。且

θ

-πθ

==21221R R I I 电阻电阻. 1I 产生1B 方向⊥纸面向外πθπμ2)2(21

01-=R I B ,

2I 产生2B 方向⊥纸面向里 π

θ

μ222

02R I B =∴

1)2(2121=-=θ

θπI I B B 有 0210=+=B B B

【例题4】 两平行长直导线相距d =40cm ,每根导线载有电流1I =2I =20A ,如题9-12图所示.求:(1)两

导线所在平面内与该两导线等距的一点

A

(2)通过图中斜线所示面积的磁通量.(1r =3r =10cm,

l

=25cm)

(1)

5

2

01

0104)

2

(2)

2

(2-?=+

=

d I d I B A πμπμT

方向⊥纸面向外。 (2)

r l S d d =

612010110102.23ln 31ln 23ln 2])(22[

1211

-+?=π

μ=πμ-πμ=-πμ+πμ=?

l I l I l I ldr r d I r I r r r Φ(Wb ) 【例题5】 一根很长的铜导线载有电流10A ,设电流均匀分布.在导线内部作一平面S ,如图所示.试计算通过S 平面的磁通量(沿导线长度方向取长为1m 的一段作计算).铜的磁导率0μμ=.

解:由安培环路定律求距圆导线轴为r 处的磁感应强度:

?∑μ=?l I l B 0d 2

2

02R Ir r B μπ=

2

02R Ir B πμ=磁通量 60020

)(1042-===?=Φ??π

μπμI dr R Ir S d B R s m 【例题6】设图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:

(1)在各条闭合曲线上,各点的磁感应强度B

的大小是否相等?

(2)在闭合曲线c 上各点的B

是否为零?为什么?

解: ?μ=?a

l B 0

8d

?

μ=?ba

l B 0

8d

?=?c

l B 0

d

(1)在各条闭合曲线上,各点B

的大小不相等.

(2)在闭合曲线C 上各点B 不为零.只是B 的环路积分为零而非每点0=B

题6图题7图

【例题7】图中所示是一根很长的长直圆管形导体的横截面,内、外半径分别为a ,b ,导体内载有沿轴线方向的电流I ,且I 均匀地分布在管的横截面上.设导体的磁导率0μμ

≈,试证明导体内部各点

)(b r a << 的磁感应强度的大小由下式给出: r a r a b I

B 2

2220)

(2--=

πμ

解:取闭合回路r l π2= )(b r a <<

则 ?π=?l

r B l B 2d 2

222

)

(a b I

a r I ππππ--=∑ )

(2)

(22220a b r a r I B --=πμ

【例题8】一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别为b ,c )构成,如题9-16图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小 解: 由磁场的安培环路定理:

?

∑μ=?L

I l B 0d

(1)a r < 2

2

2R Ir r B μπ= 202R Ir B

πμ=

(2) b r a

<< I r B 02μπ= r

I B πμ20=

(3)c r b << I b

c b r I r B 02

2

2

202μμπ+---= )

(2)

(2

2220b c r r c I B --=πμ (4)c r

> 02=r B π 0=B

题8图题9图

【例题9】在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I 沿导体管流动,电流均匀分布在管的横截面上,

(1)圆柱轴线上的磁感应强度的大小;(2)

解:空间各点磁场可看作半径为R ,电流1I 均匀分布在横截面上的圆柱导体和半径为r 电流2I -均匀分

布在横截面上的圆柱导体磁场之和. (1)圆柱轴线上的O 点B 的大小: 电流1I 产生的01

=B ,电流2I -产生的磁场

2

22

020222r R Ir a a I B -=

=πμπμ∴ )

(22

2

2

00

r R a Ir B -=

πμ

(2)空心部分轴线上O '点B 的大小:

电流2I 产生的02='B ,电流1I 产生的222

022r R Ia a B -πμ=')

(22

20r R Ia -=πμ ∴ )

(22200

r R Ia

B -=

'πμ

【例题10】如图所示,长直电流1I 附近有一等腰直角三角形线框,通以电流2I ,二者共面.求△ABC 的

各边所受的磁力.

解: ??=A

B

AB

B l I F

d 2

d

a

I I d I a

I F AB πμπμ22210102== 方向垂直AB 向左。 ??=C A AC B l I F d 2 方向垂直AC 向下,大小为:?++πμ=πμ=a d d AC d a

d I I r I r I F ln 22d 210102

同理 BC F

方向垂直BC 向上,大小

?

+πμ=a

d d

Bc r

I l I F 2d 1

02∵ ?

=

45cos d d r l

∴ ?

++π

μ=?πμ=a

d a

BC

d a

d I I r r I I F ln

245cos 2d 210120

【例题11】在磁感应强度为B

的均匀磁场中,垂直于磁场方向的平面内有一段载流弯曲导线,电流为I .求其所受的安培力.从此题中可以得到什么启示?

解:在曲线上取l

d

则 ??=b

a

ab B l I F d

∵ l d 与B 夹角l d <,2

π

>=

B

不变,B

是均匀的.

∴ ???=?=?=b a

b a

ab

B I B l I B l I F

)d (d

方向⊥ab 向上,大小BI F ab

=ab

结论:均匀磁场中载流弯曲导线所受安培力等效于首尾之间的直导线受力。

【例题12】 如图所示,在长直导线

AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,

AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm

(1)导线AB

(2)

(1)

CD

F

方向垂直

CD

向左,大小

41

02100.82-?==d

I b

I F CD πμ N 同理FE F

方向垂直FE 向右,大小51

02100.8)

(2-?=+=a d I b

I F FE πμ N

CF F 方向垂直CF 向上,大小为?+-?=+πμ=πμ=a d d CF d

a d I I r r I I F 5210210102.9ln 2d 2 N

ED F

方向垂直ED 向下,大小为5102.9-?==CF ED F F N

(2)合力ED CF FE CD F F F F F

+++=方向向左,大小为:4102.7-?=F N

∵ 线圈与导线共面 合力矩0=M

【例题13】 一长直导线通有电流1I ,旁边放一导线ab 长为l ,a 端距长直导线为d ,其中通有电流2I ,且两者共面,如图所示.求导线ab 所受作用力以及对O 点的力矩.

解:在ab 上取r d ,它受力ab F ⊥

d 向上,大小为:

r

I r

I F πμ2d d 1

02= )ln(2d 2d F 2102

10d

d l I I r r I

I F l

d d

+===?

?+πμπ

μ 方向竖直向上。

F d 对O 点力矩F r M

?=d

M

d 方向垂直纸面向外,大小为:r I I F r M

d 2d d 2

10π

μ=

= ??

=

=

=b

a

b

a

l I I r I I M M π

μπ

μ2d 2d 2

10210 第八章 电磁感应

重点:法拉第电磁感应定律、磁通量、感应电动势(感生和动生)。 主要公式:

1

2.磁通量:??=S

m S d B

φ

3.动生电动势()?=??=??βαε

cos )sin (dl vB l d B v l

l

?

?.;

方向的夹角的方向与是的夹角与是L B v B v

βα

注:感应电动势的方向沿B v

?的方向,从低电势指向高电势。 【例题1】一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B

垂直.当回路半径以

恒定速率

t

r d d =80cm ·s -1

收缩时,求回路中感应电动势的大小.

解: 回路磁通 2πr B BS m ==Φ

感应电动势大小 40.0d d π2)π(d d d d 2====

t

r

r B r B t t m Φε

V 方向与cbadc 相反,即顺时针方向.

【例题2】如图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M

U U -.

解: 作辅助线MN ,则在MeNM 回路中,沿v

方向运动时0d =m Φ

∴0=MeNM ε即 MN MeN εε=

又∵?+-<+-=

=b

a b a MN

b

a b

a Iv l vB 0ln 2d

cos 0πμπε

所以MeN ε沿NeM 方向,大小为 b

a b

a Iv -+ln 20πμ

M 点电势高于N 点电势,即b

a b

a Iv U U N M -+=

-ln 20πμ 【例题3】如图所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以

t

I

d d 的变化率增大,求:

(1)

(2)

解: 以向外磁通为正则 (1)

]ln [ln

π2d π2d π2000d

a

d b a b Il

r l r I

r l r I

a

b b a

d d m +-+=

-=?

?

++μμμΦ

(2) t

I

b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε 【例题4】如图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f

绕图中

半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大

值.

解: )cos(2

π02

?ωΦ+=?=t r B S B m

Bf

r f r B r B t r B t m m i 222

202ππ22

π2π)

sin(2

πd d ===+=-=ωε?ωωΦε∴ R

Bf

r R I m

22π==ε

【例题5】如图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1

d =0.05m 时线圈中感应电动势的大小

和方向. 解:

AB 、CD 运动速度v

方向与磁力线平行,不产生感应电动势.

DA 产生电动势?==??=A D I

vb vBb l B v d

2d )(01πμε

BC 产生电动势)

(π2d )(02d a I

vb

l B v C B

+-=??=?με

∴回路中总感应电动势8021106.1)11

(π2-?=+-=

+=a

d d Ibv μεεε

V 方向沿顺时针.

【例题6】长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B 中,B

的方向与回路的法线成60°角(如题10-8图所示),B

的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向. 解

:

?==?=?=222

1

2160cos d klvt lv kt Blvt S B m Φ

∴ klvt t

m

-=-

=d d Φε

即沿abcd 方向顺时针方向.

【例题7】一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B

的方向如图所示.取逆时针方向为电

流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φ

t

,0>ε;

在磁场中时

0d d =t

Φ

,0=ε;

出场时

0d d >t

Φ

,0<ε,故t I -曲线如图(b)所示. 【例题8】导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3

l

磁感应强度B 平行于转轴,如图10-10所示.试求: (1)两端的电势差;

(2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段

则?

==320

292d l Ob

l B r rB ωωε同理?==30218

1

d l

Oa l B r rB ωωε

∴226

1

)92181(l B l B Ob aO ab ωωεεε=+-

=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.

【例题9】如图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v

平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.

解:在金属杆上取r d 距左边直导线为r ,则 b a b a Iv r r a r Iv l B v b a b a B

A AB

-+-=-+-=??=??+-ln d )211(2d )(00πμπμε

∵ 0

∴实际上感应电动势方向从A B

→,即从图中从右向左,

大学物理2最新试题

期末练习一 一、选择题 、关于库仑定律,下列说法正确的是( ) .库仑定律适用于点电荷,点电荷其实就是体积很小的球体; .根据2021π4r q q F ε=,当两电荷间的距离趋于零时,电场力将趋向无穷大; .若点电荷1q 的电荷量大于2q 的电荷量,则1q 对2q 的电场力大于2q 对1q 的电场力; .库仑定律和万有引力定律的表达式相似,都是平方反比律。 、点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图,则引入前后( ) .曲面S 的电场强度通量不变,曲面上各点场强不变; .曲面S 的电场强度通量变化,曲面上各点场强不变; .曲面S 的电场强度通量变化,曲面上各点场强变化; .曲面S 的电场强度通量不变,曲面上各点场强变化; 、如图所示,真空中有一电量为 Q 的点电荷,在与它相距为r 的A 点处有一检验电荷 q ,现使检验电荷 q 从A 点沿半圆弧轨道运动到B 点,则电场力做功为( ) .0; .r r Qq 2π420?ε; .r r Qq ππ420?ε; .2ππ42 20r r Qq ?ε。 、已知厚度为d 的无限大带电导体板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示。则板外两侧电场强度的大小为( ) .02εσ=E ; .0 2εσ=E ; .0 εσ= E ; .0=E 。 、将平行板电容器的两极板接上电源,以维持其间电压不变,用相对介电常数为r ε的均匀电介质填满板间,则下列说法正确的是( ) .极板间电场强度增大为原来的r ε倍; .极板上的电量不变;

.电容增大为原来的r ε倍; .以上说法均不正确。 、两个截面不同的铜杆串联在一起,两端加上电压为U ,设通过细杆和粗杆的电流、电流密度大小、杆内的电场强度大小分别为1I 、1j 、1E 与2I 、2j 、2E ,则( ) .21I I =、21j j >、21E E >; .21I I =、21j j <、21E E <; .21I I <、21j j >、21E E > ; .21I I <、21j j <、21E E < 。 、如图所示,A A '、B B '为两个正交的圆形线圈,A A '的半径为R ,通电流为I ,B B '的半径为R 2,通电流为I 2,两线圈的公共中心O 点的磁感应强度大小为( ) .R I B 20μ=; .R I B 0μ=; .R I B 220μ= ; .0=B 。 、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线,外磁场垂直于水平面向上,当外力使ab 向右平移时,cd 将( )。.不动; .转动; .向左移动; .向右移动。 、E 和W E 分别表示静电场和感生电场的电场强度,下列关系式中正确的是( ) .0d =??L l E 、0d =??L W l E ; .0d ≠??L l E 、0d ≠??L W l E ; .0d =??L l E 、0d ≠??L W l E ; .0d ≠??L l E 、0d =??L W l E 。

大学物理复习提纲

《大学物理》上册复习纲要 第一章 质点运动学 一、基本要求: 1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。 2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。 二、内容提要: 1、 位置矢量: k z j y i x r ++= 位置矢量大小: 2 22z y x ++= 2、 运动方程:位置随时间变化的函数关系 k t z j t y i t x t r )()()()(++= 3、 位移?: z y x ?+?+?=? r s z y x ?≠?≠?+?+?=222)()()( 无限小位移:dr ds k dz j dy i dx r d ≠=++=???? 4、 瞬时速度: dt r d v = dt ds = = 5、 瞬时加速度: k dt z d j dt y d i dt x d k dt dv j dt dv i dt dv a z y x 222222++=++= 6、 圆周运动: 角速度dt d θω= 角加速度 22 dt d dt d θωα== 法向加速度速度方向的变化)(2 n n e r v a = 切向加速度速度大小的变化)(t αr e dt dv a t ==

例题:1.质点运动学(一):2,4,5,8;2.质点运动学(二):1,2,3,5; 第二章 牛顿定律 一、 基本要求: 1、 理解牛顿定律的基本内容; 2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。能以微积分为工具,求解一维变力作用下的简单动力学问题。 二、 内容提要: 1、 牛顿第二定律: a m F = 指合外力 合外力产生的加速度 在直角坐标系中: x x ma F = y y ma F = z z ma F = 在曲线运动中应用自然坐标系: r v m ma F n n 2 == dt dv m ma F t t == 例题:3、牛顿定律 2,3,5,8,9 第三章 动量守恒定律和能量守恒定律 一、 基本要求: 1、 理解动量、冲量概念,掌握动量定理和动量守恒定律,并能熟练应用。 2、 掌握功的概念,能计算变力作功,理解保守力作功的特点及势能的概念。 3、 掌握动能定理、功能原理和机械能守恒定律并能熟练应用。 二、 内容提要 (一) 冲量 1、 冲量: )212 1 t t dt F I t t -?=? 2、 动量: m = 3、 质点的动量定理: 12 2 1 m m dt t t -=?? 4、 动量守恒定律 条件:系统所受合外力为零或合外力在某方向上的分量为零; ∑-==n i i i m 1 恒矢量

大学物理模拟试题 (2)汇总

一填空题(共32分) 1.(本题3分)(0355) 假如地球半径缩短1%,而它的质量保持不变,则地球表面的重力加速度g 增大的百分比是________. 2.(本题3分)(0634) 如图所示,钢球A和B质量相等,正被绳 牵着以ω0=4rad/s的角速度绕竖直轴转动,二 球与轴的距离都为r1=15cm.现在把轴上环C 下移,使得两球离轴的距离缩减为r2=5cm.则 钢球的角速度ω=_____ 3.(本题3分)(4454) 。 lmol的单原子分子理想气体,在1atm的恒定压强下,从0℃加热到100℃, 则气体的内能改变了_____J.(普适气体常量R=8.31J·mol-1·k-1) 4。(本题3分)(4318) 右图为一理想气体几种状态变化过程的p-v图, 其中MT为等温线,MQ为绝热线,在AM, BM,CM三种准静态过程中: (1) 温度升高的是_____ 过程; (2)气体吸热的是______ 过程. 5。(本题3分)(4687) 已知lmol的某种理想气体(其分子可视为刚性分子),在等压过程中温度上 升1K,内能增加了20.78J,则气体对外作功为______ 气体吸收热 量为________.(普适气体常量R=8.31.J·mol-1·K-1) 6.(本题4分)(4140) 所谓第二类永动机是指____________________________________________________ 它不可能制成是因为违背了_________________________________________________。7。(本题3分)(1391)

一个半径为R的薄金属球壳,带有电荷q壳内充满相对介电常量为εr的各 向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U=_________________________. 8.(本题3分)(2620) 在自感系数L=0.05mH的线圈中,流过I=0.8A的电流.在切断电路后经 过t=100μs的时间,电流强度近似变为零,回路中产生的平均自感电动势 εL=______________· 9。(本题3分)(5187) 一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x o,此振子自由振动的 周期T=____. 10·(本题4分)(3217): 一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹;若已知此光栅 缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是 第_________级和第________级谱线. 二.计算题(共63分) 11.(本题10分)(5264) , 一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角 a=450.现给予物体以初速率v0=l0m/s,使它沿斜面向 上滑,如图所示.求: (1)物体能够上升的最大高度h; (2) 该物体达到最高点后,沿斜面返回到原出发点时速率v. 12。(本题8分)(0130) 如图所示,A和B两飞轮的轴杆在同一中心线上, 设两轮的转动惯量分别为J=10kg·m2和J=20 kg·m2.开始时,A轮转速为600rev/min,B轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A、B分别 与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减 速,直到两轮的转速相等为止.设轴光滑,求: (1)两轮啮合后的转速n; (2)两轮各自所受的冲量矩. 13.(本题lO分)(1276) 如图所示,三个“无限长”的同轴导体圆柱面A、B 和C,半径分别为R a、R b、R c. 圆柱面B上带电荷,A 和C都接地.求B的内表面上电荷线密度λl和外表面上 电荷线密度λ2之比值λ1/λ2。 14.(本题5分)(1652)

大学物理实验复习资料

大学物理实验复习资料 复习要求 1.第一章实验基本知识; 2.所做的十二个实验原理、所用的仪器(准确的名称、使用方法、分度值、准确度)、实验操作步骤及其目的、思考题。 第一章练习题(答案) 1.指出下列情况导致的误差属于偶然误差还是系统误差⑴读数时视线与刻度尺面不垂直。——————————该误差属于偶然误差。 ⑵将待测物体放在米尺的不同位置测得的长度稍有不同。——该误差属于系统误差。 ⑶天平平衡时指针的停点重复几次都不同。——————该误差属于偶然误差。 ⑷水银温度计毛细管不均匀。——————该误差属于系统误差。 ⑸伏安法测电阻实验中,根据欧姆定律R x=U/I,电流表内接或外接法所测得电阻的阻值与实际值不相等。———————————————该误差属于系统误差。 2.指出下列各量为几位有效数字,再将各量改取成三位有效数字,并写成标准式。 测量值的尾数舍入规则:四舍六入、五之后非零则入、五之后为零则凑偶 ⑴cm ——四位有效数字,×10cm 。 ⑵cm ——五位有效数字,, ⑶kg ——四位有效数字,×10-2kg , ⑷——五位有效数字,×10-1m , ⑸kg ——五位有效数字,, ⑹g ——五位有效数字,×103g , ⑺s;——四位有效数字,×102s , ⑻s ——四位有效数字,×10-1s , ⑼ ×10-3 m. ——四位有效数字,×10-3m ⑽℃——四位有效数字,×10℃ 3.实验结果表示 ⑴精密天平称一物体质量,共称五次,测量数据分别为:,,,,,试求 ① 计算其算术平均值、算术平均误差和相对误差并写出测量结果。 ② 计算其测量列的标准误差、平均值标准误差和相对误差并写出测量结果。解:算术平均值 = m3 612 3 5 15 1 . ≈ ∑ =i i m (g) 算术平均误差m ? = - =∑ = 5 1 5 1 i i m m = 00003(g) 相对误差m m E m ? = ==≈ 用算术平均误差表示测量结果:m = ±(g) 测量列的标准误差 ()()()( 1 5 3 2 6123 3 6121 3 2 6123 3 6122 3 2 6123 3 6127 3 - + - + - + - =. . . . . . =(g) 经检查,各次测量的偏差约小于3σ,故各测量值均有 效。 平均值的标准误差 5 0003 0. = = n m σ σ ≈(g) 相对误差 % . % . . 0004 100 6123 3 00014 ≈ ? = = m E m m σ 用标准误差表示的测量结果= m±(g) ⑵有甲、乙、丙、丁四人,用螺旋测微器测量一铜球的 直径,各人所得的结果是: 甲:±cm;乙:±cm 丙:±cm;丁:±cm 问哪个表示得正确其他人的结果表达式错在哪里 参考答案:甲:±cm 测量结果的最后一 位要与误差所在位对齐。 其他三个的错误是测量结果的最后一位没有与误差所在 位对齐。 ⑶用级别为、量程为10mA的电流表对某电路的电流作 10次等精度测量,测量数据如下表所示。试计算测量结 果及标准误差,并以测量结果形式表示。 解:算术平均值 ≈ =∑ = 10 1 10 1 i i I I (mA)

2大学物理期末试题及答案

1 大学物理期末考试试卷 一、填空题(每空2分,共20分) 1.两列简谐波发生干涉的条件是 , , 。 2.做功只与始末位置有关的力称为 。 3.角动量守恒的条件是物体所受的 等于零。 4.两个同振动方向、同频率、振幅均为A 的简谐振动合成后振幅仍为A ,则两简谐振动的相位差为 。 5.波动方程 ??? ?? -=c x t A y ωcos 当x=常数时的物理意义是 。 6.气体分子的最可几速率的物理意义 是 。 7.三个容器中装有同种理想气体,分子数密度相同,方均根速率之比为 4:2:1)(:)(:)(2 /122/122/12=C B A v v v ,则压强之比=C B A P P P :: 。 8.两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。开 始他们的压强和温度都相同,现将3J 的热量传给氦气,使之升高一定的温度。若使氧气也升 高同样的温度,则应向氧气传递的热量为 J 。 二、选择题(本大题共10小题,每小题3分,共30分) 1. 一个质点作圆周运动时,则有( ) A. 切向加速度一定改变,法向加速度也改变。 B. 切向加速度可能不变,法向加速度一定改变。 C. 切向加速度可能不变,法向加速度改变。 D. 切向加速度一定改变,法向加速度不变。 2. 一个物体沿固定圆弧光滑轨道由静止下滑,在下滑过程中( ) A. 它的加速度方向永远指出圆心,其速率保持不变. B. 它受到的轨道的作用力的大小不断增加. C. 它受到的合外力的大小变化,方向永远指向圆心. D. 它受到的合外力的大小不变,其速率不断增加. 3. 一质量为m,长度为L 的匀质细杆对过杆中点且垂直的轴的转动惯量为( ) A. 2 21mL B. 23 1mL C. 241mL D. 2121mL 4.物体A 的质量是B 的2倍且静止,物体B 以一定的动能E 与A 碰撞后粘在一块并以共 同的速度运动, 碰撞后两物体的总动能为( ) A. E B. E/2 C. E/3 D. 2E/3 5.一质量为0.02kg 的弹簧振子, 振幅为0.12m, 周期为2s,此振动系统的机械能为 ( ) A. 0.00014J 6. 有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始下滑,则( ) A .物块到达斜面底端时的动量相等。 B .物块到达斜面底端时的动能相等。 C .物块和斜面组成的系统,机械能不守恒。 D .物块和斜面组成的系统水平方向上动量守恒。 7. 假设卫星环绕地球作椭圆运动,则在运动过程中,卫星对地球中心的( ) A .角动量守恒,动能守恒。 B .角动量守恒,机械能守恒。 C .角动量不守恒,机械能守恒。 D .角动量不守恒,动量也不守恒。 8.把理想气体的状态方程写成=T PV 恒量时,下列说法中正确的是 ( ) A. 对一定质量的某种气体,在不同状态下,此恒量不等, B. 对摩尔数相同的不同气体,此恒量相等, C. 对不同质量的同种气体,此恒量相等, D. 以上说法都不对。

大学物理期末考试答案2

1某质点的运动学方程x=6+3t-5t 3,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间内合力作功为A 1,32t t →时间内合力作功为A 2,43t t → ,则下述正确都为(C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间内,其平均速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D )T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?内,速率由0增加到υ; 在2t ?内,由υ增加到υ2。设该力在1t ?内,冲量大小为1I ,所作的功为1A ;在2t ?内,冲量大小为2I ,所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

(完整版)大学物理上册复习提纲

《大学物理》上册复习纲要 第一章 质点运动学 一、基本要求: 1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。 2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。 二、内容提要: 1、 位置矢量: z y x ++= 位置矢量大小: 2 22z y x ++= 2、 运动方程:位置随时间变化的函数关系 t z t y t x t )()()()(++= 3、 位移?: z y x ?+?+?=? 无限小位移:k dz j dy i dx r d ++= 4、 速度: dt dz dt dy dt dx ++= 5、 加速度:瞬时加速度: k dt z d j dt y d i dt x d k dt dv j dt dv i dt dv a z y x 222222++=++= 6、 圆周运动: 角位置θ 角位移θ? 角速度dt d θω= 角加速度22dt d dt d θ ωα== 在自然坐标系中:t n t n e dt dv e r v a a +=+=2 三、 解题思路与方法: 质点运动学的第一类问题:已知运动方程通过求导得质点的速度和加速度,包括它沿各坐标轴的分量;

质点运动学的第二类问题:首先根据已知加速度作为时间和坐标的函数关系和必要的初始条件,通过积分的方法求速度和运动方程,积分时应注意上下限的确定。 第二章 牛顿定律 一、 基本要求: 1、 理解牛顿定律的基本内容; 2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。能以微积分为工具,求解一维变力作用下的简单动力学问题。 二、 内容提要: 1、 牛顿第二定律: a m F = 指合外力 a 合外力产生的加速度 在直角坐标系中: x x ma F = y y ma F = z z ma F = 在曲线运动中应用自然坐标系: r v m ma F n n 2 == dt dv m ma F t t == 三、 力学中常见的几种力 1、 重力: mg 2、 弹性力: 弹簧中的弹性力kx F -= 弹性力与位移成反向 3、 摩擦力:摩擦力指相互作用的物体之间,接触面上有滑动或相对滑动趋势产生的一种阻碍相对滑动的力,其方向总是与相对滑动或相对滑动的趋势的方向相反。 滑动摩擦力大小: N f F F μ= 静摩擦力的最大值为:N m f F F 00μ= 0μ静摩擦系数大于滑动摩擦系数μ 第三章 动量守恒定律和能量守恒定律 一、 基本要求: 1、 理解动量、冲量概念,掌握动量定理和动量守恒定律,并能熟练应用。 2、 掌握功的概念,能计算变力作功,理解保守力作功的特点及势能的概念。 3、 掌握动能定理、功能原理和机械能守恒定律并能熟练应用。 4、 了解完全弹性碰撞和完全非弹性碰撞的特点。 二、 内容提要 (一) 冲量

大学物理试题及答案()

第2章 刚体的转动 一、 选择题 1、 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为?A 和?B ,不计滑轮轴的摩擦,则有 (A) ?A =?B . (B) ?A >?B . (C) ?A <?B . (D) 开始时?A =?B ,以后?A <?B . [ ] 2、 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B . (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ] 3、 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. [ ] 4、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??=R J mR v 2 ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针。 [ ] 5、 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v .

大学物理电磁学复习提纲(赵凯华)

复习提纲 第一章 §1运用库仑定律 §2理解电场强度电场线能用叠加原理求电场分布(包括离散的电荷分布和电荷的连续分布)求带电体在电场中所受的力及其运动 §3高斯定理熟练运用高斯定理求解电场 §4 理解电势和电势差理解静电场力作功与路径无关及静电场的环路定理能运用叠加原理和电势定义式求电势分布理解等势面理解电势梯度及与电场的关系 §5 熟悉导体静电平衡条件理解静电平衡导体的性质、导体上的电荷分布、静电屏蔽熟练掌握有静电平衡导体问题的一般求法 §6 了解静电能的概念 §7 了解孤立导体的电容熟知典型电容器的电容能熟练求解简单电容器的电容、电容器的能量 §9 理解电流密度矢量熟悉并且能运用欧姆定律的微分形式,理解电流的连续性方程、稳恒电流条件理解电动势并且能在电路中运用 熟悉例题1—15,22—27。 参考习题 3、13、18、25、36、37、46、52、66 第二章 §1 理解电流的磁效应了解安培定律、电流单位的定义 §2 理解B的定义熟悉毕萨定律并且能求解简单情况下的问题(包括2.3, 2.4, 2.5的情形) §3 熟悉安培环路定理且能熟练应用求解问题 §4 了解磁场的高斯定理 §5 熟悉安培力熟练求解导体棒和线圈在磁场中所受的力和力矩 §6 熟悉洛仑兹力及特点,能求解简单磁场分布下带电粒子在磁场中的运动问题理解霍尔效应并且能求解 熟悉例题5—8,12--13 参考习题 1、2、3、4、7、14、16、17、23、28、32、43、50 第三章 §1 熟悉电磁感应现象能熟练应用电磁感应定律和楞次定律了解涡电流和电磁阻尼 §2 熟练应用动生电动势公式了解交流发电机原理理解感生电场能求轴对称磁场情况下感生电动势了解感应加速器 §5 理解互感和自感现象能求简单情况的自感和互感、两线圈顺接和反接的自感、互感系数和自感系数的关系熟悉自感磁能的公式,了解互感磁能 熟悉例题1—3,7—9, 参考习题 3、4、5、11、12、14、26、32、35 第四章 §1 理解极化概念了解极化的微观机制理解极化强度P的定义、退极化场的概念能求解极化电荷面密度熟悉D的定义,理解D、E、P三者的关系能熟练

大学物理II2复习资料

热学 1.将容器中理想气体的温度提高为原来的4倍,分子的平均速率将增大为原来的。2.1mol氢气的定容热容与一定量氧气的定压热容相等,则氧气的摩尔数为___________。3.1mol理想气体,已知它的状态参量同时满足p/T=A和V/T=B,则它的温度T=_________R(R为摩尔气体常数). 4.某理想气体分子在温度T l和T2时的麦克斯韦速率分布曲线如图所示,两温度下相应的分子平均速率分别为1υ和2υ,则( ) A.T1>T2,1υ<2υ B.T1>T2,1υ>2υ C.T12υ 5.f(v)是麦克斯韦速率分布函数,v p是最概然速率.设v lf(v2),f(v3)>f(v4) B.f(v l)>f(v2),f(v3)f(v4) 6.有一瓶质量为m,摩尔质量为M的氢气(视为刚性分子理想气体),温度为T,则该瓶氢气的热力学能为________。(R为摩尔气体常数) 7.气体经历如图所示的循环过程.在一次循环中,气体对外所作的净功是______。 8.2摩尔的氢气(视为刚性理想气体,分子自由度i=5)经历一个绝 热膨胀过程,温度由320K降低为300K.试问: (1)气体的热力学能变化了多少?是增加还是减少? (2)气体所做的功是多少?气体做正功还是负功? (3)经历该绝热过程之后,气体的压强是增大还是减小? [摩尔气体常数R=8.31J/(mol·K)] 9.有4mol空气(视为双原子理想气体,分子的自由度为5),开始时压强p 1 =1.0×105Pa, 体积V 1=0.10m3。后来气体经历一个等压过程,体积膨胀到V 2 =0.20m3。试问: (1)气体内能变化多少? (2)气体做功多少? (3)气体吸热多少? 10.已知热机在一次循环中,工作物质向低温热源放热Q 2 是热机对外做功W的4倍, (1)经一次循环过程,工作物质从高温热源吸热Q l 为W的多少倍? (2)求热机效率η?

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理热学复习提纲

期 末 复 习 理想气体状态方程 一、 理想气体:温度不太低,压强不太高的实际气体可视为理想气体。 宏观上,在任何情况下都符合玻-马、盖-吕、查理三定律的气体。 二、 三个实验定律:(1)玻—玛定律: pV = 常数 或 T = 常数 (2)盖.吕萨克定律:V T = 常数 或 p = 常数 (3)查理定律: T P = 常数 或 V = 常数 三、 理想气体状态参量: 体积(V ),压强(p ),温度(T ) ;内能(E ),焓(H ),熵(S ),摩尔数(ν ) 四、 理想气体分子模型: ①全同质点;②弹性碰撞;③除碰撞瞬间外无相互作用,忽略重力 五、 普遍适用 112212p V p V T T = :状态变化中质量不变 阿佛伽德罗定律: p nkT = 六、 道尔顿分压定律: ● 混合气体的压强等于组成混合气体的各成分的分压强之和 ● (几种温度相同的气体混于同一容器中,各气体的平均平动动能相等) ● 12112212222()333 t t t p n n n n p p =++=++=++εεε

七、 关于p nkT =: 1. 是状态方程的微观式,大学物理中常用此式 2. 式中N N n V V ==d d :气体的分子数密度,即单位体积内的分子数 3. R = 8.31 J/(mol·K) :普适气体常数 4. 23123 8.31 1.3810J K 6.0210A R k N --===???:玻耳兹曼常量 八、 关于压强p : ● Γ:单位时间内碰在单位面积器壁上的平均分子数(气体分子碰壁数) ● 压强p :单位时间内气体(全部分子) ① 压强的定义体现了统计平均。 ② V x >0的分子占总分子的一半,或分子速度在某方向的分量平均值为0 ● (例如:在x 方向,有0x v =;在y 方向,有0y v =;在z 方向,有0z v =)这是机会均等的表现。 ③ 2 213x v v = 也是机会均等的表现。 ④ 22i ix x i n v v n =∑∑ 是统计平均的表现。 九、 1. 压强是相应的微观量:分子数密度和平动动能的统计平均。 ● 压强与分子数密度n 有关,与气体种类无关。 2. 温度是相应的微观量:平均平动能的统计平均值。 ● 温度是大量气体分子热运动的外在表现,实质就是反映了气体内部分子热运动的剧烈程度。

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理实验复习资料

v1.0 可编辑可修改 大学物理实验复习资料 复习要求 1.第一章实验基本知识; 2.所做的十二个实验原理、所用的仪器(准确的名称、使用方法、分度值、准确度)、实验操作步骤及其目的、思考题。 第一章练习题(答案) 1.指出下列情况导致的误差属于偶然误差还是系统误差 ⑴ 读数时视线与刻度尺面不垂直。——————————该误差属于偶然误差。 ⑵ 将待测物体放在米尺的不同位置测得的长度稍有不同。——该误差属于系统误差。 ⑶ 天平平衡时指针的停点重复几次都不同。——————该误差属于偶然误差。 ⑷ 水银温度计毛细管不均匀。——————该误差属于系统误差。 ⑸ 伏安法测电阻实验中,根据欧姆定律R x=U/I,电流表内接或外接法所测得电阻的阻值与实际值不相等。———————————————该误差属于系统误差。 2.指出下列各量为几位有效数字,再将各量改取成三位有效数字,并写成标准式。 测量值的尾数舍入规则:四舍六入、五之后非零则入、五之后为零则凑偶 ⑴ cm ——四位有效数字,×10cm 。 ⑵ cm ——五位有效数字,, -2 ⑷ ——五位有效数字,×10-1m , ⑸ kg ——五位有效数字,, ⑹ g ——五位有效数字,×103g , ⑺ s;——四位有效数字,×102s , ⑻ s ——四位有效数字,×10-1s , ⑼ ×10-3 m. ——四位有效数字,×10-3m ⑽ ℃ ——四位有效数字,×10℃ 3.实验结果表示 ⑴ 精密天平称一物体质量,共称五次,测量数据分别为:,,,,,试求 ① 计算其算术平均值、算术平均误差和相对误差并写 出测量结果。 ② 计算其测量列的标准误差、平均值标准误差和相对 误差并写出测量结果。 解:算术平均值 = m3 612 3 5 15 1 . ≈ ∑ =i i m (g) 算术平均误差m ? = - =∑ = 5 1 5 1 i i m m = 00003(g) 相对误差m m E m ? = ==≈ 用算术平均误差表示测量结果:m = ±(g) 测量列的标准误差 ()()()( 1 5 3 2 6123 3 6121 3 2 6123 3 6122 3 2 6123 3 6127 3 - + - + - + - =. . . . . . =(g) 经检查,各次测量的偏差约小于3σ,故各测量值均 有效。 平均值的标准误差5 0003 0. = = n m σ σ ≈(g) 相对误差

(完整版)《大学物理》下期末考试有答案

《大学物理》(下)期末统考试题(A 卷) 说明 1考试答案必须写在答题纸上,否则无效。请把答题纸撕下。 一、 选择题(30分,每题3分) 1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为: (A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ 参考解:v =dx/dt = -Aωsin (ωt+φ) ,cos )sin(4 2 4/?ω?ωπA A v T T T t -=+?-== ∴选(C) 2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(221242122122 1221=-=kA k kA kA mv A ∴选(E ) 3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. 参考解:这里的条件是“平面简谐波在弹性媒质中传播”。由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。∴选(D )

4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜 的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜 上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。两束光分别经上下表面反射时,都是波疏媒质到波密媒质的界面的反射,同时存在着半波损失。所以,两束反射光的光程差是2n 2 e 。 ∴选(A ) 5.波长λ=5000?的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离d=12mm ,则凸透镜的焦距f 为: (A) 2m (B) 1m (C) 0.5m (D) 0.2m ; (E) 0.1m 参考解:由单缝衍射的暗纹公式, asin φ = 3λ, 和单缝衍射装置的几何关系 ftg φ = d/2, 另,当φ角很小时 sin φ = tg φ, 有 1103 310500061025.0101232==?=---?????λa d f (m ) , ∴选(B ) 6.测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射 参考解:从我们做过的实验的经历和实验装置可知,最为准确的方法光栅衍射实验,其次是牛顿环实验。 ∴选(D ) 7.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. 参考解:穿过第一个偏振片自然光的光强为I 0/2。随后,使用马吕斯定律,出射光强 8102021 60cos I I I == ∴ 选(A ) n 3

大学物理实验期末考试复习提纲

2011-2012年度第一学期大学物理实验期末考试复习提纲 一、考试时间:2012年1月4日下午16:20 — 18:00 二、考试地点(另行通知) 三、考试题型 1.填空题(20分,每空1分) 2.选择题(20分,每题2分) 3.作图题(10分,每题5分) 4.简答题(28分,每题7分) 5.计算题(22分,第1题10分,第2题12分)四、复习提纲 (一)误差理论与数据处理 1.测量的概念 2.测量的分类 3.误差的定义 4.误差的分类 5.随机误差的统计规律 6.不确定度的概念 7.不确定度的分类 8.直接测量和间接测量不确定度的计算 9.有效数字的概念 10.数值修约规则 11.有效数字的加减乘除运算 12.数据处理(作图法、逐差法、最小二乘法)(二)长度测量 1.游标卡尺与螺旋测微器分度值与零点误差 2.游标卡尺与螺旋测微器读数规则 (三)单摆 1.单摆周期公式 2.累积放大法(四)固体液体密度测量 1.物理天平的调节 2.静力称衡法 3.比重瓶法 (五)液体粘度的测定 1.斯托克斯公式 2.落球法 (六)牛顿第二定律验证 1.气垫导轨调平方法 2.牛顿第二定律验证方法 (七)杨氏模量的测量 1.光学放大法 2.拉伸法 (八)薄透镜焦距的测定 1.透镜成像特点 2.凸透镜焦距测量(自准直法、一次成像法、二次成像法) 3.凹透镜焦距测量(辅助透镜法) (九)牛顿环 1.光的干涉条件 2.牛顿环干涉图像特点 (十)电磁学实验的基础知识 1.伏安法(内接法、外接法、限流、分压) 2.电表读数规则 3.电表仪器误差 (十一)二极管伏安特性测定 1.二极管正向伏安特性 2.二极管反向伏安特性

874大学物理考研复习提纲

874 《大学物理》考研复习提纲 一、考试总体要求与考试要点 1.考试对象 考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学先进材料与纳米科技学院[080501]材料物理与化学、[080502]材料学、[085204]材料工程专业的考生。 2.考试的总体要求 考生应该熟练掌握大学物理相关的基本概念、基本理论和基本规律,正确认识各种物理现象的本质;还应掌握物理学研究问题的思想方法,能对实际问题建立简化的物理模型,并对其进行正确的数学分析。 本课程包括八大部分的内容: 第一部分是“经典力学基础”,包括质点运动的描述方法,质点动力学和刚体定轴转动的基本规律和概念,以及量纲和非惯性系问题的一般处理方法等; 第二部分是“热学基础”,包括“热力学和气体动理论”,主要介绍热平衡态、热量和内能等基本概念,以及气体状态方程、分子的速率分布、热力学基本定律、卡诺定理等; 第三部分是“机械振动基础”,包括机械波的产生和传播,平面简谐波,波的能量,惠更斯原理,波的干涉,驻波和多普勒效应等; 第四部分是“电磁学基础”,包括静态电场、稳恒电流的磁场、电磁感应与电磁场等内容,主要介绍静电场的基本概念和基本原理,并讨论导体和电介质在静电场中的基本性质;介绍磁场的基本性质,并讨论磁场与电流间的联系,以及电磁感应现象的物理内涵,进而建立起电磁场的基本概念; 第五部分是“波动光学基础”,从波动的角度认识光的干涉和衍射现象,讨论光的偏振和双折射,由此深化对电磁波基本性质的理解; 第六部分是“狭义相对论力学基础”,介绍狭义相对论力学的基本假设,力学相对性原理,坐标变换,狭义相对论的时空观,以及狭义相对论质点动力学等。 第七部分是“量子物理基础”,包括原子理论和量子物理的一些基本概念,四个量子数的引入和意义以及原子的电子壳层排布规则。 第八部分是“近代物理基础”,包括晶体的能带理论,导体、半导体和绝缘体的区别,p型和n型半导体,以及pn结的基本概念,光与原子的相互作用,激光的形成及应用等。 3.考试主要范围及重点 1) 经典力学 (1)牛顿三大运动定律

相关文档
相关文档 最新文档