文档库 最新最全的文档下载
当前位置:文档库 › 金属粉末注射成型工艺流程

金属粉末注射成型工艺流程

金属粉末注射成型工艺流程

金属粉末注射成型是一种先进的制造工艺,通过将金属粉末与粘结剂混合,然后将混合物注入注射成型机的模具中,经过高温和高压的作用,使金属粉末颗粒结合成坚固的零件。这一工艺具有高效、精确和可靠的特点,广泛应用于航空航天、汽车制造、医疗器械等领域。

注射成型的工艺流程可以分为以下几个步骤:

1. 原料准备:首先,需要准备金属粉末和粘结剂。金属粉末的选择根据零件的要求来确定,可以是铝、不锈钢、钛等金属材料。粘结剂的选择通常是有机胶水或聚合物材料。

2. 混合:将金属粉末和粘结剂按照一定比例混合均匀。混合的目的是使金属粉末与粘结剂充分结合,并形成粘稠的混合物,以便后续的注射过程。

3. 注射:将混合物注入注射成型机的模具中。注射过程需要控制注射速度和注射压力,以确保混合物能够填充模具的每个角落,形成完整的零件。

4. 固化:注射完成后,需要将注射件置于烘箱或加热设备中进行固化。固化的目的是使粘结剂在高温下熔化,将金属粉末颗粒紧密结合在一起,形成坚固的结构。

5. 后处理:固化后的零件需要进行后处理,包括除去粘结剂残留物、去除表面缺陷、热处理等。后处理的目的是提高零件的密度和强度,并使其达到设计要求。

金属粉末注射成型工艺流程简单而有效,能够生产出复杂形状的零件,具有较高的精度和良好的表面质量。与传统的金属加工方法相比,注射成型工艺无需进行复杂的切削和加工过程,节约了原材料和能源,降低了生产成本。同时,注射成型还能够实现零件的批量生产,提高生产效率。

然而,金属粉末注射成型工艺也存在一些挑战。首先,注射成型过程中需要控制好粉末颗粒的分布和流动性,以确保零件的均匀性和一致性。其次,粘结剂的选择和控制对零件的质量和性能有重要影响,需要进行细致的调整和优化。此外,注射成型工艺还存在一定的限制,对于形状复杂、壁厚较大的零件难以实现。

随着科学技术的不断发展,金属粉末注射成型工艺将得到进一步改进和应用。未来,注射成型工艺有望实现更高的精度和更广泛的应用领域,为制造业的发展带来新的机遇和挑战。

金属或陶瓷粉末注塑成型工艺

来源于:注塑塑胶网https://www.wendangku.net/doc/e219053361.html, 金属或陶瓷粉末注塑成型工艺 使用金属或陶瓷粉末通过注塑成型工艺生产复杂零件 如今,使用粉末材料的注塑成型技术主要用于制造工业用复杂组件。粉末注塑成型是除了其它成型工艺(精密铸造和轴向或均衡压制)外的另一种可供选择的工艺。 近年来,用陶瓷或金属粉末来制造注塑成型零件的应用领域主要包括汽车工业、刀具工业、磁体生产、纺织工业、钟表工业、家居用品、精密工程、医疗和牙科技术以及陶瓷工业。 在 ARBURG PIM 实验室,客户可以通过实际观看样品生产来了解粉末注塑的优点。 表1: 金属和陶瓷组件的典型公差 粉末注塑成型技术使组件的批量生产成为可能,因为采用机械加工或压制技术进行批量生产已经不再是一种经济有效的方式。注塑成型技术使组件的设计和制造过程具有几乎无限的自由度。 粉末注塑成型制造过程包括成型零件的初始注塑成型、脱脂和烧结。组件公差由以下重要因素确定: ● 粘合剂含量 ● 粉末特性 ● 混合过程 ● 注塑成型参数 ● 重力变形 ● 在烧结托盘上的滑动性能 可用材料范围广泛 原则上,所有细颗粒、可烧结的粉末都可以和相应的粘合剂混合并在注塑机上加工。包括氧化陶瓷、金属、碳化物及氮化物。 由于混合和注塑设备在处理粉末材料的过程中会受到较强磨损,因此建议选择粒度尽可能小的粉末。较细的粉末可降低表面粗糙度,从而在加工过程中降低磨损并提高生坯强度。各种粉末材料的性能范围如表3中所示。 表2: 在严格的公差范围内的高重复性 粘合剂使粉末可用来注塑 对粘合剂最重要的要求是:脱脂过程中的尺寸稳定性、良好的保存特性、不与粉末材料发生反应、很高的零件强度、良好的脱模特性、热稳定性和在脱脂过程中易于去除并可完全去除。 粘合剂与粉末颗粒之间的粘附力还应尽可能高,以便在注塑过程中增高压力不会使两个组份分离,而导致填充的零件不均匀。为了获得良好的注塑成型特性并以低收缩率获得均匀的烧结质量,建议采用球形粉末。

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍 小编备注:结合国内目前MIM现状补充了一些资料。转载请注明文章来源:金属注射成型网https://www.wendangku.net/doc/e219053361.html, 1 MIM是一种近净成形金属加工成型工艺 MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选金属粉末与粘结剂进行混炼,然后将混合料进行制粒再注射成形所需要的形状胚料,然后通过高温烧结,得到具有强度的金属零件。 2 MIM工艺流程步骤 MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进一步的机械加工或进行表面处理. 混合

精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。 CNPIM备注:混炼是MIM工艺中非常重要的一道工序。目前混炼有几种体系,不同的添加剂,后面对应需要不同的脱脂方法将添加剂去除。最常用的蜡基和塑基,分别对应热脱脂和催化脱脂。 成型 注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送入机器加热并在高压下注入模腔。这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知的。 脱脂

金属注射成型工艺流程

金属注射成型工艺流程 金属注射成型工艺是一种把金属粉末用压力注入模具中,再经过冷却形成金属型腔的工艺。这种方法可以生产外观精美、结构复杂、尺寸精密的金属零件,并且可以在不影响零件尺寸和性能的情况下,更换不同金属材料。金属注射成型工艺的特点是可靠性高、工艺流程简单,且制造的零件精度高、力学性能好,因此,金属注射成型工艺得到了越来越多的应用。 金属注射成型工艺的具体流程如下: 1.属粉末准备:用经过特殊处理的金属粉末制备模具。常用的金属粉末材料有铝合金、铜合金、钢铁合金和不锈钢粉末。 2.具制备:根据图纸进行模具结构设计,然后制备模具,通常是由两部分组成:底座和模穴。 3.压料:将金属粉末倒入模坯,再用压力将粉末完全填入模具内。 4.浇注:注入融化的金属粉末,在模穴内快速融化形成金属型腔。 5.却:冷却模具,使金属型腔冷却凝固成型,并保持尺寸精度。 6.洗:清洗模具,以防止模具附着有害物质和废物。 7.离:从模具中分离出成型零件,有可能要用特殊工具刮开模具,然后手动小心分离出成型零件。 金属注射成型工艺具有生产成本低、精度高、质量稳定、产量大、成型速度快等优势,它比传统的机加工工艺具有更多的优势,可以应用于航空航天、汽车、电子、家用电器等多个领域,日益成为各类金属零件的主要生产工艺。

但金属注射成型工艺也存在着不足。其中,模具投资较大,模具设计和制造技术要求也比较高;另外,在产品设计和制造过程中,模具位置及模具结构受到较大的限制,从而影响零件的尺寸、形状及表面精度。 总之,金属注射成型工艺是一种非常重要的金属成型工艺,它具有生产成本低、精度高、质量稳定、产量大、成型速度快等优势,可以大大改善传统的机械加工工艺,为工业生产提供了质量高、工艺简单、成本低的零部件替代方案。

粉末注射成形

粉末注射成形 简介 粉末注射成形是一种先进的制造技术,它使用粉末作为原料,通过注射成形的方式制造出所需的零件或产品。相比传统的制造方法,粉末注射成形具有更高的精度、更好的表面质量以及更广泛的适用性。它在诸多领域中得到了广泛应用,包括汽车制造、航空航天、医疗器械等。 工艺流程 粉末注射成形的工艺流程通常包括以下几个步骤: 1.原料准备:选择合适的粉末材料,通常是金属或陶 瓷材料。粉末材料需要经过严格的筛选和处理,以确保其质量和均匀性。 2.模具设计与制造:根据零件或产品的设计要求,设 计出相应的注射模具。模具通常由耐磨材料制成,以确保其寿命和精度。

3.粉末注射:将预先加热的粉末注入模具的注射腔中。 注射压力和速度需要控制得当,以确保完整的填充和均匀 的分布。 4.成型和固化:在注射完成后,模具会进一步冷却和 固化,使得粉末颗粒结合在一起。这个过程通常使用冷却 水或其它冷却介质进行。 5.脱模和后处理:成型完成后,从模具中取出零件或 产品,进行脱模。接下来,可能需要进行表面处理、热处 理或其它后续加工,以达到最终的要求。 优势和应用 1. 高精度 粉末注射成形具有很高的制造精度。由于粉末颗粒能够充 分填充模具腔体并保持均匀分布,所以成品的尺寸偏差很小。这一优势使得粉末注射成形在需要高精度零件的制造中得到广泛应用,如精密仪器、光学设备等。

2. 准确的复杂结构 粉末注射成形能够制造出几何形状复杂的零件和产品。由 于注射成形过程是在模具中进行,所以可以通过设计合适的模具来实现对几何结构的精确控制。这使得粉末注射成形成为一种制造高复杂度零件的理想选择,如涡轮叶片、齿轮等。 3. 节约材料和成本 相比传统的制造方法,粉末注射成形具有更高的材料利用率,减少浪费。由于粉末注射成形不需要额外的切削过程,所以材料的损耗较小。此外,由于粉末注射成形可以一次性完成整个零件的制造过程,所以生产效率较高,降低了制造成本。 4. 广泛的适用性 粉末注射成形可以适用于多种材料,包括金属和陶瓷等。 不同的材料可以通过调整工艺参数来满足不同的要求。这使得粉末注射成形在各个领域中都得到了广泛的应用,如汽车制造、航空航天、医疗器械等。

金属粉末注射成型技术.

金属粉末注射成型(Metal Powder Injection Molding,简称MIM技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 MIM技术由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。MIM技术已成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。

MIM工艺

1、MIM 技术概述 金属(陶瓷)粉末注射成型技术(Metal Injection Molding ,简称MIM 技术)是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科相互渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确的将设计思想物化为具有一定结构、功能特性的制品并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品密度低、材质不均匀、机械性能低、不易成型薄壁、复杂结构的缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。 2 、MIM 工艺过程 2.1工艺流程 2.2 过程简介 2.2.1金属粉末 MIM 工艺所用金属粉末颗粒尺寸一般在0.5~20μm;从理论上讲,颗粒越细,比表面积也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm 的较粗的粉末。 2.2.2有机胶粘剂 有机粘接剂作用是粘接金属粉末颗粒,使混合料在注射机料筒中加热具有流变性和润滑性,也就是说带动粉末流动的载体。因此,粘接剂的选择是整个粉末注射成型的关键。对有机粘接剂要求:①用量少,即用较少的粘接剂能使混合料产生较好的流变性;②不反应,在去除粘接剂的过程中与金属粉末不起任何化学反应;③易去除,在制品内不残留碳。

2.2.3混练与制粒 混练时把金属粉末与有机粘接剂均匀掺混在一起,将其流变性调整到适于注射成形状态的作用。混合料的均匀程度直接影响其流动性,因而影响注射成型工艺参数乃至最终材料的密度及其它性能。注射成形过程中产生的下角料、废品都可重新破碎、制粒,回收再用。 2.2.4注射成形 本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。在注射成型过程中,混合料在注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型出毛坯。注射成型的毛坯的密度在微观上应均匀一致,从而使制品在烧结过程中均匀收缩。控制注射温度、模具温度、注射压力、保压时间等成形参数对获得稳定的生坯重量至关重要。要防止注射料中各组分的分离和偏析,否则将导致尺寸失控和畸变而报废。 2.2.5脱粘 成型毛坯在烧结前必须去除毛坯内所含有的有机粘接剂,该过程称为脱粘。脱粘工艺必须保证粘接剂从毛坯的不同部位沿着颗粒之间的微小通道逐渐地排出,而不降低毛坯的强度。溶剂萃取部分粘接剂后,还要经过热脱粘除去剩余的粘接剂。脱粘时要控制坯件中的碳含量和减少氧含量。 2.2.6烧结 烧结是在通有可控气氛的烧结炉中进行的。MIM零件的高密度化是通过高的烧结温度和长的烧结时间来达到的,从而大大提高和改善零件材料的力学性能。 2.2.7后处理 对于尺寸要求较为精密的零件,需要进行必要的后处理。本工序与常规金属制品的热处理工序相同。 3、MIM工艺特点 3.1MIM工艺与其它加工工艺的对比 3.1.1 MIM与传统的粉末冶金(PM)的比较

粉末注射成型工艺流程

粉末注射成型工艺流程 一、前期准备 1.1 原料准备 根据产品配方,准备所需的原材料,并按照规定的比例进行混合。 1.2 设备准备 检查设备是否完好无损,清洁干净。检查各种管道、阀门等是否正常通畅。 1.3 工艺参数设置 根据产品要求,设置工艺参数,如温度、压力、流量等。 二、粉末注射成型工艺流程 2.1 混合和过筛 将所需原材料按照配方比例混合,并进行过筛。这一步旨在确保原材

料均匀混合,并去除其中的颗粒或杂质。 2.2 加水和搅拌 将混合后的原材料加入搅拌机中,加入适量的水,并进行充分搅拌。这一步旨在使原材料形成均匀的糊状物,便于后续处理。 2.3 粉末注射成型 将糊状物注入粉末注射成型机中,通过压力将其挤出成型。这一步旨在使糊状物形成所需形态的产品。 2.4 固化和干燥 将成型后的产品进行固化和干燥处理。这一步旨在使产品形成稳定的结构,便于后续加工和使用。 2.5 检测和包装 对产品进行检测,确保其符合产品质量要求。将符合要求的产品进行包装,并进行标识、贴标签等处理。 三、清洗和维护

3.1 清洗设备 在每次生产结束后,对设备进行全面清洗,确保设备无残留物,以免 影响下次生产。 3.2 维护设备 定期对设备进行维护,如更换易损件、检查管道、阀门等是否正常运行。 四、安全注意事项 4.1 严格遵守操作规程 操作人员必须严格遵守操作规程,不得擅自改变工艺参数或操作方式。 4.2 注意个人防护 操作人员必须佩戴适当的个人防护用品,如手套、口罩等。 4.3 防止火灾和爆炸

在生产过程中应注意防止火灾和爆炸事故的发生,如禁止吸烟、使用明火等。同时应配备相应的灭火器材。 五、总结与展望 粉末注射成型工艺是一种高效、精确的生产工艺,能够满足各种产品的生产需求。在生产过程中,要注意原料准备、设备准备、工艺参数设置等各个环节的细节,以保证产品质量和生产效率。未来,随着科技的不断发展和创新,粉末注射成型工艺将会更加完善和成熟。

金属粉末注射成型工艺特殊过程控制要求

金属粉末注射成型工艺(MIN)特殊过程控制要求一、金属粉末注射成型的概念和原理 粉末冶金不仅是一种材料制造技术,而且其本身包含着材料的加工和处理,它以少无切削的特点越来越受到重视,并逐步形成了自身的材料制备工艺理论和材料性能理论的完整体系。现代粉末冶金技术不仅保持和大大发展了其原有的传统特点(如少无切削、少无偏析、均匀细晶、低耗、节能、节材、金属非金属及金属高分子复合等),而且已发展成为支取各种高性能结构材料、特种功能材料和极限条件工作材料、各种形状复异型件的有效途径。近年来,粉末冶金技术最引人注目的发展,莫过于粉末注射成型(MIN)迅速实现产业化,并取得突破性进展。 金属注射成型(Metal injection Molding),简称MIM,是传统的粉末冶金工艺与塑料成型工艺相结合的新工艺,是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术,利用磨具可注射成型,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确的将设计思想转变为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。 其注射机理为:通过注射将金属粉末与粘结剂的混合物以一定的温度,速度和压力注入充满模腔,经冷却定型出模得到一定形状、尺寸的预制件,再脱出预制件中的粘结剂并进行烧结,可得到具有一定机械性能的制件。其成型工艺工艺流程如下:金属粉末,有机粘接剂—混料—成型—脱脂—烧结—后处理—成品。 二、金属粉末注射成型工艺流程及其特殊过程控制要求 1、金属粉末的选择:首先根据产品的技术要求和使用条件选择粉末的种类,然后决定粉末颗粒尺寸。金属粉末注射成型所用的粉末颗粒尺寸一般在0.5-20μm;从理论上讲,粉末颗粒越细,比表面积也越大,颗粒之间的内聚力也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗粉末。粉末的选择要有利于混炼、注射形成、脱脂和烧结,而这往往是互相矛盾的,对于MIM的原料粉末要求很细,MIM原料粉末价格一般较高,有的升值达到传统PM粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有超高压水雾化法、高压气体雾化法等。 2、粘接剂;粘接剂是MIM技术的核心,在MIM中粘接剂具有增强流动性以合适注射成形和位置坯块形状这两个最基本的职能,此外它还应具有易于脱除、无污染、无毒性、成本合理等特点,为此出现了各种各样的粘接剂,近年来逐渐从单凭经验选择向根据对脱脂方法及对粘接剂功能的要求,有针对性地设计粘接剂体系的发展方向。粘接剂一般是由低分子组元与高分子组元再加上一些必要的添加剂构成。低分子组元粘度低,流动性好,易脱去;高分子组元粘度高,强度高,保持成型坯强度。二者适当比例搭配以获得高的粉末装载量,最终得到高精度和高均匀性的产品。通常采用的粘接剂组要有:热塑性体系(石蜡基、油基和热塑性聚合物基)、凝胶体系、热固性体系和水溶性体系。 3、混炼;混炼是将金属粉末与粘结剂混合得到均匀喂料的过程。由于喂料的性质决定了最终注射成形产品的性能,所以混炼这一工艺步骤非常重要。这牵涉粘结剂和粉末加入的方式和顺序、混炼温度、混炼装置的特性等多种因素。这一工艺步骤目前已知停留在依靠经验摸索的水平上,最终评价混炼工艺好坏的一个重要指标就是所得到喂料的均匀和一致性。MIM喂料的混合是在热效应和剪切力的联合作用下完成的。混料温度不能太高,否则粘结剂可能发生分解或者由于粘度太低而发生粉末和粘结剂两相分离现象,

金属粉末注射成型工艺流程

金属粉末注射成型工艺流程 金属粉末注射成型是一种先进的制造工艺,通过将金属粉末与粘结剂混合,然后将混合物注入注射成型机的模具中,经过高温和高压的作用,使金属粉末颗粒结合成坚固的零件。这一工艺具有高效、精确和可靠的特点,广泛应用于航空航天、汽车制造、医疗器械等领域。 注射成型的工艺流程可以分为以下几个步骤: 1. 原料准备:首先,需要准备金属粉末和粘结剂。金属粉末的选择根据零件的要求来确定,可以是铝、不锈钢、钛等金属材料。粘结剂的选择通常是有机胶水或聚合物材料。 2. 混合:将金属粉末和粘结剂按照一定比例混合均匀。混合的目的是使金属粉末与粘结剂充分结合,并形成粘稠的混合物,以便后续的注射过程。 3. 注射:将混合物注入注射成型机的模具中。注射过程需要控制注射速度和注射压力,以确保混合物能够填充模具的每个角落,形成完整的零件。 4. 固化:注射完成后,需要将注射件置于烘箱或加热设备中进行固化。固化的目的是使粘结剂在高温下熔化,将金属粉末颗粒紧密结合在一起,形成坚固的结构。

5. 后处理:固化后的零件需要进行后处理,包括除去粘结剂残留物、去除表面缺陷、热处理等。后处理的目的是提高零件的密度和强度,并使其达到设计要求。 金属粉末注射成型工艺流程简单而有效,能够生产出复杂形状的零件,具有较高的精度和良好的表面质量。与传统的金属加工方法相比,注射成型工艺无需进行复杂的切削和加工过程,节约了原材料和能源,降低了生产成本。同时,注射成型还能够实现零件的批量生产,提高生产效率。 然而,金属粉末注射成型工艺也存在一些挑战。首先,注射成型过程中需要控制好粉末颗粒的分布和流动性,以确保零件的均匀性和一致性。其次,粘结剂的选择和控制对零件的质量和性能有重要影响,需要进行细致的调整和优化。此外,注射成型工艺还存在一定的限制,对于形状复杂、壁厚较大的零件难以实现。 随着科学技术的不断发展,金属粉末注射成型工艺将得到进一步改进和应用。未来,注射成型工艺有望实现更高的精度和更广泛的应用领域,为制造业的发展带来新的机遇和挑战。

金属粉末注射成型技术

金属粉末注射成型技术 金属粉末注射成型(Metal Powder Injection Molding,简称MIM) 技术是一种通过将金属粉末与热塑性聚合物射出成型技术相结合,制造复 杂形状的金属制品。MIM技术结合了传统的注射成型和金属粉末冶金技术 的优点,能够高效、精确地制造出形状复杂的金属部件。下面将从工艺原理、材料特点、工艺流程以及应用领域等方面详细介绍MIM技术。 一、工艺原理 MIM技术主要包括四个步骤,即粉末混合、注射成型、烧结和后处理。首先,将金属粉末与增塑剂、溶剂等辅助剂混合均匀,形成可塑性的混合料。然后,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中,得到近成型的部件。接下来,通过烧结工艺,将成型的部件进行加热,使金属粉末颗粒之间相互扩散,实现部件的致密化和结合。最后,进行去 脱模、表面处理等后处理工艺,使得最终制品达到所需的精度和表面质量。 二、材料特点 MIM技术可以制造多种金属的制品,包括不锈钢、钛合金、铜合金、 铁合金等。这些材料具有良好的机械性能、耐磨、耐腐蚀等特点,可以满 足各种应用领域的需求。金属粉末的粒度一般在5-20μm之间,可以根据 制品要求进行选择。此外,MIM制品可以采用多种表面处理工艺,如抛光、电镀、喷涂等,进一步提高产品的表面质量和装饰效果。 三、工艺流程 MIM技术的工艺流程相对复杂,包括原料准备、混合、注射、烧结和 后处理等环节。首先,需要根据制品要求选择合适的金属粉末和添加剂, 并对其进行筛选和处理。然后,将金属粉末与增塑剂、溶剂等辅助剂进行

混合,形成可塑性的混合料。接下来,将混合料装入注射机中,通过高压 力将混合料注射至模具腔穴中。然后,将近成型的部件进行烧结,使其实 现致密化和结合。最后,通过去脱模、除渣、表面处理等后处理工艺,得 到最终的金属部件。 四、应用领域 MIM技术的应用领域非常广泛,包括电子通讯、汽车工业、医疗器械、军工等领域。在电子通讯领域,MIM技术可以制造小型高精度的连接器、 插件等零部件,满足电子设备不断减小体积和提高性能的需求。在汽车工 业领域,MIM技术可以制造发动机零部件、制动系统零部件、传感器等关 键零部件,提高零部件的精度和强度。在医疗器械领域,MIM技术可以制 造人工关节、手术器械等复杂形状的金属部件,满足医疗器械对精度和生 物相容性的要求。在军工领域,MIM技术可以制造高强度、高精度的武器 部件,提高武器系统的性能和可靠性。 综上所述,金属粉末注射成型技术是一种高效、精确制造复杂形状金 属部件的先进技术。它结合了注射成型和金属粉末冶金技术的优点,可以 满足各种领域对金属部件的高精度、高性能要求。随着科技的发展,MIM 技术在各个领域中的应用将会进一步拓展。

金属粉末注射成型工艺技术

金属粉末注射成型工艺技术 一、引言 金属粉末注射成型是一种先进的制造工艺技术,它通过将金属粉末与添加剂混合,然后在高温和高压的条件下注射到模具中,最终形成所需的金属零件。这种工艺技术具有高精度、复杂形状和优良性能的特点,被广泛应用于航空航天、汽车制造、医疗器械等领域。本文将全面、详细地探讨金属粉末注射成型工艺技术。 二、金属粉末注射成型的工艺流程 金属粉末注射成型工艺技术的流程可以分为以下几个步骤: 2.1 粉末制备 在金属粉末注射成型工艺中,粉末的质量和性能对最终产品的质量和性能有着重要影响。因此,粉末的制备是关键的一步。通常采用的方法包括机械合金化、电解还原、气相沉积等。 2.2 粉末混合 在粉末制备完成后,需要将金属粉末与添加剂进行混合。添加剂的作用是提高粉末的流动性和可压性,从而更好地填充模具。 2.3 注射成型 混合好的金属粉末和添加剂被注入注射成型机中,然后在高温和高压的条件下注射到模具中。注射成型过程中,金属粉末会充分热塑,填充整个模具腔。 2.4 烧结 注射成型后的零件需要进行烧结处理,以提高其密度和机械性能。烧结过程中,金属粉末颗粒之间会发生结合,形成致密的结构。

2.5 后处理 经过烧结处理后的零件可能需要进行后处理,如去除表面氧化层、研磨抛光等,以提高表面质量和精度。 三、金属粉末注射成型的优势和应用 金属粉末注射成型工艺技术具有以下优势: 3.1 高精度 金属粉末注射成型可以制造出复杂形状的零件,并且具有较高的尺寸精度和表面质量。 3.2 材料利用率高 金属粉末注射成型可以有效利用原材料,减少材料浪费。 3.3 机械性能优良 经过烧结处理的金属粉末注射成型零件具有较高的密度和机械性能,可以满足各种工程应用的需求。 金属粉末注射成型工艺技术在许多领域得到了广泛应用: 3.4 航空航天领域 金属粉末注射成型可以制造出轻量化、高强度的零件,满足航空航天领域对材料性能和质量的要求。 3.5 汽车制造领域 金属粉末注射成型可以制造出复杂形状的汽车零件,提高汽车的性能和安全性。 3.6 医疗器械领域 金属粉末注射成型可以制造出高精度、耐磨的医疗器械零件,提高医疗器械的性能和可靠性。

金属注射成型

百科名片 金属注射成形(Metal Injection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制品,但塑料制品强度不高,为了改善其性能,可以在塑料中添加金属或陶瓷粉末以得到强度较高、耐磨性好的制品。近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。这种新的粉末冶金成形方法称为金属注射成形。 金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。 1.MIM粉末及制粉技术 MIM对原料粉末要求较高,粉末的选择要有利于混炼、注射成形、脱脂和烧结,而这往往是相互矛盾的,对MIM原料粉末的研究包括:粉末形状、粒度和粒度组成、比表面等,表1中列出了最适合于MIM用的原料粉末的性质。 由于MIM原料粉末要求很细,MIM原料粉末价格一般较高,有的甚至达到传统PM 粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM 用原料粉末的方法主要有羰基法、超高压水雾化法、高压气体雾化法等。 2.粘结剂 粘结剂是MIM技术的核心,在MIM中粘结剂具有增强流动性以适合注射成菜和维持坯块形状这两个最基本的职能,此外它还应具有易于脱除、无污染、无毒性、成本合理等特点,为此出现了各种各样的粘结剂,近年来正逐渐从单凭经验选择向根据对脱脂方法及对粘结剂功能的要求,有针对性地设计粘结剂体系的方向发展。 粘结剂一般是由低分子组元与高分子组元加上一些必要的添加剂构成。低分子组元粘度低,流动性好,易脱去;高分子组元粘度高,强度高,保持成形坯强度。二者适当比例搭配以获得高的粉末装载量,最终得到高精度和高均匀性的产品。 3.混炼 混炼是将金属粉末与粘结剂混合得到均匀喂料的过程。由于喂料的性质决定了最终注射成形产品的性能,所以混炼这一工艺步骤非常重要。这牵涉到粘结剂和粉末加入的方式和顺序、混炼温度、混炼装置的特性等多种因素。这一工艺步骤目前一直停留在依靠经验摸索的水平上,最终评价混炼工艺好坏的一个重要指标就是所得到喂料的均匀和一致性。 MIM喂料的混合是在热效应和剪切力的联合作用下完成的。混料温度不能太高,否则粘结剂可能发生分解或者由于粘度太低而发生粉末和粘结剂两相分离现象,至于剪切力的大小则依混料方式的不同而变化。MIM常用的混料装置有双螺旋挤出机、Z 形叶轮混料机、单螺旋挤出机、柱塞式挤出机、双行星混炼机、双凸轮混料机等,这些混料装置都适合于制备粘度在1-1000Pa·s范围内的混合料。

mim工艺流程

mim工艺流程 MIM(Metal Injection Molding)是一种集传统金属注射成型技术和粉末冶金技术于一体的新型制造工艺。它可以制造形状复杂、尺寸精确的金属零部件,广泛应用于汽车、航空航天、电子等领域。 MIM工艺流程一般包括粉末制备、混合、注射成型、脱蜡、 烧结等步骤。 首先是粉末制备阶段。根据不同的材料要求,通过粉末冶金技术将金属粉末制备成所需的粒径和化学成分。通常使用的金属粉末有不锈钢粉末、钴铬粉末、镍粉末等,粉末的制备质量对后续工艺步骤的影响很大。 接下来是混合阶段。将制备好的金属粉末与所需的增粘剂和注模剂混合均匀,以便于后续的注射成型。混合过程需要保证材料的均匀性和稳定性,通常通过机械搅拌或者其他方法来实现。 第三个阶段是注射成型。将混合好的金属粉末放入注射机中,通过高压注射将粉末充填到模具中。模具的设计需要考虑产品的形状和尺寸要求,同时要保证注射过程中材料的流动性和充填性。 然后是脱蜡阶段。将注射成型的样品放入烘箱中,通过加热使增粘剂熔化和挥发,使得材料中的空隙得以形成。这个过程需要控制温度和时间,以避免过度烧结和材料的破坏。

最后是烧结阶段。将脱蜡后的样品放入高温炉中进行烧结。在高温下,金属粉末颗粒之间发生结合,在保持样品尺寸的同时,增强材料的力学性能和密度。烧结温度和时间根据材料要求来确定,通常需要在惰性气氛中进行。 整个MIM工艺流程的控制和优化需要考虑多个因素,如注射 成型参数、烧结温度和时间、材料配比等。在实际操作中,还需要进行质量检验和品质控制,以保证最终产品的质量和性能。 总之,MIM工艺是一种高效、精确的金属零部件制造方法, 通过合理的流程控制和工艺优化,可以制造出形状复杂、尺寸精确的金属零部件,满足各种工业领域的需求。在未来的发展中,MIM工艺有望实现更高效、更灵活的生产,为工业制造 带来更多的创新和发展。

金属粉末注射成型

金属粉末注射成型 一( 金属粉末注射成型的概念和原理 粉末冶金不仅是一种材料制造技术, 而且其本身包含着材料的加工和处理, 它以少无切削的特点越来越受到重视, 并逐步形成了自身的材料制备工艺理论和材料性能理论的完整体系。现代粉末冶金技术不仅保持和大大发展了其原有的传统特点(如少无切削、少无偏析、均匀细晶、低耗、节能、节材、金属,非金属及金属高分子复合等) , 而且已发展成为制取各种高性能结构材料、特种功能材料和极限条件下工作材料、各种形状复杂的异型件的有效途径。近年来, 粉末冶金技术最引人注目的进展, 莫过于粉末注射成型(MIM )迅速实现产业化, 并取得突破性进展。[1] 金属注射成型,Metal Injection Molding,,简称MIM~是传统的粉末冶金工艺 与塑料成型工艺相结合的新工艺~是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术~利用模具可注射成型, 快速制造高密度、高精度、复杂形状的结构零件, 能够快速准确地将设计思想转变为为具有一定结构、功能特性的制品, 并可直接批量生产出零件,是制造技术行业一次新的变革[2]。 其注射机理为:通过注射机将金属粉末与粘接剂的混合物以一定的温度~速度 和压力注人充满模腔~经冷却定型出模得到一定形状、尺寸的预制件~再脱出预制件中的粘接剂并进行烧结~可得到具有一定机械性能的制件。其成型工艺工艺流程如下:金属粉末~有机粘接剂?混料?成型?脱脂?烧结?后处理?成品。 二(金属粉末注射成型的工艺流程[3] 2.1金属粉末的选择 首先根据产品的技术要求和使用条件选择粉末的种类~然后决定粉末颗粒尺寸。金属粉末注射成型所用的粉末颗粒尺寸一般在0.5,20μ,,从理论上讲~粉末

粉末冶金工艺

粉末冶金工艺 摘要:本文针对粉末冶金的加工工艺,从生产工序,生产设备,作业条件等几个方面做阐述。 关键词:混料;注射;脱脂;烧结 引言 金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物。MIM 技术适合大批量生产形状复杂、高精度、高性能要求的小型金属零部件。 1 粉末冶金(MIM)定义及工艺流程图 1.1 定义 MIM为金属粉末注射成型(MetalInjection Molded)的简称,是一种将传统粉末冶金与塑料注射成型工艺相结合的高新近净成形技术。 1.2 加工流程图 混料→注射→脱脂→烧结→后处理 2 分工序简介 2.1 混料 把金属粉末与有机粘接剂均匀掺混在一起,使各种原料成为注射成型用混合料。 (1)金属粉末

MIM工艺所用的金属粉末颗粒尺寸一般在0.5~20μm。从理论上讲,颗粒越细,比表面积也越大,越易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗粉末。 (2)有机粘结剂 有机粘结剂的作用是粘结金属粉末颗粒,使混合料在注射机料筒中加热后具有流变性和润滑性,即粘结剂是带动粉末流动的载体。 2.2 注射成型 在注射成型过程中,混合料在注射机料桶内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型成毛坯。 2.2.1 注射机组成系统 注射机是注射成型的主要设备,主要由注射系统,合模系统,液压系统,电气系统4大系统组成,另外还包括加热冷却系统,润滑系统、安全及监测系统合模系统主要包括锁模装置,调模装置及其制品顶出装置等。 锁模系统的主要作用有: (1)保证模具能快速、准确、安全地实现闭合、开启及制品顶出; (2)模具闭合能提供足够的锁模力,抵抗注射熔体产生的模腔压力,防止模具涨开 注射系统主要包括预塑装置及注射装置。其主要作用: (1)均匀加热,并在规定时间内将一定数量的熔融塑料塑化;

MIM生产流程

MIM生产工艺流程 MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选粉末与粘结剂进行混合,然后将混合料进行制粒再注射成形所需要的形状。 下图标明了MIM生产流程框图: MIM实物流程图 机器实物图产品实物图一混料过程 •喂料:将大约60%的金属粉末与40%的粘结剂混合成均质的喂料。金属粉末 喂料 粘结剂 注射成脱脂烧结 成品出货全检后加工

二注射成型 注射成型:注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送 入机器加热并在高压下注入模腔。这个环节形成(green part )冷却后脱模, 只有在大约190°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整 个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考 虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知 的 。 三脱脂过程 •脱脂:脱脂是将成型部件中粘结剂与硝酸反应去除的过程。绝大部分 的粘结剂是在烧结前去除的,残留的部分能够支撑部件进入烧结炉四烧结过程

烧结:经过脱脂的部件被放进高温、高压控制的熔炉中。该部件在气体的保护下被缓慢加热,以去除残留的的粘合剂。粘结剂被完全清除后,该部件就会被加热到很高的温度,颗粒之间的空隙由于颗粒的融合而消失。该部件定向收缩到其设计尺寸并转变为一个致密的固体。对于大多数的材料,典型的 烧结密度理论上大于 97%。高烧结密度使得产品性能与锻造材料相似。 四整形 整形:把变形的产品放到整形模具里用压力压到想要的效果五喷砂

mimu工艺

mimu工艺 MIMU工艺是一种新兴的制造工艺,它采用先进的材料和技术,广泛应用于多个领域。MIMU工艺的特点是高精度、复杂形状和成本效益。本文将介绍MIMU工艺的原理、应用和优势。 一、MIMU工艺的原理 MIMU工艺全称为金属注射成型(Metal Injection Molding)工艺,是将金属粉末与聚合物粉末混合,并通过注射成型的方式制造金属零件。该工艺结合了传统金属注射成型和塑料注射成型的优点,可以制造具有复杂形状和高精度要求的金属零件。 MIMU工艺的工艺流程主要包括:原料配比、混合、注射成型、脱模、烧结和后处理。首先,将金属粉末和聚合物粉末按一定比例混合,并加入一定量的溶剂,形成可注射的糊状物。然后,将糊状物注射到模具中,通过压力和温度使其固化成形。接下来,脱模得到未烧结的零件,再将零件进行烧结,使其达到金属状态。最后,对烧结后的零件进行去除溶剂、热处理、机械加工、抛光等后处理工序,最终得到成品。 二、MIMU工艺的应用 MIMU工艺在各个领域都有广泛的应用。首先,它可以制造汽车零部件,如发动机零件、传动系统零件等。这些零件通常需要复杂的形状和高精度,而MIMU工艺可以满足这些要求。其次,MIMU工艺还可以用于制造医疗器械,如人工关节、牙科器械等。这些器械对材

料的生物相容性和精度要求较高,MIMU工艺可以提供高质量的产品。此外,MIMU工艺还可以应用于电子设备、航空航天、军工等领域。三、MIMU工艺的优势 MIMU工艺相比传统的加工方法具有多项优势。首先,MIMU工艺可以制造复杂形状的零件,无需进行多道加工工序,从而提高了生产效率。其次,MIMU工艺可以制造高精度的零件,其尺寸和形状的精度可达到0.1mm级别。再次,MIMU工艺可以制造多种材料的零件,如不锈钢、合金、钛合金等。最后,MIMU工艺的生产成本相对较低,可以大规模生产,降低了制造成本。 MIMU工艺是一种具有广泛应用前景的制造工艺。它通过将金属粉末与聚合物粉末混合并注射成型,可以制造复杂形状和高精度要求的金属零件。MIMU工艺在汽车、医疗器械、电子设备等多个领域有着重要的应用。与传统加工方法相比,MIMU工艺具有高效、高精度、多材料和低成本的优势。随着技术的不断发展,相信MIMU工艺将在未来得到更广泛的应用。

相关文档