文档库 最新最全的文档下载
当前位置:文档库 › 丛枝菌根

丛枝菌根

丛枝菌根
丛枝菌根

菌根分类

AM:丛枝菌根(苔藓、蕨类、裸子、被子)

ECM:外生菌根(蕨类、裸子、被子)

EM:内生菌根

EEM:内外兼生菌根(裸子、被子)

ARM:浆果鹃类菌根

MM:水晶兰类菌根

ERM:欧石楠类菌根

OM:兰科菌根

结构

AM真菌包括;菌丝、丛枝、泡囊、辅助细胞、孢子和孢子果等结构

1)菌丝(Hyphae)

任何一种菌根都由植物根系、两个相关的菌丝系统三部分组成,其中菌丝系统一个是分布于土壤中的,另一个是分布于根系内的。AM真菌中,分布于土壤中的菌丝称为外生菌丝或根外菌丝,通常呈网状结构,有时形成二分叉吸收结构。根外菌丝从形态上又可分为两种:厚壁菌丝和薄壁菌丝。根外菌丝对损伤的愈合能力较强。在较粗的根外菌丝上可以产生大量的休眠孢子。分布于根系内的菌丝称为内生菌丝或根内菌丝。内生菌丝又可分为胞间菌丝和胞内菌丝。胞间菌丝是在皮层薄壁管胞中间由圈状菌丝或由侵入菌丝分叉直接形成。

(2)丛枝(Arbuscule)

AM真菌侵入宿主植物根系皮层细胞内,经过连续二叉分枝生长形成树枝状或花椰菜状结构,即丛枝。丛枝是AM真菌最重要的结构,它是AM真菌侵染宿主植物根细胞组织内部进一步延伸的端点,被认为是宿主植物与AM真菌进行物质和能量交换的优势位点或主要场所。

(3)泡囊(Vesicle)

泡囊是由根内菌丝顶端膨大而形成的球形、棒形、圆柱形、椭圆形或不规则形结构,可在根系皮层细胞内或细胞间生长发育。并非所有的AM真菌都产生泡囊,如巨孢囊霉属和盾巨孢囊霉属的真菌则不再根内产生泡囊。关于泡囊的功能有两种观点:一种认为它是繁殖器官;另一种则认为它是储藏器官。

(4)辅助细胞(Auxiliary cell)

辅助细胞是巨孢囊霉真菌所特有的结构,这个科的真菌不在根系皮层细胞内或间隙产生泡囊。巨孢囊霉科菌根真菌的繁殖体萌发而尚未侵染寄主根系的过程中,及侵入根系后,菌丝在根外分叉,末段隆起、膨大形成辅助细胞(根外泡囊)。巨孢囊霉科的根外辅助细胞与球囊霉科和无梗囊霉科的根内泡囊一样,被认为是储存营养的器官。但研究表明球囊霉的泡囊可以作为繁殖体,而巨孢囊霉科在建立菌根共生体后,产生的根外辅助细胞是否具有同样的功能还不清楚。

(5)孢子和孢子果(Spore and sporocarp)

AM真菌的孢子及孢子果是一种繁殖器官,是分类学的重要依据。孢子是土壤菌丝或根内菌丝的膨大形式,内含有脂肪、细胞质和多核。孢子一般为圆形、近圆形或椭圆形,体积较大,直径为50-500μm。孢子的大小、形态与结构因菌根真菌的种类而不同。与孢子相连的菌丝称为连胞菌丝(subtending hypha),不同属种菌根真菌,连胞菌丝的数目、颜色、形状、宽度甚至菌丝壁的结构都有很大的差异。孢子在土壤中的寿命约1年。孢子聚集称为孢子果,孢子果的形状、大小、果内孢子的排列方式等特征都与菌根真菌的种类有关系。孢子果中的孢子呈串珠状排列或辐射状排列。

孢子鉴定

目前AM真菌尚不能纯培养,主要是根据AM真菌生殖孢子和孢子果的形态学特征,来对孢子进行鉴定。但是由于微生物的形态特征很容易受到周围环境的影响而发生变异,例如孢子的形态特征在不同的发育阶段、不同的储存时间和不同的浮载剂中都会有很大的差别,这样使得在鉴定时会有错误判断。至今,对AM真菌的鉴定在很大程度上仍然依赖于鉴定者的经验及其对鉴定资料的掌握。另一方面,根据形态特征来鉴定孢子,会有一定的局限性、不一致性和偶然性。但是,迄今为止,仅有孢子的形成方式和亚细胞结构等特征至少在150个已发现的AM真菌中表现各异而且稳定。虽然分子鉴定方法比传统方法更具有科学性,但是分子鉴定方法目前尚不够完善,当前的鉴定方法仍然是以形态鉴定方法为主,分子鉴定法仅作辅助手段。本调查采用的是形态学鉴定方法。

意义

1、AM真菌在与植物的根形成共生体的同时,真菌的菌丝高度分枝在土壤中构成一个菌丝网络,形成菌丝桥,将不同植物的根系连接起来,而AM真菌的菌丝对矿质营养的吸收比植物的根系快,这不仅可以提高营养物质的利用效率,还对生态系统不同组分之间的物质交换,能量流动、信息传递,生物的演化与分布,保持生态系统的植物多样性和稳定性方面都具有重要意义。

根是植物主要的水分和营养吸收器官,一种植物根系在一定环境中的吸收面积是固定的,特别是在水分和营养匮乏地区,根系生长更加受到限制。研究发现菌根真菌能够扩大根系吸收面积,提高植物对磷、氮的吸收效率,加速碳元素在生态系统中的循环。国内外对AM真菌对提高植物抗旱、抗寒、抗重金属污染和抗病性的报道不断

2、土壤退化包括土壤侵蚀、贫瘠化、盐碱化、沙化、酸化等,使得土壤持水能力下降,供水能力降低,土壤结构劣化、土壤质地和孔隙性变差。土壤退化严重影响人类食物安全、环境质量及人畜健康,所以对退化土壤的修复研究已成为热点。

AM真菌可以促进土壤循环、改善土壤理化性质和稳定土壤结构。AM真菌还可以产生生长素或生长素类似物,促进贫瘠土壤中植物的生长。

在陆生生态系统中,土壤肥力和营养循环就是有机物质的分解过程,AM真菌能够加速有机物质的分解,增强土壤肥力。化学农药的长期使用引起了严重的土壤污染,不仅改变了

土壤的正常结构和功能,影响植物的生长发育,而且可通过食物链影响人体健康。AM真菌在环境污染方面也也起了关键作用,能把一些有机成分转化为菌根真菌和植株的养分源,降低农药对土壤的污染程度。

3、AM真菌不仅可以作为生物肥料,而且还可以作为生物调节剂和生物保护剂,它可以降低化学肥料和农药的投入,同时能够保证作物的产量和品质。世界各国都已经发现了AM真菌的重要作用,生物学家和林业家积极的将它运用在农业、林业、生产中。AM真菌接种剂已经大量应用在了多种园艺作物和林木上。

研究方法

碱解离-酸性品红染色法

(1) 净化将根段或经过FAA固定液固定的根系剪成长约lcm的根段,置于试管内,加入5%KOH溶液,使根样完全浸泡在溶液中,放在90℃水浴锅内水浴加热30-60min,不同根系时间有差异,幼嫩根系时间可短些,老硬根系则需较长时间,用以除去根皮层细胞的细胞质,便于染料迅速进入;

(2) 清洗倒去KOH溶液,用蒸馏水轻轻冲洗根系数次,直至漂洗液不再呈黄色;

(3) 酸化加入1%的HCI溶液浸泡5min,使根样酸化,倒去溶液,不用清洗;

(4) 染色加入0.01%的酸性品红乳酸甘油染色液,使根样完全浸入此溶液中,再置于90℃水浴锅内水浴加热30-60min,或室温下过夜,使染料渗透到根组织和AM真菌的细胞中去;

(5) 脱色将染色后的根样取出,加入乳酸甘油分色,以便除去根细胞中多余的染料,使AM真菌的菌丝、泡囊和丛枝保持染色状态,然后将根样放入甘油中,以免过度褪色;

(6) 制片将处理好的带有甘油根段排列在洁净载玻片上,盖上盖玻片,用玻璃棒轻轻滚压,使根舒展开来,并排出其中的气泡。每一份样品随机挑取100条染色根段压片;

(7) 镜检显微镜下观察其中的AM结构,并做好记录。

菌根侵染率(%)=∑(0×根段数+10%×根段数+20%×根段数+30%×根段数+……+100%×根段数)/观察总根段数

湿筛法

取根际土样10g,装入离心管中,加入蒸馏水,用玻璃棒搅拌均匀,放入离心机先进行3000转每分钟3分钟离心,去掉上清液;然后加入50%蔗糖溶液,再次配平搅匀后迅速进行1500转每分钟1.5分钟离心,离心后将上清液迅速过400目筛,并用生理盐水轻轻冲洗筛子上面的孢子和孢子果,收集于培养皿中,观察。

急性移植物抗宿主病的诊疗进展.

急性移植物抗宿主病的诊疗进展 白血病.淋巴瘤2014-05-31发表评论分享 文章作者:侯慧明刘林 急性移植物抗宿主病(aGVHD是发生在异基因造血干细胞移植(allo-HSCT后的一种特异的免疫现象,是移植物组织中的免疫活性细胞与组织抗原不相容的受者组织之间的反应。 即便是人类白细胞抗原(HLA完全匹配的亲缘供者移植,且受者接受严格的免疫抑制预防,仍有30%~60%的患者移植后有发生aGVHD的风险,因移植种类不同有明显临床征象的Ⅱ-Ⅳ度aGVHD的发病率在10%~80%,平均40%,一般发生于移植后20~40d内,且发生时间越早越容易进展为重度aGVHD。 aGVHD主要累及皮肤(皮疹或皮炎、肝脏(肝炎或黄疸和胃肠道(腹痛或腹泻。目前对于aGVHD的诊断世界上多采用西雅图诊断标准。 1 aGVHD的发病机制 感染、前期放化疗、移植前预处理及基础疾病等危险因素可导致宿主细胞释放炎性细胞因子失调,上调白细胞黏附分子和主要组织相容性复合物抗原(MHC在靶组织的表达,并接受来自受者和(或供者的抗原提呈细胞(APC提呈,从而促进供者T 细胞对宿主MHC和次要组织相容性抗原(MIH的识别。 MHCD类抗原(HLA-DR、HLA-DP、HLA-DQ刺激CD4[T细胞,诱发针对MHCn差异的GVHD;而MHCI类抗原(HLA-A、HLA-B、HLA-C可刺激CD8[T细胞,诱发针对MHCI 差异的移植物抗宿主病(GVHD。 此外,宿主APC也通过B7/CD28途径提供共刺激信号,抗原提呈导致T细胞活化为T辅助细胞,分泌白细胞介素-2(IL-2和干扰素7,促进T细胞进一步活化、增殖、分化为毒性T细胞,同时激活自然杀伤细胞(NK细胞,从而激发aGVHD。

丛枝菌根研究方法

丛枝菌根研究方法 1.检测孢子含量的方法(湿筛倾注蔗糖离心法) 1.Gerdemann J W, Nicolson T H,1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46: 235-244 2.刘润进,李晓林.2000.丛枝菌根及其应用.北京:科学出版社:190-194 根据上述方法略有改动 1.称取10 g菌剂,置入大烧杯中加500 ml水,搅拌,静置10 s。 2.先后过80目分样筛、400目分样筛,将400目筛子上的残余物用药匙转入50ml 离 心管中,后用清水冲洗筛子,将残余物全部转入离心管中,配平,3000转/min 离 心10 min。(注分样筛最好直径为12 cm左右,便于下面放置烧杯过筛) 3.去掉上清液,在离心管中加入预先配制好的质量分数为50%的蔗糖溶液,玻璃棒搅 匀,配平,3000转/min 离心10 min(注意离心前离心管壁上不能有残余物)。 4.将400目筛子呈一斜面放置,离心后的蔗糖溶液过筛子的下侧,用水将筛子上的残 留物轻轻洗入划线培养皿中。(注意水不能加太多以防影响检测,培养皿划线便于 统计)。 5. 解剖镜镜检统计培养皿中的孢子数目,计算出菌剂中的孢子含量。 注:溶于蔗糖溶液中的孢子仍可进行接种。 2.检测菌根侵染率的方法(曲利苯蓝染色法) Phillips J M,Hayman D S,1970. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158~161

丛枝菌根真菌在园艺作物上的应用

丛枝菌根真菌在园艺作物上的应用1 邹英宁,吴强盛* 长江大学园艺园林学院,湖北荆州(434025) E-mail:wuqiangsh@https://www.wendangku.net/doc/e311883524.html, 摘要:丛枝菌根是土壤中的丛枝菌根真菌与植物根系结合的互惠共生体,能帮助植物吸收矿质营养和水分、促进植物生长、提高抗逆性、改善果实品质等。提出了丛枝菌根真菌生产的技术流程,综述了丛枝菌根真菌在果树、蔬菜、花卉植物上的应用与效应。 关键词:丛枝菌根真菌;丛枝菌根;园艺作物;菌剂生产 中图分类号:Q939.96 1. 引言 菌根(Mycorrhizas)是一类与植物根系紧密结合互惠互利的联合体,其互惠互利表现在菌根通过其根系外的菌丝、根系内的丛枝及根内特殊的水分运输通道给寄主植物运送矿质营养和水分,而寄主植物将光合作用产生的碳水化合物通过物质流转运给菌根以维持其生长发育[1]。菌根按照形态学分为三类:外生菌根(Ectomycorrhizas)、丛枝菌根(Endomycorrhizas)和内外生菌根(Ectoendomycorrhizas)[2]。外生菌根指菌根真菌侵入到植物根系的皮层,在间隙里形成哈蒂氏网,大量的菌丝在根系外面形成一个菌套,主要与森林植物共生;丛枝菌根指菌根菌丝不仅侵入到根系皮层,而且还进入到细胞内部,形成丛枝(Arbuscules)结构,有的还在细胞间或者内部形成泡囊(Vesicles),在许多园艺作物如柑桔、桃、苹果、梨、番茄、西瓜、非洲菊、月季等都可以发现和找到这种结构;内外生菌根则同时具备外生菌根和丛枝菌根的特性,菌根菌丝在细胞间隙形成哈蒂氏网,根系表面形成菌套,菌丝在细胞内部也形成各种菌丝团,主要在一些松科和杜鹃花科植物存在。目前的研究表明,在园艺作物上接种丛枝菌根真菌能够促进园艺作物的生长,增强园艺作物对矿质营养的吸收,提高抗逆性,改善水分代谢,提高果树和蔬菜的品质等[3]。因此,在园艺作物根系上没有丛枝菌根的存在反而不正常[4],从而显示丛枝菌根在园艺作物上的重要性 2. 丛枝菌根真菌菌剂的生产 丛枝菌根真菌菌剂的生产是其应用于园艺作物的关键。尽管丛枝菌根真菌至今尚不能进行纯培养,但采用盆栽菌剂生产法[5]仍可以获得一定纯度的菌剂,其具体生产流程是:选择玉米或高梁为寄主植物,对其种子采用10%的次氯酸钠溶液表面消毒5~10 m,然后放置在一个湿巾上,用塑料袋包好进行催芽。一般玉米种子在2~3 d就能够发芽。选择3 mm大小的粉碎玄武岩为栽培基质,目的是基质含有非常低的营养水平,特别是P。然后对基质进行高压蒸汽灭菌,杀死土著丛枝菌根真菌。灭菌的基质与购买的纯菌剂(可以从北京市农林科学院植物营养与资源研究所“中国丛枝菌根真菌种质资源库(BGC)”购买)按照20:1(v/v)的比例混合均匀,装于15~25 cm直径的塑料盆中。将已经催芽的种子每盆播2~6粒,然后放置在温室或良好光照的避雨棚中以减少其他微生物通过风和雨水的污染。一般地,在正常水分管理的6 w后就能够观察到丛枝菌根真菌与寄主植物根系共生。14 w后开始控水,16 w时去除植物地上部分,将基质和根系倒在一个干净的盘中,把根系剪断,与栽培基质混合均匀,此菌剂即可应用于田间。如果菌剂不及时使用,可以保存在4 °C冰箱或凉爽干 1本课题得到长江大学科研发展基金(39210264)的资助。

AMF(丛枝菌根真菌)

AMF(丛枝菌根真菌)对香蕉试管苗的驯化日期:2011年5月24日 摘要:丛枝菌根真菌的影响(AMF)的香蕉试管苗上进行了评估在驯化期。植物接种无 梗scrobiculata,绣球clarum和Glomus etunicatum。在种植后温室3个月,株高,叶面积,鲜重和干物质的根,芽,AMF的殖民化的水平营养水平,光合作用和蒸腾率,水势和气孔导进行了测定。丛枝菌根真菌孢子的生产数量在每个治疗也决心。苗接种与丛枝菌根真菌具有更大的株高,叶面积和新鲜地上部和根系的重量,以及较高的光合作用和蒸腾比对照组。植物与血管球接种均优于在最评估参数。 关键词:穆萨菌,内生菌根,菌根菌,气候适应 引言:水果的营养快繁,观赏和森林物种,是一个良好的生产条件,转基因植物检疫植物 和均匀大量的主要工具。到温室栽培植物体外转移是在结构和生理适应的最重要的准备过程中试管苗的步骤之一。这一阶段,由于水土不服,是一种对植物自养的存在开始,以期为生存所必需的生理过程的开始。在这段时间内,必须增加水的试管苗和矿物质,光合速率的吸收。 试管苗,病免费的,但他们还缺乏丛枝(AMF)的菌根真菌。AMF的是众所周知的增加,增加水和矿物营养素的吸收,尤其是磷(P)植物的活力。此外,AMF的病原体可以保护寄主植物的根和减轻极端温度变化,pH值和水分胁迫(迪克森和马克思1987年的影响; Siqueira 1994年)。接种AMF的成功在驯化期间(格兰杰等人的开始。1983年; Brazanti等。1992年;罗杰古勒明等。1995年),甚至在体外培养已被证实。三是与从组织培养植物的根系形成共生互利的效果表现在蓬勃植物的光合作用和蒸腾速率高,养分和水分,提高抗逆性。 接种丛枝菌根真菌在植物组培苗生长初期当然可以对体外培养,通过积极对rootmeristem活动菌根共生效应,高殖利率。支持这个假说是由伯塔等人的结果。(1995年),谁表明,AMF的协会改变了红叶李根的分枝格局。接种类型的使用是很重要的驯化。福图纳等人(1992)建议的AMF的感染,高效品种的推广使用植物生长迅速增加。这些作者还表明,虽然在促进试管比较红叶李增长的2种AMF效率,该真菌感染影响其效力。更加新鲜,干物,高度增量被发现与血管球比与G. coronatum mosseae的接种植物,但在实验结束两组植物具有相似的增长。 我们工作的目的是评估的三个AMF的来自巴西的半干旱地区灌溉生长的香蕉种植园,营养和生理发展香蕉试管苗接种分离本土物种的影响作用。 材料与方法 植物材料和土壤性质 试管香蕉苗是根据生物技术。在植株形成的根在体外用MS液体培养基,后来转移到(500毫升的容量)与熏蒸基质:土,沙,有机质(1:1:1)。前沙混合料性能的土壤3.2克土壤有机质每公斤,马克土0.84毫克P每分米,pH值5.1(土:水=1:2.5)。接种量(约400每集装箱孢子)放置在以下5个香蕉植株根系与土壤接触面与熏蒸厘米,底层覆盖。滤液接种的土壤添加到所有的治疗方标准化微生物。植物在温室下保持12 h的800-1300勒克斯,光周期25B4 7C及70%-90%的相对湿度。 感染源

丛枝菌根侵染率研究

丛枝菌根研究方法 一、检测孢子含量的方法 A湿筛倾注法 1. 称取一定重量的土壤样品(最好是取自15cm 表层植物根系附近的土壤),放在容器内用水浸泡20-30min,使土壤松散。如果土壤粘性很大,也可加入各种土壤分散剂。 2. 选用一套洁净的具有孔径为0.5-0.034mm的土壤筛,依次重叠起来。最底层用一物体垫着(如培养皿、木块等物),使筛面稍微倾斜。 3. 用玻璃棒搅动浸泡的水溶液,停置几秒钟后,使大的石砾和杂物沉淀下去,即将悬浮的土壤溶液慢慢地倒在最上一层孔径最大的土壤筛上。倾倒时,最好集中倒在筛面的一个点上,不要使整个筛面都沾有土壤溶液。 4. 用清水依次轻轻冲洗停留在筛面上的筛出物,以免在上层粗筛面的剩留物中夹藏有VA 菌根真菌孢子。 5. 用洗瓶将停留在筛面上的筛出物轻轻冲洗到一个清洁的培养皿里面,再将滤液通过细筛并用水冲洗。在冲下来的筛出物中,除有许多细的沙砾和杂质外,就含有VA菌根真菌的不同直径的孢子。 6. 将含有筛出物的培养皿放在双目实体解剖显微镜下观察。 B 蔗糖离心法 1. 称取10 g菌剂,置入大烧杯中加500 ml水,搅拌,静置10 s。 2. 先后过80目分样筛、400目分样筛,将400目筛子上的残余物用药匙转入50ml 离心管中,后用清水冲洗筛子,将残余物全部转入离心管中,配平,3000转/min 离心10 min。(注分样筛最好直径为12 cm左右,便于下面放置烧杯过筛) 3. 去掉上清液,在离心管中加入预先配制好的质量分数为50%的蔗糖溶液,玻璃棒搅匀,配平,3000转/min 离心10 min(注意离心前离心管壁上不能有残余物)。 4. 将400目筛子呈一斜面放置,离心后的蔗糖溶液过筛子的下侧,用水将筛子上的残留物轻轻洗入划线培养皿中。(注意水不能加太多以防影响检测,培养皿划线便于统计)。 5. 解剖镜镜检统计培养皿中的孢子数目,计算出菌剂中的孢子含量。 注:溶于蔗糖溶液中的孢子仍可进行接种。

移植排斥反应类型

移植排斥反应类型 (一)宿主抗移植物反应 1、超急性排斥反应(hyperacute rejection) 在移植后数分-24小时发生 ABO血型抗体或抗Ⅰ类主要组织相容性抗原的抗体引起 受者反复输血,妊娠或曾做过同种移植,其体内有可能存在这类抗体(IgM)。 超急排斥一旦发生,无有效方法治疗,终将导致移植失败 ABO及HLA 配型可预防超急排斥的发生。 2、急性排斥反应(acute rejection) 急性排斥是排斥反应中最常见,在移植后数天-2周发生。 移植物病理:大量巨噬细胞和淋巴细胞浸润。 体温度升高、移植物肿胀,疼痛,少尿(肾)、SCr增高,血小板减低,补体下降,进展迅速。 机制:CD4+Th1细胞介导迟发型反应;CTL直接杀伤表达同种异型抗原的移植物细胞;激活的巨噬细胞和NK细胞 免疫抑制剂治疗有效。 3、慢性排斥反应(chronic rejection) 慢性排斥移植后数周-数年发生 临床过程,肾移植与慢性肾炎相似(进行性肾功能丧失) 主要病理特征是移植器官的毛细血管床内皮细胞增生,使动脉腔狭窄,并逐渐纤维化。 机制:免疫机制: 血管慢性排斥(Chronic vascular rejection)主要形式 1)CD4+T细胞通过间接途径识别血管内皮细胞表面HLA抗原而被活化,长期活化,Th1细胞可介导慢性迟发型超敏反应,Th2细胞参与B细胞抗体的产生2)急性排斥反复发作,引起移植物血管内皮细胞持续炎症损伤 非免疫机制 慢性排斥与组织器官退行性变有关 1)供者年龄过小或大 2)并发症:高血压、高血症、糖尿病、巨细胞病毒感染等 3)移植物缺血时间过长 4)肾单位减少 5)肾血液动力学改变 6)免疫抑制剂: 药物损伤(二)移植物抗宿主反应 1.GVHR是由移植物中抗原特异性淋巴细胞识别宿主组织抗原所致的排斥反应, 发生后一般均难以逆转,不仅导致移植失败,还可能威胁受者生命。 2.形成条件:HLA型不符;移植物中足量的免疫细胞(成熟T细胞);受者免疫 无能或免疫极度低下。mH抗原相关 3.急性和慢性GVHR。GVHR主要见于骨髓移植后。脾、胸腺移植时,以及免疫 缺陷的新生儿接受输血时,均可发生不同程度的GVHR。 器官移植相关的免疫学问题 (一)诱导同种移植耐受 封闭同种反应性TCR 阻断共刺激信号 供者特异性输血(donor specific transfusion,DST) 过继输注Treg细胞 过继输注或诱导未成熟DC 定向调控Th细胞亚群分化 阻断效应细胞向移植物局部浸润 (二)排斥反应的特殊情况 免疫豁免区(immunologically privileged site):接受同种或异种组织器官移植而不发生或仅轻微排斥反应的机体解剖部位或区域 形成机制:缺少输入血管和淋巴管; 机体内存在特殊的屏障; 组织免疫原性弱; 免疫区高表达FasL(T细胞Fas) (三)造血干细胞移植(hematopoietic stem cell transplantation, HSCT) 目的:重建正常造血和免疫功能(1955 Thomas) 可能后果:HVGR和GVHR(主要) HLA遗传特征决定了筛选造血干细胞供者的策略 1)HLA具有高度多态性 2)HLA基因为单基因遗传(同胞兄弟姐妹) 临床应用: 1)血液系统疾病(白血病,淋巴瘤) 2)遗传性血液病 3)经化疗或放疗的恶性实体肿瘤 4)先天性免疫缺陷和代谢失调

移植物抗宿主病概述

第18章 移植物抗宿主病 移植物抗宿主病(graft versus host disease, GVHD)是异基因造血干细胞移植后的一个常见而又重要的并发症。尽管使用免疫抑制剂预防GVHD,甚至供体是HLA“完全”相合的同胞,GVHD仍可能发生。GVHD是受体抗原递呈细胞(Ag-presenting cells, APC)和供体成熟T细胞相互作用的结果。1955年,Barnes 和Loutit首先报道了发生在动物体内的GVHD,当时认为是一种移植继发性疾病或runt病。直到20世纪50年代后期,人们才认识到移植继发性疾病引起的皮肤异常、腹泻等症状是由于具有免疫活性的细胞进入无免疫活性的宿主体内所致,GVHD这一术语被用于描述这一免疫损伤的过程。GVHD是异基因造血干细胞移植、供体淋巴细胞输注(DLI)的常见并发症,大部分接受异基因造血干细胞移植的受者都会经历不同程度的GVHD,因而GVHD依然是目前困扰异基因造血干细胞移植成功的主要障碍。 根据GVHD发生的时间,可分为急性GVHD (aGVHD)和慢性GVHD (cGVHD)。一般100天以内发生的为aGVHD,100天以后发生的为cGVHD,但cGVHD也可在100天以内发生,随着减低剂量预处理和供体淋巴细胞输注的广泛开展,aGVHD也可迟至移植后4~6月发生。aGVHD可直接演变为cGVHD,没有明确的间隔期,亦可在aGVHD完全缓解一段时间后出现cGVHD;没有aGVHD,也可单独出现cGVHD。 第一节急性移植物抗宿主病 根据美国NIH的GVHD共识工作组意见,aGVHD分为移植后100天内发生的经典aGVHD和持续、复发及晚发性aGVHD(移植后100天以后)两种类型,兼有aGVHD和cGVHD临床表现者为“重叠综合征(overlap syndrome)”。【发病机制】 1966年Billingham将发生GVHD的条件定义为:①移植物中需含有免疫活性细胞成分;②宿主必须具备供者移植物不存在的异体移植抗原,这些异体移植抗原被移植物中的免疫活性细胞视为异体抗原而发生反应;③宿主必须对移植物缺乏有效的免疫反应能力,致使移植物有足够的时间组织其免疫反应,并放大、扩展此反应。近年来又提出第四个条件:效应细胞必须迁移至靶组织。

丛枝菌根真菌名录及新科新属

This is an electronic version of the publication: Schü?ler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Arthur Schü?ler & Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Electronic version freely available online at https://www.wendangku.net/doc/e311883524.html, This electronic version is 100% identical to the printed publication. This includes the errors; therefore the electronic version contains one additional, initial page as a corrigendum, giving corrections of some errors and typos.

Corrections, 2 FEB, 14 FEB, 19 JUL 2011. The corrections are highlighted in red. p 7. FOR Claroidoglomeraceae READ Claroid e oglomeraceae p 10. DELETE Glomus pulvinatum (Henn.) Trappe & Gerd. [as 'pulvinatus'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974) ≡Endogone pulvinata Henn., Hedwigia 36: 212 (1897) p 11. AFTER Botanical Code for formal descriptions after 1 Jan 1935 INSERT) p 14. BELOW ≡ Endogone macrocarpa var. geospora T.H. Nicolson & Gerd., Mycologia 60(2): 318 (1968) INSERT ≡ Glomus macrocarpum var. geosporum (T.H. Nicolson & Gerd.) Gerd. & Trappe [as macrocarpus var. geosporus], Mycol. Mem. 5: 55 (1974) p16. ABOVE Sclerocystis coccogenum (Pat.) H?hn., Sber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1 119: 399 [7 repr.] (1910) INSERT Sclerocystis clavispora Trappe, Mycotaxon 6(2): 358 (1977) ≡ Glomus clavisporum (Trappe) R.T. Almeida & N.C. Schenck, Mycologia 82(6): 710 (1990) p 19. FOR Rhizophagus irregulare READ Rhizophagus irregularis p 19. FOR Rhizophagus proliferus (B?aszk., Kovács & Balázs) READ Rhizophagus proliferus (Dalpé & Declerck) p 28. FOR Scutellospora arenicola Koske Koske & Halvorson READ Scutellospora arenicola Koske & Halvorson p 29. FOR Scutellospora pernambucana Oehl, Oehl, D.K. Silva, READ Scutellospora pernambucana Oehl, D.K. Silva, p 30. FOR Genus name: Racocetra Oehl, F.A. Souza & Sieverd., Mycotaxon: 334 (2009) READ Genus name: Racocetra Oehl, F.A. Souza & Sieverd., Mycotaxon 106: 334 (2009) p 35. FOR Acaulospora mellea Spain & N.C. Schenck, in Schenck, Spain, Sieverding & Howeler, Mycologia 76(4): 689 READ Acaulospora mellea Spain & N.C. Schenck, in Schenck, Spain, Sieverding & Howeler, Mycologia 76(4): 690 p 39. FOR Entrophospora nevadensis J. Palenzuela, N. Ferrol & Oehl, Mycologia 102(3): 627 (2010) READ Entrophospora nevadensis Palenz., N. Ferrol, Azcón-Aguilar & Oehl, in Palenzuela, Barea, Ferrol, Azcón-Aguilar & Oehl, Mycologia 102(3): 627 (2010) p 41. FOR Generic type: Pacispora chimonobambusae (C.G. Wu & Y.S. Liu) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007) ≡Gerdemannia chimonobambusae (C.G. Wu & Y.S. Liu) C. Walker, B?aszk., A. Schü?ler & Schwarzott, in Walker, B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 717 (2004) ≡Glomus chimonobambusae C.G. Wu & Y.S. Liu, in Wu, Liu, Hwuang, Wang & Chao, Mycotaxon 53: 284 (1995) READ Generic type: Pacispora scintillans (S.L. Rose & Trappe) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007) ≡Glomus scintillans S.L. Rose & Trappe, Mycotaxon 10(2): 417 (1980) ≡Gerdemannia scintillans (S.L. Rose & Trappe) C. Walker, B?aszk., A. Schü?ler & Schwarzott, i n Walker, B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 716 (2004) =Glomus dominikii B?aszk., Karstenia 27(2): 37 (1988) [1987] =Pacispora dominikii (B?aszk.) Sieverd. & Oehl, in Oehl & Sieverding, J. Appl. Bot., Angew. Bot. 78: 76 (2004) Pacispora chimonobambusae (C.G. Wu & Y.S. Liu) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007) ≡Gerdemannia chimonobambusae (C.G. Wu & Y.S. Liu) C. Walker, B?aszk., A. Schü?ler & Schwarzott, in Walker, B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 717 (2004) ≡Glomus chimonobambusae C.G. Wu & Y.S. Liu, in Wu, Liu, Hwuang, Wang & Chao, Mycotaxon 53: 284 (1995) p 41. BELOW Pacispora robigina Sieverd. & Oehl, in Oehl & Sieverding, J. Appl. Bot. (Angew. Bot.) 78: 75 (2004) DELETE Pacispora scintillans (S.L. Rose & Trappe) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007) ≡Gerdemannia scintillans (S.L. Rose & Trappe) C. Walker, B?aszk., A. Schü?ler & Schwarzott, in Walker, B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 716 (2004) ≡Glomus scintillans S.L. Rose & Trappe, Mycotaxon 10(2): 417 (1980) =Pacispora dominikii (B?aszk.) Sieverd. & Oehl, in O ehl & Sieverding, J. Appl. Bot., Angew. Bot. 78: 76 (2004) p 43. FOR≡Glomus aurantium B?aszk., Blanke, Renker & Buscot, Mycotaxon 90: 540 (2004) READ≡Glomus aurantium B?aszk., Blanke, R enker & Buscot, Mycotaxon 90: 450 (2004) p 43. FOR Genus name: Otospora Palenz., Ferrol & Oehl READ Genus name: Otospora Oehl, Palenz. & N. Ferrol p 43. FOR Generic type: Otospora bareae Palenz., Ferrol & Oehl [as 'bareai'] READ Generic type: Otospora bareae Palenz., N. Ferrol & Oehl [as 'bareai'] p 50. FOR Ambispora granatensis J. Palenzuela, N. Ferrol READ Ambispora granatensis Palenz., N. Ferrol p 53. FOR (Morton & Redecker 2001; Kaonongbua 2010). READ(Morton & Redecker 2001; Kaonongbua et al. 2010). Comment on the gender of the epithets in Redeckera. In publishing the new genus Redeckera, in honour of Dirk Redecker, we treated the gender as neuter, thus giving the epithets as pulvinatum, megalocarpum, and fulvum. We had inadvertently missed the recommendation 20A.1(i) in the Botanical Code requesting that all such epithets should be made feminine, and we apologise for this. However, because the names have been formally published, the requirements of Article 62 apply, and the neuter gender must be retained.

丛枝菌根实验方案

丛枝菌根实验方案 1.李晓林(1990)采用三室的试验装置,利用30μm的尼龙网将根与菌丝分开,建立了菌丝 际。该方法为研究菌丝及其菌丝际的生理生化变化提供了一条有用的途径。但是它仍然不能排除外界微生物及灌溉施肥等措施造成的影响,为了进一步研究菌丝的生理生化变化,必须建立一种无杂菌的菌丝际环境,将离体双重培养条件下形成共生体中的根与菌丝分离开来,使菌丝进入菌丝室,而将根阻止在菌根室中,不让二者混在一起,为深入研究菌根菌丝的生理生化特性提供新的技术和方法。 2.Glomus intraradices孢子较小,其直径为44μm一117μm,平均77μm,呈椭球形或 球形,颜色为淡黄色,其孢子的萌发是从联孢菌丝的断口处重新伸出菌丝(图4—1图版I一6),而后再伸长、分枝,形成一个密集分枝的菌丝体。它的萌发不同于G.margarita 孢子和S.sinuosa孢子果的萌发。虽然较前两种孢子和孢子果的芽管数略少,但它仍具有很强的侵染潜力,可能同其具有很强的分枝能力有关。一旦萌发,菌丝的分枝速度很快。G.intraradices菌丝的分枝呈垂直方向。新生成的菌丝较联孢菌丝直径更细,对根段进行侵染会更容易。 3.菌根室中共生联合体的建立:将有机玻璃条用玻璃胶黏贴在直径为9cm的培养皿底部, 将培养皿分为两室,防止两室的培养基质进行营养交换。将30μm的尼龙网黏贴在有机玻璃条及培养皿壁,直至培养皿上盖,阻止根的进入(图4—2)。将转移RiT—DNA 胡萝卜根与萌发的G.intraradicesSchenck&Smith丛枝菌根真菌孢子,共同培养的室称为菌根室(MC),而将菌丝穿过尼龙网进入的室称为菌丝室(HC)。图4—2培养皿中的两室试验装置将M培养基10mL倒入菌根室中,用于离体双重培养丛枝菌根真菌与转移RiT—DNA胡萝I-根。在菌丝室中:①倒入10mL的琼脂培养基质,其中含有NO3-N 或NH4-N(N的含量与M培养基中相同),其pH分别为6.0或6.5,基质中含有0.6%溴甲酚紫作为指示剂;②倒入10mL不含蔗糖的M培养基,pH为5.5。在相应的菌根室中接种G.intraradices孢子。截取在M培养基上生长的转移RiT—DNA胡萝i-根的根尖5cm-7cm置于菌根室中,将萌发的孢子移入根旁空处,由于G.intraradices孢子直径小,每个培养皿移进30个孢子。将培养皿在27℃±1℃的恒温培养箱中黑暗培养。 4.菌根室中共生联合体生长状况:G.intraradices菌根真菌相似于G.margarita菌根真菌, 其生成的菌丝在与根相遇时入侵根段,在根细胞内形成丛枝。培养近一个月后,在培养基质中形成了大量的营养孢子及成熟的孢子(图4—3)。营养孢子的大小为4lμm-62μm,平均为49μm,而成熟孢子的大小范围是67μm一93μm,平均大小为78μm。

丛枝菌根名录

Glomeromycota SPECIES LIST last updated - News: Glomus africanum and G. iranicum included. Some new descriptions added, e.g. Racocetra beninensis. The synonyms list is corrected and now explicitly indicates the basionyms. The Gigasporaceae systematics was adopted according to the recent publication of Morton and Msiska (Mycorrhiza 2010, DOI 10.1007/s00572-010-0303-9), which rejects the split of Scutellospora into 3 families and 6 genera (Scutellospora in the Scutellosporaceae, Racocetra & Cetraspora in the Racocetraceae, Dentiscutata & Fuscutata & Quatunica in the Dentiscutataceae). The revision now leaves only Racocetra a s an additional genus, placed in the Gigasporaceae. Also, we adopt to the rejection of Kuklospora, a genus indicated from the beginning to be 'phylogenetically invalid' that now has been placed in Acaulospora (Kaonongbua et al. 2010). If you spot any mistake s, PLEASE inform us ! We try to hold everything up to date and also serve and collaborate with the Index Fungorum and Species 2000 database s. Thanks to those which already sent us pdf-files, or scanned pages, and to the publishers that gave us copyright clearance (see list at the end of the table) !!! We have been refused copyright clearance by the publisher Springer and the journals Nova Hedwigia and Botany (former Can. J. Bot.), and thus we cannot provide pdf files of the respective papers. If authors wish to have their taxonomic papers available public, e.g. included in this website, we suggest that you choose journals with suitable policy (or maybe you can pay for an open access pdf file). It would be helpful for the scientific community if authors of names in the Glomeromycota seek copyright clearance and provide us with a pdf file, if this is possible. Go directly to the genera (alphabetically): Acaulospora Ambispora Archaeospora Diversispora Entropho spora Geosiphon Gigaspora Glomus Intraspora Otospora Pacispora Parag lomus Racocetra Scutellospora Colour coding in the following table: taxon in blue = link to description (pdf-file); green = opinion of C. Walker, not proved or formally published (potentially needs further studies) Glomeromycota Current name Basionyms, synonyms & additional comments Authorities Family Order Acaulospora back to top Trappe & Gerd. (1974)Acaulosporaceae Diversisporales Acaulospora alpina Oehl, Sykorova & Sieverd. (2006) Acaulosporaceae Diversisporales

我国丛枝菌根相关研究进展

我国丛枝菌根相关研究进展 摘要菌根是分别由菌根真菌与植物形成的互惠共生体,菌根真菌作为生态系统组分,它对一个生态系统的物质循环,植物的生长,不同植株之间的联系的作用是不可忽视的;我国目前的菌根学研究主要以丛枝菌根为主,因此收集资料对我国当前丛枝菌根的相关研究进行综述,并且横向比较我国对其他几种菌根的研究热点,对我国菌根学的发展前景进行展望。 关键词丛枝菌根研究进展 菌根是由菌根真菌侵入植物根系形成的互惠共生体,在自然界中普遍存在,超过90%的植物能够形成菌根,因此,有学者指出“自然界中没有纯的根,只有菌根”。[1]严格意义上讲,构成森林的大多数树木没有真正的根系,只有外生菌根,外生菌根成为植物根吸收养分的主要器官。菌根一般分为丛枝菌根(arbuscularmycorrhizae,AM)、外生菌根(Ectomycorrhizae,ECM)、内外生菌根和兰科菌根等七大类。[2]目前,菌根学研究已经成为全球生态学关注的热点之一,我国对菌根学的研究也越来越深入。从第十二届全国菌根学研讨会总结来看,当前我国菌根学研究以丛枝菌根为主,约占75%,外生菌根研究约占20%,另有少量其他类型的菌根研究。[3] 1、菌根营养学 在丛枝菌根的研究中,菌根营养学方面的研究最多,研究表明,菌根能有效改善植物对C、N、P、K等多种营养元素的吸收,因此被誉为“生物肥料”。[4]菌根向外延伸的菌丝可以增大营养吸收的面积,同时菌根真菌对一些矿物质的分解可以使得本来难以被植物利用的矿物质直接被植物根吸收。[5]而且在早期关于丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)的促生机制就有研究表明,AMF主要通过提高宿主植物对土壤中磷的吸收效率而促进植物生长。[6]今日,通过对丛枝菌根对磷元素的吸收利用来提高作物产量的研究是一热点。 关于AMF与磷元素之间的研究主要有一下几个方面:一是AMF对磷的吸收和转运机制的研究,例如谢贤安以AMF和紫云英(Astragaluasinicus)为材料,深入探讨了AM共生体系中磷转运基因的功能及其作用的分子机制,表明了磷不仅是作为植物的营养元素,还是作为一种信 号分子,能调控AMF共生体系。[7]二是AMF改善植物磷营养的机理的研究,例如张晓飞等通过 AMF对玉米磷吸收的作用,表明利用土著丛枝菌根真菌与作物形成互惠互利的共生关系提高作物对土壤磷的利用效率是解决农业生产中磷供需矛盾的主要途径之一。[8]在关于丛枝菌根与磷素营养的研究中,大多停留在表面现象上的观察,研究其机理的在少数,而且其研究方式大多是在盆栽中研究,所以说在将来对其机理的研究和研究方式有很大展望空间。 除了研究AMF改善作物对多种营养元素吸收的作用外,研究AMF与其他细菌的共同作用对作物的影响也是研究热点。自然条件下,一些植物的根系可同时形成由2种类型菌根构成的混合菌根(dual mycorrhiza)、或菌根与细菌、菌根与放线菌、菌根与其他种类真菌构建的所谓复合共生体(dual symbionts)。[9]由于根系复合共生体的多样性十分丰富,因此对其的研究仍然是冰山一角,近年对其的研究有许多方面,例如不同植物的混合菌根中细菌的种类的研究,与玉米共生的AMF的根外菌丝表面有多种解磷细菌定殖,其中以假单胞菌属细菌的解磷能力相对较强。[10]或者是复合共生体的形态与解剖特征,例如贾锐等观察到兴安杜鹃菌根形态特征,既有典型的杜鹃花类菌根特征,在少数根样中还有典型的丛枝菌根(AM)特征,即泡囊的存在。[11] 2、菌根多样性

相关文档