文档库 最新最全的文档下载
当前位置:文档库 › 质粒DNA的提取酶切及其琼脂糖凝胶电泳实验报告

质粒DNA的提取酶切及其琼脂糖凝胶电泳实验报告

质粒DNA的提取酶切及其琼脂糖凝胶电泳实验报告
质粒DNA的提取酶切及其琼脂糖凝胶电泳实验报告

质粒DNA的提取酶切及其琼脂糖凝胶电泳实验报告实验序号实验名称质粒DNA的提取、酶切及其琼脂糖凝胶电泳实验时间是否小组合作是(?) 否( ) 一(实验预习

1(实验目的:

(1)通过本次实验学习和掌握碱裂解法提取质粒;

(2)通过本次实验学习琼脂糖凝胶电泳检测DNA的方法和技术;

2(实验原理:

1)质粒DNA的提取:

(1)关于质粒:

质粒是一类存在于几乎所有细菌中染色体之外(细胞质中)呈游离状态的双链、闭环的DNA分子。质粒通常携带有染色体上所不存在的能够表达产生抗生素、耐受重金属等重要性状的基因。细菌质粒的大小范围从1kb至200kb以上不等,且拥有自己的复制起始位点,可不依赖于染色体而进行独立自主复制。一些小的质粒利用宿主细胞的酶进行复制,而较大的质粒则自身携有复制与编码的有关酶。 (2)一般分离质粒DNA的方法都包括3个步骤:

?培养细菌,使质粒DNA大量扩增;

?收集和裂解细菌;

?分离和纯化质粒DNA。

分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS 法、羟基磷灰石层析法等。在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。

(3)碱裂解法提取大肠杆菌质粒DNA的原理:

碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA在拓扑学上的差异来分离质粒DNA。

在pH值介于12.0~12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确;而线性的染色体DNA的两条互补链彼此已完全分开,因复性较缓慢且不准确而相互缠绕形成不溶性网状结构。而复性的质粒DNA恢复原来构型,保持可溶性状态。通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来而被除去,最后用酚氯仿可以抽提纯化上清液中的质粒DNA。

2)质粒DNA的琼脂糖凝胶电泳:

(1)关于电泳技术:

电泳常用于分离和纯化那些分子大小、电荷性状或分个构象有所不同的生物大分子——尤其是蛋白质和核酸。正因为如此,电泳已成为生物化学和分子生物学中应用最为广泛的技术之一,其中在分子生物学实验中最为常用的是琼脂糖凝胶电泳。

琼脂糖是一种海藻多糖,琼脂糖胶分离范围很大,但其分辨率却相对较低。通过改变琼脂糖凝胶的浓度,应用标准的电泳技术可以分离200到50,000 bp 大小

的 DNA 片断。一般琼脂糖胶浓度在0.5,到4,之间,且琼脂糖凝胶浓度越大,凝胶就越硬。较高浓度的琼脂糖胶有利于较小的DNA片断分离,而较低浓度的琼脂糖胶则可以分离较大的DNA片断。

(2)琼脂糖凝胶电泳条带的观察:

通过观察示踪染料的迁移距离可以判断DNA的迁移距离。溴酚蓝染料在琼脂糖凝胶的迁移速率大小与300和4000bp大小的双链DNA片断相同。当迁移足够距离

后,就可以通过Gelview染色来观察DNA片断。Gelview是一种荧光染料。它可以在做胶时混入其中在电泳时进行染色,也可以待电泳完成后将凝胶浸泡在稀释的Gelview 溶液中进行染色。但必须将凝胶置于紫外透射仪中才可以对凝胶中的DNA或RNA进行观察。

(3)质粒DNA的琼脂糖凝胶电泳分离:

DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液环境中带负电荷,在电场中向正极移动,由于磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以相同的速度向正极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的构型和大小。具有不同分子质量或者不同构型的DNA分子泳动速率不一样,可以进行分离。

未切割的质粒DNA在其泳道上也许会出现几个条带,之所以这样是由于质粒DNA在琼脂糖凝胶中的迁移距离是由其分子构象及其碱基对大小所决定的。质粒DNA以下列三种主要构象中的任何一种形式存在:

? 超螺旋DNA:

尽管质粒通常以开环的形式进行描述,然而在细菌细胞内DNA链即是盘绕在组蛋白周围形成一种致密的结构。这就是所谓超螺旋结构,由于其结构致密,它在凝胶中的泳动速度最快。

? 线性DNA:

当DNA损伤在DNA双链相对应的两条链上同时产生切口时,就会出现线性质粒DNA,这种DNA的泳动速率介于超螺旋与切口质粒DNA之间。 ?开环DNA: 在质粒DNA复制过程中,拓扑异构酶I会在DNA双螺旋中的一条链中引入一个切口,解开质粒的超螺旋。在质粒分离过程中由于物理剪切和酶的切割作用同样也

会在超螺旋质粒中引入切口从而产生松散的开环结构。这种形式的质粒迁移速率最慢,其“松散”的分子形式阻碍了它在琼脂糖凝胶中的运动。

3( 实验器材:

(1)实验仪器(apparatus):

恒温培养箱(Constant temperature incubator)、恒温摇床(Constant temperature shaking table)、高速离心机(High speed centrifuge)、漩涡振荡

器(Vortex mixer)、超净工作台(Bechtop)、高压灭菌锅(Autoclave)、微量加样器(Pipettes)、烧杯( beaker)、量筒 (graduated cylinder)、玻璃棒(stir

bar)、微波炉(microwave)、天平(Pan balance)、电泳梳子( comb)、电泳槽(electrophoresis tank)、电泳器 (Electro-phoresis System)、紫外灯(Ultraviolet transilluminator )

3)、材料与试剂(Reagents):

?溶液I(Solution ?):

50mmol/L 葡萄糖;25mmol/L 三羟基甲基氨基甲烷(Tris)Tris-

HCl(pH8.0);10mmol/L 乙二胺四乙酸(EDTA) pH8.0

溶液I可成批配制,每瓶约100ml,10磅高压蒸气灭菌15分钟,贮存于4?。

?溶液?(Solution ?):新鲜配制,等体积混合

0.2mol/L NaOH(临用前用10mol/L贮存液现用现稀释);1% SDS (可用10,贮存

液稀释配制)注意:SDS易产生气泡,不要剧烈搅拌。

?溶液III (Solution ?,100mL):加上后混匀会形成絮状沉淀 60mL 5mol/L KAc,

11.5mL 冰醋酸,

28.5mL HO (该溶液钾离子浓度为3mol/L,醋酸根离子浓度为5mol/L) 2

?TE液缓冲液:10 mmol/L Tris-HCl(pH8.0);1 mmol/L EDTA(pH8.0) ?70% 乙醇;

?平衡酚:氯仿 1:1:

将量取25 ml Tris-HCl(pH8.0)平衡苯酚,加入24 ml 氯仿和 1 ml 异戊醇,充分混合后,移入棕色玻璃瓶中,4?保存。

?LB培养基:

胰化蛋白胨 10g

酵母提取物 5g

NaCl 15g

pH 7.0

?琼脂糖(Agarose);

?1 liter(升)5×TBE备用溶液(stock solution):

54g tris base,27.5g 硼酸(boric acid),20ml 0.5 mol/L EDTA , pH

8.0; ?6×凝胶加样缓冲液:

0.25% 溴酚蓝(bromophenol blue),40% 蔗糖(sucrose in water); 另外还有的试剂是:胰RNA酶、DNA Marker、硼酸、Gelview试剂

(2)实验材料:含有pUC19质粒的大肠杆菌等。

4(实验方法步骤及注意事项

1)实验方法步骤

第一部分:质粒DNA的提取及酶切

(1)取1.4 ml含pUC19这里的大肠杆菌培养物于1.5 ml微量离心管中,4 000 r/min 离心2分钟,吸去上清液,并使细胞沉淀尽可能干燥; (2)加100 ,l 溶液?悬浮细菌沉淀,充分混和均匀,室温放置10 min; (3)加200 ,l溶液 ?(新鲜配制),盖紧管口,轻缓上下4-6次颠倒离心管以混合内容物。将离心管静置冰上5 min(使溶液变透明,粘稠); (4)加200 ,l溶液 ?(事先冰上预冷),盖紧离心管口后上下轻缓颠倒4-6次,置冰上15 min (溶液出现白色沉淀);

(5)12 000 rpm离心15 min,转移上清液至另一离心管(弃沉淀); (6)向上清液中加入等体积的酚:氯仿(1:1),反复混匀,12 000 rpm离心5min,取上清液移至另一离心管中;

(7)加2倍体积无水乙醇,振荡混匀,静置10 min,12000 rpm离心5,10 min。弃上清液,将离心管倒置于吸水纸,将附于管壁的残余液滴除净。 (8)加200 ,l 70,乙醇洗涤沉淀物,12000 rpm离心2 min,弃上清液,将沉淀在室温下晾干(或在50?,60?的烘箱中也可)。

(9)沉淀加20μl TE, 反复吹打使质粒DNA充分溶解,,20?保存。

第二部分:质粒DNA的琼脂糖凝胶电泳

?. 凝胶的制备(Preparation of the gel)

(1) 制备1,琼脂糖凝胶:

称取0.5g琼脂糖,放人锥形瓶中,加入50mL的0.5×TBE 缓冲液,放入微波炉加热至完全溶化,则为0.5,琼脂糖凝胶液(由于蒸发作用,溶解前在容量瓶上作一个记号,溶解后用三蒸水补足);

(2)制胶器的安装:

?取多功能制胶器,洗净,晾干;

?将多功能制胶器放置于一水平位置,选择12×6cm制胶架,然后选择1.5mm 18teeth的梳子(最大加样量25μl);

?将所选择规格的梳子插入制胶架的定位槽中;

(3)将熔化的琼脂糖凝胶液转入Gelview中,然后加入Gelview 专用的三角瓶

5μl;

(4)将冷到60?左右的琼脂糖凝胶液,缓缓倒入所选择的制胶槽内,直至有机玻璃板上形成一层均匀的胶面(注意不要形成气泡);

(5)待胶凝固后(30-60min),轻轻拔掉梳子,将凝胶盘从制胶槽中取出,放入电泳槽内;

(6)加入电泳缓冲液(0.5×)至电泳槽中;

?. 加样(Loading DNA samples):

用移液枪缓慢将DNA样品及其经过酶切的质粒DNA样品垂直加入加样孔直至开口下方(记录点样顺序,以便作为对照和分析),各加样量如下: DNA

samples :15μl 酶切的DNA样品:3μl

Loading buffer: 2μl DNA markers :6μl

(DNA samples与Loading buffer总共加入20μl)

?. 电泳(Gel):

(1)接通电泳槽与电泳仪的电源(注意正负极,DNA片段从负极向正极移动)。保持电压 120V;

(2)当溴酚蓝染料移动到凝胶总长度一半处时,停止电泳;

?. Gel Interpretation (凝胶图像解释):

将电泳后的凝胶放在紫外灯的照射下进行DNA电泳条带的观察,并用凝胶电泳成像系统进行拍照、分析。

2)注意事项

(1) 加溶液I后,必须要将菌体悬浮彻底,不得有块状或大颗粒状呈现,是质

粒DNA提取的首要关键;

(2) TAE和TBE均为常用的缓冲液。TBE比TAE有相对高的缓冲能力。 (3) 加样染料溴酚蓝可与长度约为0.5 kb的DNA一起迁移,可用于指示迁移率最高的片段。

(4) DNA的迁移速率取决于以下因素:

?DNA的分子大小—分子量越小,迁移越快。

?琼脂糖浓度—浓度越低,迁移越快。

?DNA的构象—环状的或带切口环状的DNA通常比线状的DNA迁移要快。

?两个电极之间单位厘米的电压——电压越高,迁移越快。 (5) 如果DNA条带不够窄且不够均匀,可能是内以下原因所引起:

?DNA过载 ?电压过高 ?加样孔破损 ?凝胶中有气泡 (6) 在紫外灯下观察凝胶电泳所得结果应该戴上防护眼镜,因为紫外线对眼睛

有伤害作用;

二(实验内容

1(实验现象与结果:

将电泳后的凝胶放在紫外灯的照射下观察到的和用凝胶电泳成像系统进行拍照得到的DNA电泳条带图如下所示意:

图注:x’:代表经过酶切的质粒DNA样品的电泳条带,

x :代表未经过酶切的质粒DNA样品的电泳条带,x相同的互为对照组,,

marker:DNA相对分子质量标准物。

pUC19质粒DNA标准参照条带图像:

2(对实验现象、实验结果的分析及其结论:

(1) 对实验现象的分析及其结论:从上述所示的DNA电泳条带图可以看出:

不管在DNA Sample中还是在经过酶切处理后的DNA样品中均具有电泳迁移速率处于中间的线性质粒DNA。而在此次试验中出现线性质粒DNA是因为pUc质粒DNA在提取的过程中DNA双链在相对应的两条链上同时产生切口。

这说明质粒制备过程个出现线性DNA说明存在核酸酶污染或实验操作有问题。可能在其中混有少量的蛋白质(图中,位置在marker组最后一电泳条带后方的很可能就是蛋白质组分),或者在实验的提取过程中加入溶液?所经历的时间过长,在碱性条件下基因组DNA片断会慢慢断裂,从而使提取的质粒DNA样品混入了基因组DNA。

但是其中各组也存在超螺旋DNA(与marker组对照,电泳速率最快,跑在最前面的)。标号为1、2和3组的电泳条带存在开环质粒DNA(与marker组的最后一条带相比较,同在一条水平线上且较亮的一条条纹即为开环质粒DNA),而且只出现在未经过酶切的质粒DNA Sample中,这说明在此次实验过程中酶切是彻底的。

从总体上观察,所有电泳条带的亮度并不高,可能是提取的质粒DNA量较少(浓度过低)或电泳前加样量过少所致。

(2)对实验分析及其结论:

?溶液?的作用:悬浮大肠杆菌菌体,而且加溶液I后,必须要将菌体悬浮彻底,不得有块状或大颗粒状呈现,是质粒DNA提取的首要关键。且其中含有的溶霉菌可以水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌

作用。另外葡萄糖的作用是使悬浮后的大肠杆菌不会很快沉积到管子的底部,增加溶液的粘度,维持渗透压及防止DNA受机械剪切力作用而降解。EDTA是Ca2+ 和

2+Mg等二价金属离子的螯合剂,在溶液 I中加入EDTA,是要把大肠杆菌细胞中的二价金属离子都螯合掉,从而起到抑制 DNase对DNA的降解和抑制微生物生长的

作用。另外也可保证溶菌酶活性。

溶液?的作用:

提供碱性条件,在NaOH与SDS的共同作用下使大肠杆菌瞬间裂解,并变性

核DNA。当细胞悬浮于NaOH和十二烷基酸钠(SDS)溶液中使,在高pH(碱性环境)的作用下细胞发生裂解,此外蛋白质和染色体DNA发生变性与细胞碎片一起沉淀下来。这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化。新配制的溶液?避免作为最佳溶解细胞的试剂—NaOH接触空气中的CO过

久而减弱了碱性。用不新鲜的0.4 M NaOH,即便有SDS也无法有效溶2 解大肠杆菌。因此必须使用新鲜的0.4 M NaOH试剂进行配制。溶液?的作用: 该溶液所含有的高浓度钾离子与溶液体系中的十二烷基硫酸钠(即SDS与NaOH

所形成的可溶性物质)发生反应形成十二烷基硫酸钾(potassium

dodecylsulfate,PDS),从而将与之结合的绝大部分大肠杆菌蛋白质以及很长的基因组DNA一起沉淀沉淀,与质粒分离开来;另外溶液?所含有的醋酸是为了中和NaOH,因为长时间的碱性条件会打断DNA。基因组DNA一旦发生断裂,只要是

50,100 kb大小的片断,就没有办法再被PDS共沉淀,这样就跟质粒DNA共存了。而且在整个质粒DNA的提取过程中,沉淀DNA时用无水乙醇及在高盐、低温条件下进行都是为了用化学或物理手段将基因组DNA分子和蛋白质发生变性、在体系中的溶解度降低,较充分的分离提纯出实验所需的质粒DNA。

?酚氯仿抽提DNA体系后出现的现象及其成因:

加入苯酚/氯仿/异戊醇,是为了进一步变性和沉淀蛋白。

A(水饱和酚的比重略比水重,碰到高浓度的盐溶液,离心后酚相会跑到上层,不利于含质粒的水相的回收;加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;

B(酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应。而且含质粒DNA的水相会部分进入到酚中,造成损失~

C(添加异戊醇,主要是为了让离心后上下层的界面更加清晰,方便了水相的回收。

?要将DNA保存于TE缓冲液中的原因:

在基因操作实验中,选择缓冲液的主要原则是考虑DNA的稳定性及缓冲液成分不产生干扰作用。

+采用Tris-HCL(pKa=8.0)的缓冲系统,由于缓冲对时Tris/Tris,不存在金属离子的干扰作用,故在提取或保存DNA时,大都采用Tris-HCL系统,而TE缓冲液中的EDTA能螯合金属离子,抑制Dnase的活性,更能稳定DNA。

教师评语及评分:

签名: 年月日

琼脂糖凝胶电泳标准操作流程

琼脂糖凝胶电泳操作标准流程 一、实验目的 琼脂糖凝胶电泳是常用的检测核酸的方法,具有操作方便、经济快速等优点。本铜人阵学习DNA琼脂糖凝胶电泳的使用技术,此关为能力考核,通关成功后,代表具备操作琼脂糖电泳的能力。 二、实验原理 琼脂糖凝胶电泳是常用的用于分离、鉴定DNA、RNA分子混合物的方法,这种电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。不同构型的DNA分子的迁移速度不同。如环形DNA分子样品,其中有三种构型的分子:共价闭合环状的超螺旋分子(cccDNA)、开环分子(ocDNA)、和线形DNA分子(IDNA)。这三种不同构型分子进行电泳时的迁移速度大小顺序为:cccDNA>IDNA>ocDNA 影响核酸分子泳动率的因素主要还是:1、DNA分子大小;2、琼脂糖浓度; 3、DNA构想; 4、所用的电压; 5、琼脂糖种类; 6、电泳缓冲液 核酸电泳中常用的染色剂是溴化乙锭(ethidium bromide EB)。溴化乙锭是一种扁平分子,可以嵌入核酸双链的配对碱基之间。在紫外线照射BE-DNA复合物时,出现不同的效应。254nm的紫外线照射时,灵敏度最高,但对DNA损伤严重;360nm紫外线照射时,虽然灵敏度较低,但对DNA损伤小,所以适合

对DNA样品的观察和回收等操作。300nm紫外线照射的灵敏度较高,且对DNA 损伤不是很大,所以也比较适用。 三、材料、试剂及器具 1、材料 不同大小的基因组片段; 2、试剂 Hind III digest DNA Marker(分子量标准)(TaKaRa);D2000(TianGen);BIOWESTAGAROSE(西班牙琼脂糖);加样缓冲液(6x):溴酚黄;电泳缓冲液(1×TAE);溴化乙锭(EB); 3、仪器及器具 (1)移液器、吸头、锥形瓶 (2)电泳系统:电泳仪、水平电泳槽、托盘、胶托、梳子等。 (3)紫外透射仪、微波炉、电子天平 四、操作步骤 1.器具清洗:首先将配胶、电泳、染胶所需要的器具清洗干净,包括托盘、胶托、梳子、电泳槽、染胶盘(EB污染,需独立清洗)。清洗流程为:先用自来水冲洗三次,然后用纯水冲洗三次,最后用纸巾或医用纱布擦干。若需对电泳产物进行胶回收,则还需用75%酒精对器具进行消毒。 2.配胶:根据基因组片段大小,配置相应浓度的琼脂糖凝胶。首先将锥形瓶洗干净并加入少量纯水煮沸,然后量取一定量的电泳缓冲液(1×TAE)至锥形瓶中,再称取相应量的BIOWESTAGAROSE(西班牙琼脂糖)倒入锥形瓶中,摇匀并

琼脂糖凝胶电泳及其影响因素

琼脂糖凝胶电泳及其影响因素 琼脂糖或聚丙烯酰胺凝胶电泳是分离鉴定和纯化DNA片段的标准方法。该技术操作简便快速,可以分辨用其它方法(如密度梯度离心法)所无法分离的DNA片段。当用低浓度的荧光嵌入染料溴化乙啶(Ethidium bromide, EB)染色,在紫外光下至少可以检出1-10ng的DNA条带,从而可以确定DNA片段在凝胶中的位置。此外,还可以从电泳后的凝胶中回收特定的DNA条带,用于以后的克隆操作。 琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。琼脂糖凝胶分离DNA片度大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA片段。琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。聚丙烯酰胺分离小片段DNA(5-500bp)效果较好,其分辩力极高,甚至相差1bp的DNA片段就能分开。聚丙烯酰胺凝胶电泳很快,可容纳相对大量的DNA,但制备和操作比琼脂糖凝胶困难。聚丙烯酰胺凝胶采用垂直装置进行电泳。目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。 琼脂糖主要在DNA制备电泳中作为一种固体支持基质,其密度取决于琼脂糖的浓度。在电场中,在中性pH值下带负电荷的DNA向阳极迁移,其迁移速率由下列多种因素决定: 1、 DNA的分子大小: 线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中蠕行,因而迁移得越慢。 2、琼脂糖浓度 一个给定大小的线状DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率的对数与凝胶浓度成线性关系。凝胶浓度的选择取决于DNA分子的大小。分离小于0.5kb的DNA片段所需胶浓度是1.2-1.5%,分离大于10kb的DNA分子所需胶浓度为0.3-0.7%, DNA片段大小间于两者之间则所需胶浓度为0.8-1.0%。 3、 DNA分子的构象 当DNA分子处于不同构象时,它在电场中移动距离不仅和分子量有关,还和它本身构象有关。相同分子量的线状、开环和超螺旋DNA在琼脂糖凝胶中移动速度是不一样的,超螺旋DNA移动最快,而线状双链DNA 移动最慢。如在电泳鉴定质粒纯度时发现凝胶上有数条DNA带难以确定是质粒DNA不同构象引起还是因为含有其他DNA引起时,可从琼脂糖凝胶上将DNA带逐个回收,用同一种限制性内切酶分别水解,然后电泳,如在凝胶上出现相同的DNA图谱,则为同一种DNA。 4、电源电压 在低电压时,线状DNA片段的迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量的DNA片段的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大,因此电压增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。 5、嵌入染料的存在 荧光染料溴化乙啶用于检测琼脂糖凝胶中的DNA,染料会嵌入到堆积的碱基对之间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状DNA迁移率降低15%。 6、离子强度影响 电泳缓冲液的组成及其离子强度影响DNA的电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶),电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化或DNA变性。

实验二 琼脂糖凝胶电泳实验知识交流

实验二琼脂糖凝胶电 泳实验

实验二琼脂糖凝胶电泳实验 【实验目的】 (1)学习琼脂糖凝胶电泳的基本原理; (2)掌握使用水平式电泳仪的方法; (3)学习在含有甲醛的凝胶上进行RNA电泳的方法。 【实验原理】 琼脂糖凝胶电泳是基因工程实验室中分离鉴定核酸的常规方法。核酸是两性电解质,其等电点为 pH2-2.5,在常规的电泳缓冲液中(pH约8.5),核酸分子带负电荷,在电场中向正极移动。核酸分子在琼脂糖凝胶中泳动时,具有电荷效应和分子筛效应,但主要为分子筛效应。因此,核酸分子的迁移率由下列几种因素决定: (1)DNA的分子大小。线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中移动,因而迁移得越慢。 (2)DNA分子的构象。当DNA分子处于不同构象时,它在电场中移动距离不仅和分子量有关,还和它本身构象有关。相同分子量的线状、开环和超螺旋质粒DNA在琼脂糖凝胶中移动的速度是不一样的,超螺旋DNA移动得最快,而开环状DNA移动最慢。如在电泳鉴定质粒纯度时发现凝胶上有数条DNA带难以确定是质粒DNA不同构象引起还是因为含有其他DNA引起时,可从琼脂糖凝胶上将DNA带逐个回收,用同一种限制性内切酶分别水解,然后电泳,如在凝胶上出现相同的DNA图谱,则为同一种DNA。 (3)电源电压。在低电压时,线状DNA片段的迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量的DNA片段的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大,因此电压增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb 的DNA 片段的分辨率达到最大,所加电压不得超过5v/cm。

琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳实验原理)

打印 琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳实验原理 聚丙烯酰胺凝胶电泳,普遍用于分离蛋白质及较小分子的核酸。琼脂糖凝胶孔径较大适用于分离同工酶及其亚型,大分子核酸等应用较广。琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。琼脂糖凝胶分离DNA度大小范围较广,不 同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA段。琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。聚丙烯酰胺分离小片段DNA (5-500bp) 效果较好,其分辩力极高,甚至相差1bp的DNA段就能分开。聚丙烯酰胺凝胶电泳很快,可容纳相对大量的DNA,但制备和操作比琼脂糖凝胶困难。聚丙烯酰胺凝胶采用垂直装置进行电泳。目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。 琼脂糖凝胶电泳原理: 琼脂糖是从琼脂中提纯出来的,主要是由D-半乳糖和3,6脱水L-半乳糖连接而成的一种线性多糖。琼脂糖凝胶的制作是将干的琼脂糖悬浮于缓冲液中,通常使用的浓度是1%-3%,加热煮沸至溶液变为澄清,注入模板后室温下冷却凝聚即成琼脂糖凝胶。琼脂糖主要在DNA制备电泳中作为一种固体支持基质。琼脂糖之间以分子内和分子间氢键形成较为稳定的交联结构,这种交联的结构使琼脂糖凝 胶有较好的抗对流性质。琼脂糖凝胶的孔径可以通过琼脂糖的最初浓度来控制,低浓度的琼脂糖形成较大的孔径,而高浓度的琼脂糖形成较小的孔径。尽管琼脂糖本身没有电荷,但一些糖基可能会被羧基、甲氧基特别是硫酸根不同程度的取代,使得琼脂糖凝胶表面带有一定的电荷,引起电泳过程中发生电渗以及样品和凝胶间的静电相互作用,影响分离效果。 琼脂糖凝胶可以用于蛋白质和核酸的电泳支持介质,尤其适合于核酸的提纯、分析。如浓度为1%的琼脂糖凝胶的孔径对于蛋白质来说是比较大的,对蛋白质的阻碍作用较小,这时蛋白质分子大小对电泳迁移率的影响相对较小,所以适用于 一些忽略蛋白质大小而只根据蛋白质天然电荷来进行分离的电泳技术,如免疫电泳、平板等电聚焦电泳等。琼脂糖也适合于DNA、RNA分子的分离、分析,由于DNA、RNA分子通常较大,所以在分离过程中会存在一定的摩擦阻碍作用,这时分子的大小会对电泳迁移率产生明显影响。例如对于双链DNA,电泳迁移率 的大小主要与DNA分子大小有关,而与碱基排列及组成无关。另外,一些低熔点的琼脂糖在62 C时熔化,因此其中的样品(如DNA),可以在加热到熔点的水浴中放置一段时间,重新溶解到溶液中而回收。 由于琼脂糖凝胶的弹性较差,难以从小管中取出,所以一般琼脂糖凝胶不适合于管状电泳,管状电泳通常采用聚丙烯酰胺凝胶。琼脂糖凝胶通常是形成水平式板状凝胶,用于等电聚焦、免疫电泳等蛋白质电泳,以及DNA、RNA的分析。垂 直式电泳应用得相对较少。 目前多用琼脂糖为电泳支持物进行平板电泳,其优点如下:

琼脂糖凝胶电泳

DNA琼脂糖凝胶电泳 跑胶即走电泳,是DNA 和protein 最基本的定性定量方法。一般是琼脂糖胶或page 胶,琼脂糖胶一般是检测DNA的,可以检验一下你到底提到dna没过确定你提dna分子量的大小:page胶一般是检测蛋白特性的,通过page胶里marker的分子量大小来确定你需要的目的蛋白分子量大小,如果有杂带那就可以判断那条带是你需要的目的条带,如果想知道蛋白浓度,还可以在page胶里带上一条定量marker,通过条带粗细,来判断你需要蛋白的浓度。二者原理一致,小分子量用大浓度的胶,大分子量用小浓度的胶,特别小的DNA 用丙烯酰胺凝胶。 一、基本原理 当把一个带净电荷(q)的颗粒放入电场,便有一个电场力(F)作用于其上。F的大小取决于颗粒静电荷量及其所处的电场强度(E),它们之间的关系可以表示成:F=E×q。 由于F的作用,使带电颗粒在电场中向一定方向泳动。此颗粒在泳动的过程中还受到一个相反方向的摩擦力(f*v)阻挡。当这两种力相等时,颗粒则以速度(v)向前泳动:v=F/f,其中f为摩擦系数。根据Stoke公式,阻力大小取决于带电颗粒的大小、形状以及所处介质的粘度,即f=6πγη, γ为颗粒半径,η为介质粘度。该公式指球形颗粒所受的阻力。代入F=E×q得到: v=E×q/6πγη.从这个公式可以看出,带电颗粒在电场中泳动的速度与电场强度和带电颗粒的净电荷量成正比,与颗粒半径和介质粘度成反比。 带电颗粒在电场中泳动的速度常用泳动度(m)或者迁移率以下列公式表示:m=μ/E=d*l/V*t d为带电颗粒泳动的距离(cm),l为支持物的有效长度(cm),t为通电时间(s),V为加在支持物两端的电压。 在一定条件下,任何带电颗粒都具有自己特定的泳动度。它是胶体颗粒的一个物理常数,可用其鉴定蛋白质、核酸等物质的纯度,还可以用其来研究蛋白质、核酸等物质的一些理化性质。影响泳动度的因子有颗粒的性质、电场强度、溶液的性质等。 二、琼脂糖凝胶电泳 通常情况下,核酸类物质的分离、鉴定是采用琼脂糖凝胶(做支持物)电泳法进行的。用琼脂糖分离线性DNA时,其迁移率与该物质分子质量的关系密切,而与结构和碱基组成无关。这也是采用凝胶电泳法测定核酸分子质量的依据所在。此方法除了可以分离线性DNA外,还可以分离、分析细菌质粒的闭环DNA和开环DNA,以及分子质量不等的RNA片段。一般实验室采用的琼脂糖凝胶的浓度为0.3%——2%。不同的凝胶浓度,可以分离不同长度的DNA片段。具体见表格: 琼脂糖凝胶 /% m/V 分离线性DNA片段的范围 /kb 0.3 50---60 0.6 1----20 0.7 0.8---10 0.9 0.5---7.0 1.2 0.4----6.0 1.5 0.3---3.0

琼脂糖凝胶电泳 配方与步骤

?RNA琼脂糖凝胶电泳: 配制: 1.0.5M EDTA(pH=8.0): 100ml:称取18.61g Na2EDTA·2H2O(分子量372.24),加80ml ddH2O剧烈搅拌, 用NaOH调节PH值至8.0(约需2g NaOH).高压灭菌,室温保存。 2.50×TAE loading buffer:(Tris acetate-EDTA buffer)电泳缓冲液 组分:2M Tris-乙酸;100mM EDTA(pH=8.0) 500mL:称121.1g Trisbase(分子量121.14),加800ml ddH2O溶解,加57.1ml 乙酸和50ml0.5M EDTA溶液(pH=8.0),搅拌,ddH2O定容至500mL.室温保存。 3.1×TAE loading buffer: 取20ml50×TAE,ddH2O定容至1L.室温保存。 4.100×Sybergreen: 500ul:取495ul1×TAE于1.5ml离心管,加入5ul Sybergreen原液混匀,4℃锡纸 避光保存。 注意:Sybergreen原液需稀释10000倍; 6×DNA loading buffer上样缓冲液需稀释六倍,最终稀释倍数应不小于1×。 步骤: 1.制备1%琼脂糖凝胶(大胶用70ml,小胶用50ml,我们用30ml): 称0.3g琼脂糖置于100ml锥形瓶中,加入30ml1×TAE,瓶口倒扣小烧杯。 微波炉加热煮沸3次,至琼脂糖全部融化,摇匀,即成1.0%琼脂糖凝胶液。 2.胶板制备: 取电泳槽内的有机玻璃内槽(制胶槽)洗干净,晾干,放入制胶玻璃板.取透明胶带将玻璃板与内槽两端边缘封好,形成模子.将内槽置于水平位置,并放好梳子. 将冷却到65℃左右的琼脂糖凝胶液混匀小心地倒入内槽玻璃板上,使胶液缓慢展开,直到整个玻璃板表面形成均匀胶层.室温下静置直至凝胶完全凝固,垂直轻拔梳子,取下胶带,将凝胶及内槽放入电泳槽中.添加1×TAE电泳缓冲液至没过胶板为止. 3.加样: 样品制备:(10ul体系/样品槽)于0.25ml离心管中 样品RNA(最后加):2ul/3ul/5ul 6×DNA loading buffer:10/6=1.7ul 100×Sybergreen:0.1ul DEPC水:至10ul (注意:加样前要先记下加样的顺序).分别将样品加入胶板的样品小槽内,每加完一个样品,应更换一个枪头,以防污染,加样时勿碰坏样品孔周围的凝胶面. 4.电泳: 加样后的凝胶板立即通电进行电泳,电压60-100V,样品由负极(黑色)向正极(红色)方向移动.电压升高,琼脂糖凝胶的有效分离范围降低.当溴酚蓝移动到距离胶板下沿约1cm处时,停止电泳. 5.电泳完毕后,取出凝胶,利用科212凝胶成像系统,在紫外灯(trans UV)下观察拍照 保存.DNA存在则显示出红色荧光条带.RNA完美提出应该是三条带:28,18,5.8。 28和18比较亮,而且28是18亮度的2倍,5.8基本很模糊,可有可无

RNA的琼脂糖凝胶电泳实验原理和步骤

RNA的琼脂糖凝胶电泳实验原理和步骤 关键词:RNA琼脂糖电泳2012-03-09 00:00 来源:互联网点击次数:38148 一、实验目的 掌握植物总RNA非变性胶电泳的原理和方法。 二、实验原理 RNA电泳可以在变性及非变性两种条件下进行。非变性电泳使用1.0%--1.4%的凝胶,不同的RNA条带也能分开,但无法判断其分子量。只有在完全变性的条件下,RNA的泳动率才与分子量的对数呈线性关系。因此要测定RNA分子量时,一定要用变性凝胶。在需快速检测所提总RNA样品完整性时,配制普通的1%琼脂糖凝胶即可。

三、实验材料、器具及药品 蘑菇的总RNA溶液。电泳仪,电泳槽,电子天平,移液器,枪头,微波炉,紫外透射检测仪等。琼脂糖,1XTAE电泳缓冲液,0.5μg/ml溴化乙锭(EB)10X载样缓冲液。 四、实验步骤 (1)用1×TAE电泳缓冲液制作琼脂糖凝胶,加1×TAE电泳缓冲液至液面覆盖凝胶。 (2)在超净工作台上,用移液器吸取总RNA样品4μl于封口膜上。在实验台上再加入5μl 1×TAE电泳缓冲液及1μl 的10X载样缓冲液,混匀后,小心加入点样孔。 (3)打开电源开关,调节电压至100V,使RNA由负极向正极电泳,约30min 后将凝胶放入EB染液中染色5min,用清水稍微漂洗。在紫外透射检测仪上观察RNA电泳结果。

RNA的变性琼脂糖凝胶检测 试剂: (1)MOPS缓冲液(10*):0.4mol/L 吗啉代丙烷磺酸(MOPS)(Ph7.0),0.1mol/L NaAc, 10mol/L EDTA。 (2)上样染料:50%甘油,1mmol/L EDTA ,0.4%溴酚蓝,0.4%二甲苯蓝。(3)甲醛。 (4)去离子甲酰胺。v电泳槽清洗:去污剂洗干净(一般浸泡过夜)——水冲洗——乙醇干燥——3%H2O2灌满——室温放置10分钟——0.1%DEPC水冲洗。 操作:

(完整word版)DNA的琼脂糖凝胶电泳实验原理和操作步骤

一、实验目的 琼脂糖凝胶电泳是常用的检测核酸的方法,学习DNA琼脂糖凝胶电泳的使用技术,掌握有关的技术和识读电泳图谱的方法。 二、实验原理 琼脂糖凝胶电泳是常用的用于分离、鉴定DNA、RNA分子混合物的方法,这种电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。不同构型的DNA分子的迁移速度不同。如环形DNA分子样品,其中有三种构型的分子:共价闭合环状的超螺旋分子(cccDNA)、开环分子(ocDNA)、和线形DNA分子(IDNA)。这三种不同构型分子进行电泳时的迁移速度大小顺序为:cccDNA>IDNA>ocDNA 核酸分子是两性解离分子,pH3.5是碱基上的氨基解离,而三个磷酸基团中只有一个磷酸解离,所以分子带正电,在电场中向负极泳动;而pH8.0-8.3时,碱基几乎不解离,而磷酸基团解离,所以核酸分子带负电,在电场中向正极泳动。不同的核酸分子的电荷密度大致相同,因此对泳动速度影响不大。在中性或碱性时,单链DNA与等长的双链DNA的泳动率大致相同。 影响核酸分子泳动率的因素主要是: 1、样品的物理性状 即分子的大小、电荷数、颗粒形状和空间构型。一般而言,电荷密度愈大,泳动率越大。但是不同核酸分子的电荷密度大致相同,所以对泳动率的影响不明显。 对线形分子来说,分子量的常用对数与泳动率成反比,用此标准样品电泳并测定其泳动率,然后进行DNA分子长度(bp)的负对数——泳动距离作标准曲线图,可以用于测定未知分子的长度大小。 DNA分子的空间构型对泳动率的影响很大,比如质粒分子,泳动率的大小顺序为:cDNA >IDNA>ocDNA但是由于琼脂糖浓度、电场强度、离子强度和溴化乙锭等的影响,会出现相反的情况。 2、支持物介质 核酸电泳通常使用琼脂糖凝胶和聚丙烯酰胺凝胶两种介质,琼脂糖是一种聚合链线性分子。含有不同浓度的琼脂糖的凝胶构成的分子筛的网孔大小不同,是于分离不同浓度范围的核酸分子。聚丙烯酰胺凝胶由丙烯酰胺(Acr)在N,N,N′-四甲基乙四胺(TEMED)和过硫酸铵

PCR扩增技术与琼脂糖凝胶电泳检测

实验五 PCR扩增技术与琼脂糖凝胶电泳检测 一、实验目的 1. 掌握PCR扩增技术的基本原理 2. 掌握PCR的常规操作 3. 熟悉PCR反应体系中几种主要成分的作用 4. 了解PCR技术的应用 5. 掌握琼脂糖凝胶电泳检测PCR产物的方法 6. 熟悉DNA在电泳过程中迁移率的决定因素 二、实验原理 1. PCR基本原理 聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是一种分子生物学技术,用于在体外快速扩增DNA,类似DNA的细胞内复制过程:由一对引物介导,通过温度的调节,使双链DNA变性为单链DNA、单链DNA能与引物复性(退火)成为引物-DNA单链复合物、以及在dNTPs存在下DNA聚合酶能使引物沿单链模板延伸成为双链DNA(引物的延伸);这种热变性-复性-延伸的过程,就是一个PCR循环;一般通过20-30个循环之后,就可获得大量(106倍)的要扩增的DNA片段。 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成: ①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链。 重复循环“变性—退火—延伸”三个过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 2. PCR反应体系 3. 琼脂糖凝胶电泳 琼脂糖凝胶电泳是分离、纯化、鉴定DNA片断的典型方法,其特点为简便、快速。DNA 片断琼脂糖凝胶电泳的原理与蛋白质的电泳原理基本相同,DNA分子在高于其等电点的pH 溶液中带负电荷,在电场中向正极移动。DNA分子在电场中通过介质而泳动,除电荷效应外,凝胶介质还有分子筛效应,与分子大小及构想有关。对于线形DNA分子,其电场中的迁移率与其分子量的对数值成反比。在凝胶中加入少量溴化乙锭(有毒!),其分子可插入DNA的碱基之间,形成一种光络合物,在254~365nm波长紫外光照射下,呈现桔红色的

凝胶电泳实验原理与步骤

一、实验目的 学习和掌握琼脂糖电泳法鉴定DNA的原理和方法。 二、实验原理 琼脂糖凝胶电泳是用于分离、鉴定和提纯DNA片段的标准方法。琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。DNA在碱性条件下(pH8.0的缓冲液)带负电荷,在电场中通过凝胶介质向正极移动,不同DNA分子片段由于分子和构型不同,在电场中的泳动速率液不同。溴化乙锭(EB)可嵌入DNA分子碱基对间形成荧光络合物,经紫外线照射后,可分出不同的区带,达到分离、鉴定分子量,筛选重组子的目的。 三、实验材料 实验14提取的DNA样品, 四、器具及药品 电泳仪,电泳槽,紫外透射反射仪,恒温水浴锅,微波炉,微量进样器,三羟甲基氨基甲烷,盐酸,醋酸钠,EDTA,琼脂糖,溴酚蓝,溴化乙锭。 五、实验步骤 1、安装电泳槽 将有机玻璃的电泳凝胶床洗净,晾干,用胶带将两端的开口封好,放在水平的工作台上,插上样品梳。 2、琼脂糖凝胶的制备 称取琼脂糖溶解在电泳缓冲液中,(按0.3-1.5%的琼脂糖含量,1-25kb大小的DNA用1%的凝胶,20-100kb的DNA用0.5%的凝胶,200-2000bp的DNA用1.5%的凝胶)置微波炉或沸水浴中加热至完全溶化(不要加热至沸腾),取出摇匀。 3、灌胶 将冷却到60℃的琼脂糖溶液轻轻倒入电泳槽水平板上。 4、待琼脂糖胶凝固后,在电泳槽内加入电泳缓冲液,然后拔出梳子。 5、加样 将DNA样品与加样缓冲液按4:1混匀后,用微量移液器将混合液加到样品槽中,每槽加10-20μl,记录样品的点样次序和加样量。 6、电泳 安装好电极导线,点样孔一端接负极,另一端接正极,打开电源,调电压至3-5V/cm,电泳1-3hr,当溴酚蓝移到距凝胶前沿1-2cm时,停止电泳。 7、染色和观察 取出凝胶,放在含有溴化乙锭的染色液中染色30min,即可在254nm的紫外灯下观察,有橙红色荧光条带的位置,即为DNA条带,或在紫外灯下照相记录电泳图谱。溴化乙锭是致癌剂,操作时要小心,必须戴手套。 附: ⑴5×TBE(tris-硼酸及EDTA)缓冲液的配制(1000ml): Tris 54g,硼酸27.5g,0.5mol/L EDTA 20ml,将pH调到8.0,定容至1000ml,4℃冰箱保存,用时稀释10倍。 ⑵加样缓冲液的配制: 0.25%溴酚蓝,40%(W/V)蔗糖水溶液,4℃冰箱保存。 ⑶溴化乙锭的配制: 称取0.1g溴化乙锭,溶于10ml水,配成终浓度为10mg/ml的母液,4℃冰箱保存。染

实验6、琼脂糖凝胶电泳

实验六、琼脂糖凝胶电泳 【实验目的】 熟练掌握琼脂糖凝胶的配置和DNA凝胶电泳的方法。 【实验原理】 琼脂糖是从海澡中提取的长链状多聚物,琼脂糖凝胶点为 40~45℃。当加热至90℃左右时,即可成清亮、透明的液体,浇在模具上冷却后固化形成凝胶,琼脂糖凝胶可区分相差100bp 的 DNA片段。为了满足特殊的要求,可选择低溶点琼脂糖(<70℃,低于双链DNA的变性温度)。 带电物质在电场中向相反电极移动的现象称为电泳(electrophoresis)。各种生物大分子在一定的pH值条件下,可解离成带电荷的离子,在电场中向相反的电极移动。分子生物学领域中,琼脂糖和聚丙烯酰胺作为支持介质的凝胶电泳应用最多,它们是分离、鉴定和纯化DNA及RNA片段的主要方法。该方法操作简便、快速,可以分辨其它方法(如梯密度离心法)所无法分离的片段。直接嵌入荧光染料后,在紫外灯下可直接检出DNA片段所在的位置,如有必要,从凝胶中回收DNA片段,用于各种克隆操作。 琼脂糖和聚丙烯酰胺凝胶均可制成各种不同大小、形状和孔径的凝胶块,在不同的装置上进行电泳。琼脂糖比聚丙烯酰胺凝胶的分辨率低,但其分离范围广,约200bp~50kb的DNA。琼脂糖凝胶电泳通常在水平装置上进行。聚丙烯酰胺分离小片段(5~500bp)的效果较好,甚至可以分辨相差1bp的DNA片段。长度大于10 000kb的DNA片段,可以通过电场方向呈周期性变化,在脉冲电场胶中进行电泳。 【试剂和器材】 试剂:灭菌重蒸水;TE缓冲液;琼脂糖;核酸染料;;DNAmarker;6×上样缓冲液(0.25%溴酚蓝、0.25%二甲苯青FF、30%甘油) 器材:移液器;水平电泳槽;电泳仪,枪头,移液器,锥形瓶,微波炉,制胶槽,梳子,水平电泳仪,稳压器,凝胶成像系统 【实验步骤】 (1)称取1 g琼脂糖加入250mL锥形瓶中,量取100 ml 1× TAE电泳缓冲液加入锥形瓶。 (2)微波炉加热并多次摇晃锥形瓶使琼脂糖充分溶解。

琼脂糖凝胶电泳分离DNA与聚丙烯酰胺凝胶电泳分离蛋白质原理方法上有什么异同

琼脂糖凝胶电泳分离DNA与聚丙烯酰胺凝胶电泳分离蛋白质原理方法上有什么异同?DNA电泳一般使用的都是琼脂糖凝胶电泳,电泳的驱动力靠DNA骨架本身的负电荷。 蛋白质电泳(一般指SDS-PAGE)一般使用的都是聚丙烯酰胺凝胶电泳,电泳的驱动力靠与蛋白质结合的SDS上所携带的负电荷。 所以相同点就是样品都是带负电荷的,从负极向正极移动,移动的距离都和样品的分子量有关。而且这两个电泳体系可以互相交换使用。进行大分子蛋白质电泳时,可以考虑换用琼脂糖凝胶,因为该体系孔径大。相反,如果需要精确到各位数碱基的DNA电泳也可以使用聚丙烯酰胺凝胶系统,因为使用该系统可以将相差一个碱基的两条DNA链分开。 不同点首先是样品不同。这个就不用多说了。其次是结果的观察方法不同。DNA 电泳普遍使用EB做染料,在紫外灯下观察;而蛋白电泳使用的考马斯亮蓝染色,还需要经过脱色步骤,不过观察起来比较简单。还有就是胶体系的差别,DNA 电泳通常是一胶跑到底,而蛋白质电泳则会有分离胶和浓缩胶之区别。 电泳中样品移动的本质确实是样品所携带的电荷。但是,区分这些条带直接可以用分子量而无需使用电荷数,是因为这些样品的电荷/分子量比都是恒定的了。以DNA分子为例,它在电泳中的移动是靠其骨架中磷酸所携带的负电荷来实现的,而这个磷酸分子又是每一个核苷酸中都有的,所以DNA分子所携带的负电荷数是由其核苷酸总数决定的。而且,DNA分子中核苷酸的组成动辄成百上千,在如此大的分子量面前,讨论单个核苷酸之间分子量的差别就显得毫无意义。这样,DNA分子中负电荷的量就可以用DNA的分子量来代替,反过来,DNA的分子量也就可以用DNA分子所携带的电荷来代替(一句话,DNA分子的电荷/分子量比是恒定的)。 这在蛋白电泳中(特别是SDS-PAGE中)是一样的。在SDS-PAGE中,SDS 将蛋白质变性成直线分子并紧密包裹于其上,使得其所携带的电荷与蛋白分子量成了一定的比例,剩下的就和核酸电泳一样了。 至于为什么核酸的横着跑,蛋白竖着跑,个人认为最大的问题是蛋白制胶的过程导致的。蛋白制胶由于使用了两种不同的凝胶系统,所以需要一个水平的分界面。这个分界面在配胶的过程中是依靠异丙醇在重力作用下的压力下形成的。所以,一并就竖着跑了~~

实验五--核酸琼脂糖凝胶电泳

实验五核酸琼脂糖凝胶电泳 一、实验目的 琼脂糖凝胶电泳是常用的检测核酸的方法,具有操作方便、经济快速等优点。本实验学习DNA琼脂糖凝胶电泳的使用技术,掌握有关的技术和识读电泳图谱的方法。 二、实验原理 琼脂糖凝胶电泳是用于分离、鉴定和提纯DNA片段的标准方法。琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。DNA在碱性条件下(pH8.0的缓冲液)带负电荷,在电场中通过凝胶介质向正极移动,不同DNA分子片段由于分子和构型不同,在电场中的泳动速率也不同。溴化乙锭(EB)可嵌入DNA分子碱基对间形成荧光络合物,经紫外线照射后,可分出不同的区带,达到分离、鉴定分子量,筛选重组子的目的。但是EB具有致癌性,所以我们选用无毒,高灵敏度是Ex Green染料,。此核酸染料在紫外透照仪及可见光透射仪上均可使用。ExGreen外观呈红色,与核酸结合后,可用300 nm (紫外透射仪)激发。

三、材料、仪器和试剂 1、材料大肠杆菌中提取的质粒DNA 2、仪器电泳仪;台式离心机;恒温水浴锅;微波炉;紫外透射仪;照相机或者凝胶成像系统 3、试剂 (1)50×TAE电泳缓冲液:称取Tris 242g,EDTA 37.2g,加入约800ml的去离子水,充分搅拌溶解,加入57.1ml的醋酸,充分搅拌,加去离子水定容至1L,室温保存。 (2)6×电泳上样缓冲液:0.25%溴酚蓝、40%(W/V)蔗糖水溶液,贮存于4℃。 (3)溴化乙锭(EB)溶液母液:将EB配制成10mg/mL。用铝箔或黑纸包裹容器,贮存于室温即可。 (4)分子量标准DNA:DNA Marker 四、操作步骤 1、制备1%琼脂糖凝胶(大胶用40ml,小胶用30ml):称取0.7 g(0.5 g) 琼脂糖置于锥形瓶中,加入70 ml(50ml) 1×TAE,瓶口倒扣小烧杯。微波炉加热煮沸3次至琼脂糖全部融化,摇匀,即成1.0%琼脂糖凝胶液。 注意:用于电泳的缓冲液和用于制胶的缓冲液必须是相同的 2、胶板制备:取电泳槽内的有机玻璃内槽(制胶槽)洗干净,晾干,放入制胶玻璃板.取透明胶带将玻璃板与内槽两端边缘封好,形成模子。将内槽置于水平位置,并在固定位置放好梳子。在冷却到65℃左右的琼脂糖凝胶液中加入Ex Green染料(10ml:1ul),混匀后小

质粒DNA的提取及其琼脂糖凝胶电泳实验报告

一、实验名称:质粒DNA的提取与纯化,DNA琼脂糖凝胶电泳 二、实验原理: 1.质粒DNA的提取: 质粒是一类存在于几乎所有细菌等微生物中染色体之外(细胞质中)呈游离状态的双链、闭环的DNA分子,能够自主复制和稳定遗传,以超螺旋形式存在,是最常用的基因克隆载体。除质粒外,大肠杆菌中还含有基因组DNA、各种RNA、蛋白质和脂质等物质,因此需要裂解细胞并除去蛋白质和染色体DNA等物质才能分离纯化出质粒DNA。分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。本实验使用碱裂解法,即利用SolutionⅠ、Ⅱ、Ⅲ三种溶液分离提取质粒DNA.其原理如下。 (1)碱裂解法提取大肠杆菌质粒DNA的原理: 碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA之间变性与复性的差异来分离质粒DNA,达到分离提纯质粒DNA的目的。在pH值高达12.6的碱性条件下,线性的DNA因氢键断裂,双螺旋结构解开而变性,尽管在这样的条件下,共价闭环质粒DNA的大部分氢键会被断裂,但超螺旋共价闭合环状的两条互补链相互缠绕,不会完全分离。当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,共价闭合环状的质粒DNA复性,恢复其天然构象,以可溶状态存在于液相中;而线性的染色体DNA由于两条互补链彼此已完全分开、分子量大、结构复杂而相互缠绕形成不溶性网状结构。与不稳定的大分子RNA、变形的蛋白质以及细菌碎片等一起沉淀而被除去。进一步用酚、氯仿使蛋白质变性去除蛋白质杂质,然后用无水乙醇沉淀,即可获得纯化的质粒DNA。SolutionⅠ、Ⅱ、Ⅲ三种溶液以及无水乙醇沉淀DNA的具体作用和原理如下。 (2)四种溶液作用及原理: ①Solution I的作用:悬浮大肠杆菌菌体,增加溶液的粘度,维持渗透压及防止DNA受机械剪切力作用而降解。EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,在溶液I中加入EDTA,是要把大肠杆菌细胞中的二价金属离子都螯合掉,从而起到抑制DNA酶对DNA的降解和抑制微生物生长的作用。另外也可保证溶菌酶活性。 ②Solution II的作用:提供碱性条件,pH高达12.6,使大肠杆菌瞬间裂解,促使染色体DNA和质粒DNA变性。所含离子型表面活性剂十二烷基酸钠(SDS)可使细胞膜、核膜发生破裂,充分溶解膜蛋白。同时,磺酸基与蛋白质形成复合物而变形沉淀。 ③Solution III的作用:为KAc-HAc缓冲液。该溶液所含有的高浓度钾离子与溶液体系中的十二烷基磺酸钠发生反应形成十二烷基磺酸钾,从而将与之结合的绝大部分大肠杆菌蛋白质以及很长的基因组DNA一起沉淀,与质粒分离开来;另外溶液III所含有的醋酸中和溶液Ⅱ的强碱性,使pH降至中性,因为长时间的碱性条件会打断DNA;基因组DNA一旦发生断裂,只要是50-100kb大小的片段,就没有办法再被PDS共沉淀,这样就跟质粒DNA共存了。而且在整个质粒DNA 的提取过程中,沉淀DNA时用无水乙醇及在高盐、低温条件下进行都是为了用化学或物理手段将基因组DNA分子和蛋白质发生变性、在体系中的溶解度降低,较充分的分离提纯出实验所需的质粒DNA

琼脂糖凝胶电泳

琼脂糖凝胶电泳 1.原理 琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他支持物电泳最主要区别是:它兼有“分子筛”和“电泳”的双重作用。 琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相当大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。 蛋白质和核酸会根据pH不同带有不同电荷,在电场中受力大小不同,因此跑的速度不同,根据这个原理可将其分开。电泳缓冲液的pH在6~9之间,离子强度0.02~0.05为最适。常用1%的琼脂糖作为电泳支持物。琼脂糖凝胶约可区分相差100bp的DNA片段,其分辨率虽比聚丙烯酰胺凝胶低,但它制备容易,分离范围广。普通琼脂糖凝胶分离DNA的范围为0.2-20kb,利用脉冲电泳,可分离高达10^7bp的DNA片段。 DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速率向正极方向移动。 2操作流程 准备干净的配胶板和电泳槽 琼脂糖凝胶电泳:水平电泳 注意DNA酶污染的仪器可能会降解DNA,造成条带信号弱、模糊甚至缺失的现象。 (1)电泳方法

一般的核酸检测只需要琼脂糖凝胶电泳就可以;如果需要分辨率高的电泳,特别是只有几个bp的差别应该选择聚丙烯酰胺凝胶电泳;用普通电泳不合适的巨大DNA链应该使用脉冲凝胶电泳。注意巨大的DNA链用普通电泳可能跑不出胶孔导致缺带。 (2)凝胶浓度 对于琼脂糖凝胶电泳,浓度通常在0.5~2%之间,低浓度的用来进行大片段核酸的电泳,高浓度的用来进行小片段分析。低浓度胶易碎,小心操作和使用质量好的琼脂糖是解决办法。注意高浓度的胶可能使分子大小相近的DNA带不易分辨,造成条带缺失现象。 (3)缓冲液 常用的缓冲液有TAE和TBE,而TBE比TAE有着更好的缓冲能力。电泳时使用新制的缓冲液可以明显提高电泳效果。注意电泳缓冲液多次使用后,离子强度降低,pH值上升,缓冲性能下降,可能使DNA电泳产生条带模糊和不规则的DNA带迁移的现象。 三羟甲基氨基甲烷(Tris(hydroxymethyl)aminomethane,一般简称为Tris)是一种有机化合物,其分子式为(HOCH2)3CNH2。Tris被广泛应用于生物化学和分子生物学实验中的缓冲液的制备。例如,在生物化学实验中常用的TAE和TBE 缓冲液(用于核酸的溶解)都需要用到Tris。 (4)电压和温度 电泳时电压不应该超过20V/cm,电泳温度应该低于30℃,对于巨大的DNA 电泳,温度应该低于15℃。注意如果电泳时电压和温度过高,可能导致出现条带模糊和不规则的DNA带迁移的现象。特别是电压太大可能导致小片段跑出胶而出现缺带现象 (5)DNA样品的纯度和状态 注意样品中含盐量太高和含杂质蛋白均可以产生条带模糊和条带缺失的现象。乙醇沉淀可以去除多余的盐,用酚可以去除蛋白。注意变性的DNA样品可能导致条带模糊和缺失,也可能出现不规则的DNA条带迁移。在上样前不要对DNA样品加热,用20mM NaCl缓冲液稀释可以防止DNA变性。 (6)DNA的上样

DNA琼脂糖凝胶电泳原理

琼脂糖凝胶电泳进行DNA/RNA定量原理 DNA(RNA)定量分析可用紫外光谱分析,原理是DNA(RNA)分子在260 nm处有特异的紫外吸收峰,且吸收强度与DNA(RNA)的浓度成正比。此外,还可通过琼脂糖凝胶电泳上显示的DNA(RNA)带的亮度来分析,因为EB 作为一种荧光染料,能插入DNA(RNA)的碱基对平面之间而结合于其上,在紫外光的激发下产生荧光,DNA(RNA)分子上EB的量与DNA分子的长度和数量成正比。在电泳时加入已知浓度的DNA(RNA)Marker作为DNA(RNA)分子量及浓度的参考,样品DNA(RNA)的荧光强度就可以大致表示DNA (RNA)量的多少。这种方法的优点是简便易行,可结合琼脂糖凝胶电泳分析DNA(RNA)样品的完整性来进行,缺点是不太准。 琼脂糖凝胶的配制 根据所需凝胶的浓度秤取琼脂糖,加入相应电泳缓冲液中,用微波炉加热煮沸至琼脂糖完全溶解,加入适量 EB 混匀,适当冷却后倾入凝胶铸槽中,插入梳子,凝胶厚度不超过梳孔,如有气泡产生则用玻璃棒驱除,不能过早拔除梳子,应待凝胶完全凝结后才能拔除梳子。 3.P1、P2、P3的配制P1 的配制:在 800ml 去离子水中溶入 Tris 碱 6.06g, Na2EDTA?2H2O 3.72g,用 HCl 调整 pH 至 8.0,用去离子水调整容积至1升,每升P1内加入RNaseA100mg。 P2 的配制:在 950ml 去离子水中溶入 NaOH 8.0g,20%SDS 50ml,调整容积至 1 升。 P3 的配制:在 500ml 去离子水中溶入醋酸钾 294.5g,用冰醋酸调整 pH 值至 5.5,用去离子水调整容积至1升。 4.常用缓冲液: TE pH 7.4 10mmol/LTris?Cl (pH7.4) 1mmol/L EDTA(pH8.0)

琼脂糖凝胶电泳的操作步骤

琼脂糖凝胶电泳的操作步骤如下: 1. 制备1%琼脂糖凝胶(大胶用70ml,小胶用50ml):称取0.7 g(0.5 g)琼脂糖置于锥形瓶中,加入70 ml(50ml)1×TAE,瓶口倒扣小烧杯.微波炉加热煮沸3次至琼脂糖全部融化,摇匀,即成1.0%琼脂糖凝胶液. 2. 胶板制备:取电泳槽内的有机玻璃内槽(制胶槽)洗干净,晾干,放入制胶玻璃板.取透明胶带将玻璃板与内槽两端边缘封好,形成模子.将内槽置于水平位置,并在 固定位置放好梳子.将冷却到65℃左右的琼脂糖凝胶液混匀小心地倒入内槽玻 璃板上,使胶液缓慢展开,直到整个玻璃板表面形成均匀胶层.室温下静置直至凝 胶完全凝固,垂直轻拔梳子,取下胶带,将凝胶及内槽放入电泳槽中.添加 1×TAE电泳缓冲液至没过胶板为止. 3. 加样:在点样板或parafilm上混合DNA样品和上样缓冲液,上样缓冲液的最终稀释倍数应不小于1X.用10 ul微量移液器分别将样品加入胶板的样品小槽内, 每加完一个样品,应更换一个加样头,以防污染,加样时勿碰坏样品孔周围的凝胶面.(注意:加样前要先记下加样的顺序). 4. 电泳:加样后的凝胶板立即通电进行电泳,电压60-100V,样品由负极(黑色)向正极(红色)方向移动.电压升高,琼脂糖凝胶的有效分离范围降低.当溴酚蓝移动 到距离胶板下沿约1cm处时,停止电泳. (5)电泳完毕后,取出凝胶,用含有0.5 ug/ml的溴化乙锭1×TAE溶液染色约20 min,再用清水漂洗10 min. (6)观察照相:在紫外灯下观察,DNA存在则显示出红色荧光条带,采用凝胶成像系统拍照保存 实验原理 闭合环状质粒、线性质粒和开环质粒DNA由于构形不同,在加溴化乙锭的琼脂糖凝胶电泳上呈现不同的迁移率,因而在紫外灯下观察,能区别闭合环状质粒DNA(cccDNA)、线性质粒DNA(L-DNA)和开环质粒DNA(ocDNA)。 实验材料和试剂 (一)实验样品 质粒pUC118 (二)试剂 1.l DNA/HindIII分子量标准 2.溴酚蓝指示剂点样缓冲液 0.2% 溴酚蓝 50% 蔗糖 3.1mg/ml溴化乙锭溶液 4.电泳缓冲液(TAE) 40 mmol/L Tris-乙酸 1 mol/L EDTA (配制方法:24.2克Tris碱,5.71ml冰乙酸,10ml 0.5mol/L EDTA(pH8.0),定容至5000ml) 5.0.7% 琼脂糖凝胶

相关文档
相关文档 最新文档