文档库 最新最全的文档下载
当前位置:文档库 › 自适应控制及其应用

自适应控制及其应用

自适应控制及其应用
自适应控制及其应用

自适应控制及其应用

摘要:本文介绍了自适应控制的基本思想、控制方法以及目前的应用情况。关键词:自适应控制控制律方法及应用

一、自适应控制基本思想

自适应控制的基本思想是将在线参数估计方法与某种控制系统设计方法结合起来,产生出具有自校正能力的控制律。它的控制对象是具有一定程度不确定性的系统。这里的“不确定性”是指描述被控对象及其环境的数学模型不是完全确定的,其中包含一些未知因素和随机因素。面对客观上存在的各种不确定性,自适应控制系统应能在其运行过程中,通过不断的测量系统的输入状态,输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,做出控制决策去更新控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似最优。

自适应控制所依赖的关于模型和扰动的先验知识比较少,需要在系统的运行过程中去不断提取有关模型的信息,使模型逐渐完善。随着生产过程的不断进行,通过在线辨识,系统模型会变得越来越准确,基于这种模型综合出来的控制作用也随之不断改进,在这个意义下控制系统具有一定的适应能力。一个理想的自适应控制系统应具有:适应环境变化和系统要求的能力;学习能力;在变化的环境中能逐渐形成所需的控制策略和控制参数序列,在内部参数失效时,又恢复的能力;良好的鲁棒性。

二、自适应控制方法

对大多实际控制过程而言,被控对象的参数在整个被控过程中不可能保持定常,对于这一类系统,如果采用常规的控制方法,不仅控制性能会变差,而且还会造成系统发散,而利用自适应技术却可以获得比较满意的控制效果。

自适应控制的基本思路是:依据自适应控制的“确定性等价原理”和“分离设计原则”,时变系统的控制器设计可以分为两步进行,首先假定被控对象的参数已知且定常,按给定的性能指标设计出相应的控制器,然后利用参数辨识在线估计出被控对象的参数值,并以参数估计值代替控制器中所用的真值对系统进行控制。

自适应控制由于具有对时变参数的良好的自适应能力,因而在时变时滞系统中得到了广泛的应用。

现已提出的控制方法包括:模型参考自适应预估控制、自适应预估最优控制、极点配置最优预报自校正PID控制器、大时滞系统的自抗扰控制、时滞并联自适应控制、零极点配置的自校正内模控制、动态矩阵控制,等等。自适应控制的典型控制框图如图所示。

自适应控制系统框图

自适应控制虽然对时变系统具有良好的控制效果,但是它也存在一定的缺陷,即它要求将对象描述为某些特定的数学模型类,自适应控制器的设计取决于这个数学模型,而实际上许多过程控制系统的数学模型难以获得,即所谓灰色系统,这将导致自适应控制算法应用困难。

三、自适应控制的应用

将自适应控制与随机控制结合在一起,就产生了一种更加有用的控制方法----随机自适应控制。

随机自适应控制器的潜在用途包括:

( 1)对时不变系统用自动的自校正取代控制律的人工调整;

( 2)提供增益表。此时控制器在若干操作点上被自动校正,把所得的控制律存储器来,以后可根据所达到的相应的操作条件来使用不同的增益。

(3)对时变系统的控制器进行连续调整。在确定性情形不存在而在随机情形

中存在的复杂性,是由于后者存在有未知扰动不能得知系统的“状态”。若将系统参数看作未知的常数状态,我们可以将具有测不到的状态即未知参数的随机系统的控制问题看作是非线性随机最优控制问题。

另外,从最优控制角度提出的自适应控制问题引出了一些有趣的认识,其中最重要的一个就是对偶控制的思想,即系统输出具有对偶作用:学习与调节。在学习方面,在输入上引入了可了解有关系统动态信息的扰动,从而减少了参数的不确定性。在调节方面,输入试图使输出保持在预定的值上。输入的这两种作用通常互相矛盾,因此控制器必须在学习(要求大扰动)和调节(只需要相对较小的信号)之间达到最优的折衷。作为一种极端,即忽略参数估计中的不确定性,则可以在设计控制规则时将被估参数当作真实系统的参数。这种方法通常称作必然性等价(Certainty Equivalence) [Bar - Shalom和Tse (1974) ] ,它把估计问题和控制问题分离开。

自适应控制系统的设计从概念上讲是简单的。一个很自然的方法是把特定的参数估计方法与任何一个控制律相结合。为了设计的目的把估计值就当作参数真值使用的这种方法称为必然性等价自适应控制。利用这种方法,我们可以提出许多方法,基于这些算法选择参数估计的方式及使用什么控制律。

如上所述,在必然性等价控制中,控制系统的设计是基于把最新的参数估计值作为真实的系统参数值。因此最优控制器的谨慎和学习两个方面被略去了。

将随机自适应控制应用于宏观经济问题已经成为经济学家解决宏观经济随机性问题较好的方法。将不可避免的不确定性与经济模型联系起来已经得到了长期的认同,而且已经花费了大量精力来提高模型的质量。

近来,许多工作被引入由随机控制技术为经济模型服务。这些方法对模型中不确定性的存在及对既定情况进行决定性变量修改做出了说明。然而对不确定性的存在的说明并没有解释长期随机控制问题的全部本质,因为不确定性的演变即学习的可能性被忽略。

事实上,人们已经找到了一种经济环境:从现在的国家收入和产量数据评估出来的多方程经济模型已经开始应用。因此,有望对技术的潜在适用性做出正确的推论。

自适应控制及其应用

姓名:XXX

学号:XXXX

班级:XXXXX

自适应控制综述

自适应控制文献综述 卢宏伟 (华中科技大学控制科学与工程系信息与技术研究所 M200971940) 摘要:文中对自适应控制系统的发展、系统类型、控制器类型以及国内外自适应控制在工业和非工业领域的应用研究现状进行了较系统的总结。自适应控制成为一个专门的研究课题已超过50年了,至今,自适应控制已在很多领域获得成功应用,证明了其有效性。但也有其局限性和缺点,导致其推广应用至今仍受到限制,结合神经网络、模糊控制是自适应控制今后发展的方向。 关键字:自适应控制鲁棒性自适应控制器 1.自适应控制的发展概况 自适应控制系统首先由Draper和Li 在1951年提出,他们介绍了一种能使性能特性不确定的内燃机达到最优性能的控制系统。而自适应这一专门名词是1954年由Tsien在《工程控制论》一书中提出的,其后,1955年Benner 和Drenick也提出一个控制系统具有“自适应”的概念。 自适应控制发展的重要标志是在1958午Whitaker“及共同事设计了一种自适应飞机飞行控制系统。该系统利用参考模型期望特性和实际飞行特性之间的偏差去修改控制器的参数,使飞行达到最理想的特性,这种系统称为模型参考自适应控制系统(MRAC系统)。此后,此类系统因英国皇家军事科学院的Parks利用李稚普诺夫(Lyapunov)稳定性理论和法国Landau利用Popov 的超稳定性理论等设计方法而得到很大的发展,使之成为—种最基本的自适应控制系统。1974年,为了避免出现输出量的微分信号,美国的Monopli 提出了一种增广误差信号法,因而使输入输出信号设汁的自适应控制系统更加可靠地应用与实际工程中。 1960年Li和Wan Der Velde提出的自适应控制系统,他的控制回路中用一个极限环使参数不确定性得到自动补偿,这样的系统成为自振荡的自适应控制系统。 Petrov等人在1963年介绍了一种自适应控制系统,它的控制数如有一个开关函数或继电器产生,并以与参数值有关的系统轨线不变性原理为基础来设计系统,这种系统称为变结构系统。 1960到1961年Bellman和Fel`dbaum分别在美国和苏联应用动态规划原理设计具有随机不确定性的控制系统时,发现作为辨识信号和实际信号的控制输入之间存在对偶特性,因而提出对偶控制。 Astrom和Wittenmark对发展另一类重要的自适应控制系统,即自校正调节器(STR)作出了重要的贡献。这种调节器用微处理机很容易实现。这一有创见的工作得到各国学者普遍的重视,并且把发展各种新型的STR和探索新的应用工作推向新的高潮,使得以STR方法设计的自适应控制系统在数量上迢迢领先。在这些发展中以英国的Clarker和Gawthrop在1976年提出的广义最小方差自校正控制器最受重视。它克服了自校正调节器不能用于非最小相位系统等缺点。为了既保持自校正调节器实现简单的优点,又有拜较好的

自适应控制原理及应用-陈明

中国矿业大学2015 级硕士研究生课程考试 题目自适应控制原理及应用 学生姓名陈明 学号TS15060128A3 所在院系信息与电气工程学院 任课教师郭西进 中国矿业大学研究生院培养管理处印制

目录 1 自适应控制概述 (1) 1.1 自适应控制系统的功能及特点 (1) 1.2自适应控制系统的分类 (1) 1.2.1前馈自适应控制 (1) 1.2.2反馈自适应控制 (1) 1.2.3 模型参考自适应控制(MRAC) (2) 1.2.4自校正控制 (2) 1.3 自适应控制系统的原理 (3) 1.4 自适应控制系统的主要理论问题 (3) 2 模型参考自适应控制 (4) 2.1 模型参考自适应控制的数学描述 (4) 2.2 采用Lyapunov稳定性理论的设计方法 (4) 3 自校正控制 (7) 4 自适应控制在电梯门机系统中的应用 (7) 4.1电梯门机控制系统的关键技术 (7) 4.1.1 加减速过程的S曲线 (8) 4.1.2 系统的自适应控制 (8) 4.3 系统的控制策略 (8) 4.3.1 加减速过程的S曲线 (8) 4.3.2 控制系统模型 (9) 4.4 门机开关的运行曲线 (10) 4.5 系统的实现 (11) 5 结论与展望 (12)

1 自适应控制概述 1.1 自适应控制系统的功能及特点 在日常生活中,所谓自适应是指生物能改变自己的习性以适应新的环境的一种特征。因此,直观地说,自适应控制器应当是这样一种控制器,它能修正自己的特性以适应对象和扰动的动态特性的变化。 自适应控制的特点:研究具有不确定性的对象或难以确知的对象;能消除系统结构扰动引起的系统误差;对数学模型的依赖很小,仅需要较少的验前知识;自适应控制是较为复杂的反馈控制。 1.2自适应控制系统的分类 1.2.1前馈自适应控制 借助于过程扰动信号的测量,通过自适应机构来改变控制器的状态,从而达到改变系统特性的目的。前馈自适应结构图如图1.1所示。 图1.1前馈自适应结构图 由图1.1可知,当扰动不可测时,前馈自适应控制系统的应用就会受到严重的限制。 1.2.2反馈自适应控制 除原有的反馈回路之外,反馈自适应控制系统中新增加的自适应机构形成了另一个

现代控制理论在电机中的应用

现代控制理论与电机控制 刘北 070301071 电气工程及其自动化0703班 现代控制理论在电机控制中的具体应用: 自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。这种控制方法现已较成熟,已经产品化,且产品质量较稳定。因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。伴随着推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,已取得阶段性的研究成果,并正在逐步实用化。 矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。但是,这种机械上的简化,导致了电机控制上的难度。为此,需要电机控制技术的进一步提高和创新。这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。 电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。 一、三相感应电动机的矢量控制 1、 定、转子磁动势矢量 三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。因此,磁场是机电能量转换的媒介,是非常重要的物理量。为此,对各种电动机都要了解磁场在电动机空间内的分布情况。感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。对于分布和短矩绕组,定义正向电流产生的空间磁动势波基波的轴线为该相绕组的轴线,亦即A f 、B f 、C f 是以ABC 为轴线沿圆周正弦分布的空间矢量,各自的幅值是变化的,取决于相电流的瞬时值,即有

模型参考自适应控制

10.自适应控制 严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。 所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。 10.1模型参考自适应控制 10.1.1模型参考自适应控制原理 模型参考自适应控制系统的基本结构与图10.1所示: 10.1模型参考自适应控制系统 它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。

在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。 在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。于是,系统的自适应机构再次发生作用调整控制器的参数,使得受控对象的输出再一次趋近于参考模型的输出(即与理想的希望输出相一致)。这就是参考模型自适应控制的基本工作原理。 模型参考自适应控制设计的核心问题是怎样决定和综合自适应律,有两类方法,一类为参数最优化方法,即利用优化方法寻找一组控制器的最优参数,使与系统有关的某个评价目标,如:J=? t o e 2(t)dt ,达到最小。另一类方法是基于稳 定性理论的方法,其基本思想是保证控制器参数自适应调节过程是稳定的。如基于Lyapunov 稳定性理论的设计方法和基于Popov 超稳定理论的方法。 系统设计举例 以下通过一个设计举例说明参数最优化设计方法的具体应用。 例10.1设一受控系统的开环传递函数为W a (s)=) 1(+s s k ,其中K 可变,要求 用一参考模型自适应控制使系统得到较好的输出。 解:对于该系统,我们选其控制器为PID 控制器,而PID 控制器的参数由自适应机构来调节,参考模型选性能综合指标良好的一个二阶系统: W m (d)= 1 414.11 2 ++s s 自适应津决定的评价函数取 minJ =?t e 2 (t)dt ,e(t)为参考模型输出与对象输出的误差。 由于评价函数不能写成PID 参数的解析函数形式,因此选用单纯形法做为寻优方法。(参见有关优化设计参考文献)。 在上述分析及考虑下,可将系统表示具体结构表示如下图10.2所示。

自适应控制的情况总结与仿真

先进控制技术大作业

自适应控制技术综述及仿真 1自适应控制系统综述 1.1自适应控制的发展背景 自适应控制器应当是这样一种控制器,它能够修正自己的特性以适应对象和扰动的动特性的变化。这种自适应控制方法应该做到:在系统运行中,依靠不断采集控制过程信息,确定被控对象的当前实际工作状态,优化性能准则,产生自适应控制规律,从而实时地调整控制器结构或参数,使系统始终自动地工作在最优或次最优的运行状态。自从50年代末期由美国麻省理工学院提出第一个自适应控制系统以来,先后出现过许多不同形式的自适应控制系统。模型参考自适应控制和自校正调节器是目前比较成熟的两类自适应控制系统 模型参考自适应控制系统发展的第一阶段(1958年~1966年)是基于局部参数最优化的设计方法。最初是使用性能指标极小化的方法设计MRAC,这个方法是由Whitaker等人于1958年在麻省理工学院首先提出来的,命名为MIT规则。接着Dressber,Price,Pearson等人也提出了不同的设计方法。这个方法的主要确点是不能确保所设计的自适应控制系统的全局渐进稳定;第二阶段(1966~1974年)是基于稳定性理论的设计方法。Butchart和Shachcloth、Parks、Phillipson等人首先提出用李亚普诺夫稳定性理论设计MRAC系统的方法。在选择最佳的李亚普诺夫函数时,Laudau采用了波波夫超稳定理论设计MRAC系统;第三阶段(1974-1980年)是理想情况(即满足假定条件)下MRAC系统趋于完善的过程。美国马萨诸塞大学的Monopoli提出一种增广误差信号法,当按雅可比稳定性理论设计自适应律时,利用这种方法就可以避免出现输出量的微分信号,而仅由系统的输入输出便可调整控制器参数;针对一个控制系统控制子系统S进行研究,通常现代控制理论把大型随机控制系统非线性微分方程组式简化成一个拥有已知的和具有规律变化性的系统数学模型。但在实际工程中,被控对象或过程的数学模型事先基本都难以仅采用简单的数学模型来确定,即使在某一特定条件下确定的数学模型,在条件改变了以后,其动态参数乃至于模型的结构仍然可能发生变化。为此,针对在大幅度简化后所形成的拥有已知的和预先规律变化性的系统数学模型,需要设计一种特殊的控制系统,它能够自动地补偿在模型阶次、参数和输入信号方面未知的变化,

2019年西南石油大学电气信息学院硕士研究生考试大纲-自适应控制及应用(含案例)

《自适应控制及应用(含案例)》课程教学大纲一、课程基本信息 中文名称:自适应控制及应用(含案例) 英文名称:Adaptive Control and Its Application 开课学院:电气信息学院课程编码:Z5210401 学分:2 总学时:32 适用专业:控制科学与工程 修读基础: (简述,修读本课程需要具备的基础) 主讲教师: 二、课程目的任务 1.课程地位作用(课程在实现培养目标中的地位作用) 本课程主要面向控制学科的硕士研究生,通过本课程的学习,学生可以深入理解自适应控制的基本概念与一般原理,并了解自适应控制的相关前沿动态与应用情况。 2.课程主要内容(简述:主要内容、重点、难点等) 讲述自适应控制的基本概念,自适应控制系统的构成原理以及自适应控制理论的应用及发展情况;系统讲授两类主要的自适应控制系统,介绍自适应控制系统稳定性,收敛性及鲁棒性的基本概念。 3.学生应达到的基本要求 熟练掌握模型参考自适应控制系统的基本原理、稳定性分析方法及其主要设计方法,掌握常规自校正调节器与自校正控制器的基本原理、主要设计方法与相关算法,并具备针对具体被控过程设计自适应控制系统的基本技能。 三、教学内容与学时分配 (含各时段学生课外学习要求) (一)理论教学 第一章绪论——自适应控制的基本概念(2学时) 1. 自适应控制的一般定义、分类、发展概况;(1学时) 理解自适应控制一般定义, 了解其一般分类、发展状况与应用领域。 2. 模型参考自适应控制与自校正控制的基本原理、典型结构及其数学描述。(1学时)重点掌握与理解模型参考自适应控制与自校正控制的基本概念、原理,以及二者的区别与联系。 作业要求: 理解自适应控制的相关概念。 第二章自适应控制理论基础(6学时) 1. 李亚普洛夫稳定性理论;(2学时) 了解李亚普洛夫稳定性概念,

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.wendangku.net/doc/e46206014.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

PID自适应控制学习与Matlab仿真

PID自适应控制学习与Matlab仿真 0 引言 在P ID控制中,一个关键的问题便是P I D参数整定。传统的方法是在获取对象数学模型的基础上,根据某一整定原则来确定PID参数。然而实际的工业过程往往难以用简单的一阶或二阶系统来描述,且由于噪声、负载扰动等因素的干扰,还可以引起对象模型参数的变化甚至模型结构的政变。这就要求在P I D 控制中。不仅PID参数的整定不依赖于对象数学模型,而PID参数能在线阐整,以满足实时控制的要求。 1 自适应控制的概念及分类 控制系统在设计和实现中普通存在着不确定性,主要表现在:①系统数学模型与实际系统间总是存在着差别,即所谓系统具有末建模的动态特性;②系统本身结构和参数是未知的或时变的;③作用在系统上的扰动往往是随机的,且不可量测;④系统运行中,控制对象的特性随时间或工作环境改变而变化,且变化规律往往难以事先知晓。 为了解决控制对象参数在大范围变化时,一般反馈控制、一般优控制和采用经典校正方法不能解决的控制问题。参照在日常生活中生物能够遏过自觉调整本身参数改变自己的习性,以适应新的环境特性。为此,提出自适应控制思想。 自适应控制的概念 所谓自适应控制是指对于控制对象的动态信息了解得不够充分对周围环境变化尚掌握不够明确的情况下控制系统对控制器的参数进行积极的自动调节。 自适应控制方法应该做到:在系统远行中,依靠不断采集控制过程信息,确定被控对象的当前实际工作状态,优化性能准则,产生自适应控制规律,从而实时地调整控制器结构或参数,使系统始终自动地工作在最优或次最优的运行状态下。 作为较完善的自适应控制应该具有以下三方面功能: (1)系统本身可以不断地检测和处理理信息,了解系统当前状态。 (2)进行性能准则优化,产生自适应校制规律。 (3)调整可调环节(控制器),使整个系统始终自动运行在最优或次最优工作状态。 自适应控制是现代控制的重要组成部分,它同一般反馈控制相比较有如下突出特点: (1) 一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象。 (2) 一般反馈控制具有强烈抗干扰能力,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象和在线修改参数的能力,因而能消除状态扰动引起的系统误差,而且还能消除系统结构扰动引起的系统误差。 (3) 一般反馈控制系统的设计必须事先掌握描述系统特性的数学模型及其环境变化状况,而自适应控制系统设计则很少依赖数学模型全部,仅需要较少的验前知识,但必须设计一套自适应算法,因而将更多地依靠计算机技术实现。 (4) 自适应控制是更复杂的反馈控制,它在一般反调控制的基础上增加了自适应控制机构或辨识器,还附加一个可调系统。 自适应控制系统的基本结构与分类 通常,自适应控制系统的基本结构有两种形式,即前馈自适应控制和反馈自适应控制。 1.2.1 前馈自适应控制结构 前馈自适应控制亦称开环自适应控制,它借助对作用于过程信号的测量。并通过自适应机构按照这些测量信号改变控制器的状态,从而达到改变系统特性的目的。没有“内”闭

现代控制理论及应用

现代控制理论及应用李嗣福教授、博士生导师 中国科学技术大学自动化系

一、现代控制理论及应用发展简介 1. 控制理论及应用发展概况 2. 自动控制系统和自动控制理论 以单容水槽水位控制和电加热器温度控制为例说明什么是自动控制、控制律(或控制策略)、自动控制系统以及自动控制系统组成结构和自动控制理论所研究的内容。 2.1自动控制:利用自动化仪表实现人的预期控制目标。 2.2自动控制系统及其组成结构 自动控制系统:指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。 自动控制系统组成结构:是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式。 控制系统性能指标:定性的有稳(定性)、准(确性)、快(速性)。 控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。 2.3自动控制系统类型主要有:按系统参数输入信号形式分:定值控制系统或调节系统和随动系统。 按系统结构形式分:前馈控制系统(即开环系统)和反馈控制系统以及复合控制系统; 按系统中被控对象的控制输入量数目和被控输出量数目分:单变量控制系统和多变量控制系统; 按被控对象特性分:线性控制系统和非线性控制系统; 按系统中的信号形式分:模拟(或时间连续)控制系统、数字(或时间离散)控制系统以及混合控制系统。 2.4自动控制理论:研究自动控制系统分析与综合设计的理论和方法。 3. 古典(传统)控制理论: 采用数学变换方法(即拉普拉斯变换和富里叶变换)按照系统输出量

与输入量之间的数学关系(即系统外部特性)研究控制系统分析和综合设计问题。具体方法有:根轨迹法;频率响应法。 主要特点:理论方法的物理概念清晰,易于理解;设计出控制律一般较简单,易于仪表实现 主要缺点: ① 设计需要凭经验试凑,设计结果与设计经验关系很大; ② 系统分析和设计只着眼于系统外部特性; ③一般只能处理单变量系统分析和设计问题,而不能处理复杂的多变量系统分析和设计。 4. 现代控制理论及其主要内容 现代控制理论:狭义的是指60年代发展起来的采用状态空间方法研究实现最优控制目标的控制系统综合设计理论。广义的是指60年代以来发展起来的所有新的控制理论与方法。 控制系统状态空间设计理论: (1) 用一阶微方程组表征系统动态特性,一般形式(连续系统)为 )()()(t BU t AX t X +=——状态方程(连续的一阶微分方程组) )()(t CX t Y =——输出方程 离散系统: )()()1(t BU t AX k X +=+——状态方程(离散的一阶差分方程组) )()(k CX k Y = k ——为大于等于零整数,表示离散时间序号; ?????? ??? ???=)() ()()(21k x k x k x k X n ——状态向量,其中)(k x i ,()n i ,,1 =为状态变量; ????? ???? ???=)() ()()(21k u k u k u k U m ——输入向量,其中)(k u i , ()m i ,,1 =为各路输入;

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

3.有电路如图1-28所示。以电压U(t)为输入量,求以电感中的电流和电 容上的电压作为状态变量的状态方程,和以电阻 R 2上的电压作为输出 量的输出方程。 4.建立图P12所示系统的状态空间表达式。 M 2 1 f(t) 5.两输入u i ,U 2,两输出y i ,y 的系统,其模拟结构图如图 1-30所示, 练习题 ,输出为,试自选状态变量并列写出其状 2. 有电路如图所示,设输入为 态空间表达式。 C ri _ l- ------- s R 2 U i U ci L u A ------ — 2 R i

试求其状态空间表达式和传递函数阵。 6.系统的结构如图所示。以图中所标记的 x 1、x 2、x 3作为状态变量,推 导其状态空间表达式。 其中,u 、y 分别为系统的输入、 输出,1、 2 试求图中所示的电网络中,以电感 L i 、L 2上的支电流x i 、X 2作为状态 变量的状态空间表达式。这里 u 是恒流源的电流值,输出 y 是R 3上的 支路电压。 8. 已知系统的微分方程 y y 4y 5y 3u ,试列写出状态空间表达式。 9. 已知系统的微分方程 2y 3y u u , 试列写出状态空间表达式。 10. 已知系统的微分方程 y 2y 3y 5y 5u 7u ,试列写出状态空间 表达式。 7. 3均为标量。

11. 系统的动态特性由下列微分方程描述 y 5 y 7 y 3y u 3u 2u 列写其相应的状态空间表达式,并画出相应的模拟结构图。 12. 已知系统传递函数 W(s) 坐 卫 2 ,试求出系统的约旦标准型 s(s 2)(s 3) 的实现,并画出相应的模拟结构图 13. 给定下列状态空间表达式 X 1 0 1 0 X 1 0 X 2 2 3 0 X 2 1 u X 3 1 1 3 X 3 2 X 1 y 0 0 1 x 2 X 3 (1)画出其模拟结构图;(2)求系统的传递函数 14. 已知下列传递函数,试用直接分解法建立其状态空间表达式,并画出状 态变量图。 15. 列写图所示系统的状态空间表达式。 16. 求下列矩阵的特征矢量 0 1 0 A 3 0 2 12 7 6 17. 将下列状态空间表达式化成约旦标准型(并联分解) (1)g(s ) s 3 s 1 3 2 s 6s 11s 6 ⑵ g(s ) s 2 2s 3 3 c 2 s 2s 3s 1

自适应控制的发展史

自适应控制的发展史 所谓“自适应”一般是指系统按照环境的变化调整其自身使得其行为在新的或者已经改变了的环境下达到最好或者至少是容许的特性和功能。 自适应控制工作的优劣最终要由实际应用情况来评定,我们从应用角度出发,分三个阶段回顾自适应控制的发展过程。 第一个阶段——应用探索阶段 从5O年代初开始到7O年代初,这是自适应控制的理论和方法产生兴起、应用探索的阶段。在这个阶段,理论和方法尚不成熟,在应用上又遇到失败和挫折,即1957年利用MIT调节规律的美国某试验型飞行失事,对自适应控制产生了怀疑、动摇。相当一部分研究人员退出这个领域。然而也有一批有识志士不畏困难,在理论和应用方面坚持探索研究,满怀希望。 第二个阶段——应用开始阶段 随着控制理论和计算机技术的发展,从7O年代初开始到8O年代初,自适应控制有了突破性进展,1973年Astrom的自校正调节在造纸厂的成功应用。1974年吉尔巴特和温斯顿(Gilbart and Winston)在24in的光学跟踪望远镜中利用模型参考自适应控制把跟踪精度提高了五倍以上。尽管当时应用项目不多,但确实证明自适应控制是有效的。人们对自适应控制的兴趣又增加了,到8O年代开始自适应控制的应用,根据帕克斯等人的文章统计至少有58项,具有代表性意义的有6项。 第三个阶段——应用扩展阶段 从7O年代末8O年代初到现在,自适应控制技术进一步推广应用。在这个阶段有几个特点: 1)1981年出现了Electromax-v自适应调节器,1983年在美国出现了商业性自适应控制软件包,向产品过渡。从8O年代初开始到1988年5月世界已安装7万个自适应回路。 2)更实用性的新自适应方法和算法大量出现,如广义预测自适应控制,我国的全系数自适应控制方法、组合自校正器、自适应PID等。 3)促进了理论与实际相结合的研究,特别是Rohrs等提出具有未建模动态时自适应控制不稳定的问题,引起了人们的极大关注,从而促进了鲁棒自适应控制理论和应用的研究,并取得了很大进展。 4)应用范围由少数几个国家扩展到更多的国家,由个别项目扩展多个项目,由少数领域扩展到多个领域。 自适应控制系统分为:前馈自适应控制、反馈自适应控制、模型参考自适应控制(MRAC)和自校正控制。 1.自校正控制系统的发展史 自校正控制系统的设计方法大体上分为三个阶段: 第一阶段(1958年~1975年):基于最小方差理论进行设计

自适应控制的实际应用

自适应控制器的实际应用 一、概述 近20年来,系统辨识和参数估计理论获得了迅速的发展,已经成为自动控制理论的一个十分活跃而又重要的分支。这是由于系统辨识和参数估计是建立被控系统数学模型的重要途径之一,许多问题在做出决策之前都需要寻找描述该问题的数学模型,因而,模型化方法是进行系统分析、设计、预测、控制、决策的前提和基础,形成了与辨识技术紧密结合的综合新技术--如自适应控制、自适应预报、自适应滤波、自适应信号处理等。 随着控制理论的发展与应用面的扩大,系统辨识出自身发展之外,与其他技术的联系也更加紧密,如与模糊方法的结合形成的模糊自适应;与神经网络技术相结合形成的神经网络自适应;与人工智能技术相结合形成的智能自适应技术;与故障诊断技术相结合形成的自适应故障诊断技术等。 为了加深对系统辨识的认识,我从实际的角度,选取了四个不同类型的自适应技术,进行了解和分析,力求做到学以致用。 二、模糊自适应控制器的实际应用 模糊自适应控制理论是模糊控制理论与自适应控制理论相互交叉、相互渗透而形成的一个研究领域。模糊控制理论的特点是运用模糊集合理论,总体考虑系统因素,协调控制作用的一种控制方法。它的方

法是用模糊控制命题表示一组控制规律,将指标函数与控制量联系起来,经模糊推理决定控制量,而不管系统本身的内在因素。因而模糊控制是处理控制系统不确定性的一种有效方法。 这里我选用的是水温的模糊自适应控制器的设计。 模糊控制器的设计:1.确定模糊控制器的输入变量和输出变量:温度误差和温度误差的变化量作为输入量,以提前打开电加热的时间为输出变量; 2.确定模糊集的隶属函数和模糊控制器控制规则:a.输入和输出变量的词集:①中文:{负大,负中,负小,零,正小,正中,正大} 英文:{NB,NM,NS,Z,PS,PM,PB};b.定义各模糊变量的模糊 子:F(x)=exp[-( σa x-)2](其中a为正态形隶属函数的中心,参数σ的大小直接影响隶属函数的形状,而隶属函数的开关不同会导致不同的控制特性);c:建立模糊控制器的控制规则: 3.确立模糊化和非模糊化(又称清晰化)的方法:如果精确量x的实

浅谈自动控制理论在人工智能中的应用

龙源期刊网 https://www.wendangku.net/doc/e46206014.html, 浅谈自动控制理论在人工智能中的应用 作者:焦建霖 来源:《现代营销·理论》2020年第01期 摘要:近来,自动控制理论在人工智能工程实践中迅速发展,本文综合分析了自动控制理论和人工智能的概念、研究方法、发展方向及二者间的关系,进一步举例分析了自动控制理论在人工智能的应用,如软件流程自动化技术(RPA)和机器人行为控制技术。通过上述分析能够理清二者间各自的发展脉络及相互交叉,从而有助于从事控制理论和人工智能的科研人员进行参考和研究,进一步发展交叉学科的应用。 关键词:自动控制理论; 人工智能; 软件流程自动化; 机器人行为控制技术; RPA 随着人工智能的快速发展,自动控制理论在人工智能中的应用日趋广泛,逐渐形成了一门自动控制和人工智能交叉的智能控制学科。无论是神经网络的发展,还是机器人的开发应用都需要自动控制理论的理论基础。因此本文尝试对自动控制理论和人工智能的结合进行总结,从而牵引出自动控制理论在人工智能中的应用。 一、自动控制理论简述 1.自动控制概念 自动控制理论是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。自动控制理论是以反馈控制为基础的自动调节理论,使受控制的对象按照预期的规律进行变化。 为了实现多样化的控制目的,首先将被控对象和控制装置有机地结合起来形成一个整体,这个整体称为自动控制系统。在这个系统中,输出量是要求被严格控制的物理量,一般要求它保持在一定误差限内,如角速度、迎角;而控制装置是对输出量施加控制的机构,可以采用多种方式、不同原理进行控制。 2.自动控制理论发展历程 随着生产力的不断进步,自动控制技术也在不断发展,尤其是自动控制在人工智能中的应用,更是反向推动着自动控制理论的更新换代。自动控制理论的发展可概括为以下三段: (1)经典控制理论:主要研究线性定常系统,利用线性常微分方程来分析系统稳定性,一般只研究系统的外部特性即单输入单输出特性。具有代表性的研究方法是频率分析法和根轨迹法;

自动控制理论的发展及其应用综述

自动控制理论的发展及其应用综述 黄佳彬 3120101224 20世纪40年代,控制论这门学科开始发展,其标志为维纳于1948年出版了自动控制学科史上的名著《控制论,或动物和机器的控制和通信》(Cybernetics,or control and communication in the animal and machine)。控制论思想的提出为现代科学研究提供了新的思想和方法,同时书中的一些新颖的思想和观点吸引了无数学者,令其在自己研究的领域引进控制论。随着研究队伍的庞大,控制论形成了多个分支,其中主要的几个分支有生物控制论,工程控制论,军事控制论,社会、经济控制论,自然控制论。这里我们主要对工程控制论进行研究。 1.自动控制理论的发展 工程控制论的概念最早由钱学森引入,当时有两种控制理论思想,一种基于时间域微分方程,另一种基于系统的频率特性。这两种思想即为经典控制理论,主要研究的是单输入-单输出的控制系统,同时利用分析法与实验验证法这两种方法对某个控制系统进行数学建模,由此可以获得系统各元部件之间的信号传递关系的形象表示。 由于经典控制理论的建立基于传递函数和频率特性,是对系统的外部描述。同时经典控制理论主要研究单输入单输出系统,无法解决现实工程应用中多输入多输出系统的问题,而且经典控制理论只对线性时不变系统进行讨论,存在不少的局限性,由此,现代控制理论逐渐发展起来。 现代控制理论是从线性代数的理论研究上得来的,本质是“时域法”,即基于状态空间模型在时域对系统进行分析和设计,并且引入“状态”这一概念,用“状态变量”和“状态方程”描述系统,以此来反应系统的内在本质和特性。现代控制理论研究的内容主要有三方面:多变量线性系统理论、最优控制理论以及最优估计与系统辨识理论,这些研究从理论上解决了许多复杂的系统控制问题,但是随着发展,实际生产系统的规模越来越大,控制对象、控制器、控制任务和目的也更为复杂,导致现代控制理论的成果并未有在实际中很好的应用。 智能控制的概念最早是在20世纪70年代由傅京孙教授提出,这一概念最早是为解决经典控制理论和现代控制理论在实际应用上面临的问题而寻求的新出路,也是人工智能与自动控制交叉的产物。1977年,美国学者Saridis在原本的

自适应控制原理及应用-陈明..

中国矿业大学 2015 级硕士研究生课程考试 题目自适应控制原理及应用 学生姓名陈明 学号 TSA3 所在院系信息与电气工程学院 任课教师郭西进 中国矿业大学研究生院培养管理处印制

目录 1 自适应控制概述 0 自适应控制系统的功能及特点 0 自适应控制系统的分类 0 前馈自适应控制 0 反馈自适应控制 0 模型参考自适应控制(MRAC) (1) 自校正控制 (1) 自适应控制系统的原理 (2) 自适应控制系统的主要理论问题 (2) 2 模型参考自适应控制 (3) 模型参考自适应控制的数学描述 (3) 采用Lyapunov稳定性理论的设计方法 (3) 3 自校正控制 (6) 4 自适应控制在电梯门机系统中的应用 (6) 电梯门机控制系统的关键技术 (6) 加减速过程的S曲线 (7) 系统的自适应控制 (7) 系统的控制策略 (7) 加减速过程的S曲线 (7) 控制系统模型 (8) 门机开关的运行曲线 (9) 系统的实现 (10) 5 结论与展望 (11)

1 自适应控制概述 自适应控制系统的功能及特点 在日常生活中,所谓自适应是指生物能改变自己的习性以适应新的环境的一种特征。因此,直观地说,自适应控制器应当是这样一种控制器,它能修正自己的特性以适应对象和扰动的动态特性的变化。 自适应控制的特点:研究具有不确定性的对象或难以确知的对象;能消除系统结构扰动引起的系统误差;对数学模型的依赖很小,仅需要较少的验前知识;自适应控制是较为复杂的反馈控制。 自适应控制系统的分类 前馈自适应控制 借助于过程扰动信号的测量,通过自适应机构来改变控制器的状态,从而达到改变系统特性的目的。前馈自适应结构图如图所示。 图前馈自适应结构图 由图可知,当扰动不可测时,前馈自适应控制系统的应用就会受到严重的限制。反馈自适应控制 除原有的反馈回路之外,反馈自适应控制系统中新增加的自适应机构形成了另一个

自适应控制大作业

《自适应控制》大作业 学院:电气与自动化工程学院姓名: 学号: 20 专业:控制科学与工程

使用自适应控制的数控加工状态监测 摘要:在这项工作中,已经开发了一种用于计算机数控(CNC)车削的自适应控制约束系 统基于反馈控制和自适应控制/自整定控制。在自适应控制系统中,来自在线的信号必须进行测量,并将其反馈给机床控制器,以调整切削参数以进行加工一旦达到某个阈值,就可以停止。本工作的重点是开发可靠的自适应控制系统,控制系统的目标是控制切削参数,保持位移和刀具磨损。使用Matlab 仿真,数字适应的实验切割参数已经确定了自适应控制状态监测系统的效率在不同的加工条件下,在不同的加工过程中被重新定义。这项工作描述了自适应技术控制约束(ACC)加工系统的现状。使用150 BHN硬度的AISI4140钢作为工件材料,硬质合金刀片在整个实验中都被用作刀具材料。通过开发的方法,可以预测,如果在相同条件下测量进给和表面粗糙度,工具条件相当准确。研究了由于振动引起的位移、切割力、磨损和表面粗糙度之间的关系。 关键词:自适应控制,状态监测,基于模型的控制系统和角度磨损,表面粗糙度,位移。 1引言 状态监测在工业中越来越受欢迎,因为它在检测潜在故障方面起了很好的作用。一般情况监测技术的使用提高工厂的生产可用性并减少停机时间成本。可靠的自适应控制系统可以防止机器的停机或避免不必要的条件,例如震动,刀具磨损过大,刀具使用寿命。在金属切割运动中,工件的表面将考虑切割参数、切割力等等。但振动的影响较少受到关注。Prasad 等人提出了一个监控系统,由快速傅里叶组成变换预处理器,用于从线上生成特征声光发射(AOE)信号来开发数据库作出适当的决定。快速傅里叶变换(FFT)可以将AOE信号分解成不同频带在时域。这种方法也很广泛用于金属切割,检测过程变化由于振动、工具磨损等而发生位移。 现代计算机数控(CNC)系统的缺点是加工参数,如进给速度,速度和切割深度,都被线性编程。因此,许多数控系统在远离操作条件的运行条件下运是无法正常工作的。为保证加工产品的质量、降低加工成本并增加加工-效率,需要根据现代状况监测策略给定时间调整加工参数实时满足任何最佳加工条件。 由于潜在的经济利益,与自动化加工有关的CNC加工过程的控制目前受到重视。控制技术已被要求以某种形式的适应参数用于重新加工传统地加工过程。这个问题是自适应控制。一个自适应控制系统由Stute和Goetz引入切割过程的。最常用的系统是自适应控制(MRAC)和自转调节(STR)。Tomizuka等人提出一种自适应模型参考自适应控制器方法。这些控制器被模拟,评估和物理实现。对于过程中发生在没有人的干扰的情况下,需要对加工进行有用的监控。大多数通过测量切割力来实现,因为它们包含有关该过程的更多信息和刀具条件。装配CNC系统具有现代适应性系统可以注意到,最常用的自适应控制(AC)系统是约束控制(ACC)和约束在ACC系统中实施的是切削力,摆放由于振动,主轴转角,电流和切割扭矩。操作参数通常为进给速度,切割深度和主轴转速。所以我们将结合实施在线自适应控制通过线性优化。在我们的交流系统中,进料速率尽管有变异,在线调整切割深度以保持不变位移和切割条件。

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异 建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论非线性系统的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。 最优控制理论最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。在最优控制理论中,用于综合最优控制系统的主要

相关文档