文档库 最新最全的文档下载
当前位置:文档库 › 电磁搅拌技术在连铸中的应用

电磁搅拌技术在连铸中的应用

电磁搅拌技术在连铸中的应用
电磁搅拌技术在连铸中的应用

电磁搅拌技术在连铸中的应用

近年来,连铸坯的质量越来越受到重视,因而围绕提高连铸坯质量的研究工作也取得了很大的进展。电磁搅拌技术是电磁流体力学在钢铁工业中最成功的应用之一。通过定量认识电磁场在多层介质中的传递,控制连铸过程中钢水的流动、传热和凝固,进而降低钢水的过热度、去除夹杂从而扩大等轴晶区,减少成分偏析,减轻中心疏松和中心缩孔。几十年来,国内外学者对电磁搅拌技术进行了大量的理论及实验研究,并应用于工业生产。电磁搅拌技术已经成为连铸过程中改善铸坯质量的最重要和最有效的手段之一。

1国内外电磁搅拌技术的发展概况

磁流体力学是电磁学,流体力学以及热力学相互交叉的学科,简称MHD(magnetohydrodynamics),主要研究电磁场作用下,导电金属流体的运动规律。在磁场里,导体的运动产生电动势,从而产生感应电流,导体本身也产生磁场。液态金属作为载流导体,在外加磁场的作用下产生了电磁力,这种电磁力的作用促使载流液体流动,同时伴随着三种基本的物理现象——电磁热,电磁搅拌,电磁压力。这三种现象在材料的冶炼、成形、凝固等工艺中已广泛应用。

连铸钢液电磁搅拌技术已经历几十年的试验研究和发展的过程。早在上世纪50年代,就由在德国Schorndorf和Huckingen半工业连铸机上。进行了首例连续铸钢电磁搅拌的试验。60年代,在奥地利Kapfenberg厂的Boehler连铸机上用于浇铸合金钢。60年代末一些工作者还进行了结晶器电磁搅拌和二冷区电磁搅拌的实验。1973年法国的一家工厂率先在其连铸机上安装了电磁搅拌器并投入工业应用,从而奠定了连铸电磁搅拌技术工业应用的基础。1977年,法国的Rotelec公司开发了小方坯和大方坯结晶器电磁搅拌器并以Magnetogyr-Process 注册商标,将其商品化。1979年,法国钢研院又在德国Dunkirk厂板坯连铸机上采用了线性搅拌技术,取得良好效果。进入80年代后,电磁搅拌技术发展更快,特别是日本,发展更为迅速。在神户钢铁公司的加古川厂,开发应用了线性马达型电磁搅拌器来控制结晶器内钢水流动的工艺。日本住友金属工业公司也相继提出并采用了静磁场通电型电磁搅拌技术,用作板坯二冷区的电磁搅拌。日本川崎公司也和瑞典ASEA公司共同开发了新的搅拌技术,并在川崎公司水岛钢铁厂的5号板坯连铸机上进行了实验,收到了良好的冶金效果。

国内连铸电磁搅拌技术的应用比国外相对较晚。自1986年武钢公司从联邦德国引进ORC.1600型电磁搅拌装置(EMS)安装在二炼钢三号铸机的二冷段,用于改善连铸板坯的宏观组织,增加等轴晶率,减少铸坯中心偏析疏松及铸坯内裂等缺陷,以期实现改善钢坯质量,扩大浇铸品种的目的才开始了我国电磁搅拌技术的工业应用。最初只在少数钢铁厂采用电磁搅拌技术如:重庆三厂、洛钢、

涟源钢厂、天津二钢、成都无缝钢管厂及首钢试验厂进行了电磁搅拌的工业性试验,主要应用在二冷区。

到了80年代后期,电磁搅拌技术受到高度重视,并被列为国家重点科技攻关项目,使得国内的电磁搅拌技术有了重大突破和发展。到1995年底,我国许多连铸机上采用了这项技术,但是大多为国外引进,仅重庆特钢、长城特钢、大冶特钢、武钢、宝钢、首钢、成都无缝及涟源钢厂等采用了少量国产电磁搅拌装置。直到1996年5月,武钢首次在大型厚板连铸机上成功的采用了国内自行研制的二冷区电磁搅拌成套装置。到目前为止,电磁搅拌技术已基本实现国产化。许多科研机构和高等学校也依据自身特点在电磁搅拌的基础理论和应用等方面进行了大量的研究工作,如钢铁研究总院、宝钢、中科院力学所、东北大学、北京科技大学等。但是由于国内的研究起步较晚,对电磁搅拌的基础理论和应用研究还不够充分,仍需要作更深入的研究。

随着人们对电磁搅拌技术研究的深入,电磁搅拌技术的应用将越来越广泛,其发展趋势可概括为以下几点:(1)组合式电磁搅拌方法的进一步发展及参数的确定控制;(2)数值模拟仍然是发展电磁搅拌技术的强有力的工具,在这方面需要适应性较广的、更为精确的数学模型,因此磁流体动力学的研究将会具有更重要的地位;(3)随着电磁搅拌所应用的合金种类的日益广泛及电磁搅拌凝固理论的发展,也将为金属凝固基础理论的研究开辟一个崭新的局面。

2连铸电磁搅拌技术的工作原理

电磁搅拌通过电磁感应产生的电磁力使液态金属产生流动,增大其对流和热交换,导致凝固前沿的温度梯度减小。柱状晶生长受到抑制,并能使先期生长的柱状晶破碎,与钢液混合在一起,成为后期等轴晶凝固的核心,从而促进了等轴晶的生长。

电磁搅拌按工作磁场形式大致上可分为两种:旋转磁场式电磁搅拌和直线移动磁场式电磁搅拌(又叫线性搅拌),前者一般用于小方坯和大方坯连铸等过程,而后者主要用于板坯连铸。旋转磁场式电磁搅拌的工作原理类似于交流电动机。通三相交流电(有时采用两相供电),在磁极问产生旋转磁场,旋转磁场在铸坯钢液内产生感应电流,进而在钢液内产生旋转力矩,使钢液产生旋转运动。

线性电磁搅拌其工作方式与直线电动机类似。即定子铁芯上的绕组通交流电,在磁极间激发行波磁场,行波磁场在铸坯钢液内产生感应电流,从而在铸坯内产生电磁力矩,形成线性搅拌。一般地,线性电磁搅拌的行波磁场方向平行于铸坯的宽面方向。

3连铸电磁搅拌技术的类型

磁搅拌按安装位置进行分类,可以分为:结晶器电磁搅拌、二冷区电磁搅拌、

凝固末端电磁搅拌。

结晶器电磁搅拌安装在结晶器水套内部或外部(内置式或外置式结晶器电磁搅拌器),其作用效果是:允许铸机提高拉坯速度,改善铸坯表面质量,清洁凝固壳表层气泡和夹杂,有利于降低钢水的过热度,提高钢水纯净度,改善铸坯内部组织结构,增加等轴晶率等。

二冷区电磁搅拌,这种形式的搅拌器安装在二冷区。主要效果是:消除柱状枝晶间的搭桥,减轻或消除中心疏松和中心缩孔,扩大等轴晶区,减轻中心偏析和内弧夹杂物的集聚。目前的生产实践和研究表明,只有将二冷区搅拌与凝固末端搅拌结合起来,才能实现最佳效果。

凝固末端电磁搅拌,这种形式是搅拌器安装在钢液凝固末端(糊状区)。此时,钢水成糊状,凝固壳较厚,一般采用低频电源。其主要效果是:降低中心偏析,减轻或消除中心疏松和中心缩孔等。

一般地讲,在结晶器处或其附近搅拌钢液时,能获得表面质量好的铸坯;但若要改善铸坯的内部质量,就必须在二冷区设置电磁搅拌器。此外,还应确定在多大范围内搅拌钢液,然后才研究任何具体设置搅拌器结构。如果要保证铸坯的表面质量和内部质量都良好,并且避免白亮带形成,就要求在结晶器处、二冷区甚至在凝固终点处均安装电磁搅拌器,即实行所谓多段搅拌或联合搅拌。

图1 连铸电磁搅拌示意图

4连铸电磁搅拌的冶金效果

(1)增加等轴晶区改善铸坯的机械性能

等轴晶与柱状晶相比,等轴晶的晶粒在长大时彼此交叉,枝权间搭接牢固,

裂纹不易扩展,各晶粒的取项各不相同,没有方向性,避免了小钢锭凝固组织的形成,得到致密的钢坯组织。另外,由于柱状晶在加热时表现为各向异性,等轴晶表现为各向同性,近年来的研究发现晶界对材料的性能有着很大的影响,在晶界处存在的偏析和非金属夹杂物往往是产生断裂的根源。因此应减少柱状晶,增大等轴晶率,以提高铸坯的机械加工性能,可使钢的抗拉强度得到提高。但对塑性的影响却是晶粒细化和二次臂间距增大两方面共同作用的结果。当电磁搅拌强度作用在一定范围内时,由于相界变得圆滑,减低应力集中程度可使塑性提高。铸坯中影响等轴晶比率的因素有:钢液的浇注温度、浇注速度、钢锭的冷却能力及融化温度。实质是取决于液相穴内的温度梯度和形核率。电磁搅拌降低了温度梯度,提高了形核率,因此提高了等轴晶率。

(2)减少非金属夹杂物的皮下聚集改善铸坯的表面及皮下质量

由于熔钢流动对凝固前沿的冲刷和洗涤作用,有效的防止了凝固组织中气孔的出现和初凝壳Al2O3等非金属夹杂物的捕捉,使铸坯表层l0mm以内的夹杂物含量大幅度降低。另外,钢液的流动也可以使非金属夹杂物容易上浮到弯月面而从皮下去除,减少精整量,改善了铸坯的表面及皮下质量。搅拌过程中使钢液裸露,不仅提高其收得率,也利于快速真空脱气。电磁搅拌在排除钢液非金属夹杂物方面,有其他搅拌根本无法替代的独特功能;电磁场能对导电流体(钢液)中的不导电物质(非金属夹杂物)产生挤压力而使其分离,可加快夹杂物的上浮速度,这一功能对生产洁净钢有着十分重要的意义。电磁搅拌是生产洁净钢理想的搅拌方式。

图2 M-EMS的冶金机理和效果示意图

(3)降低中心偏析改善宏观偏析提高铸坯内部质量

严重的中心偏析对材质有显著的影响,在轧钢时易产生夹层,降低钢的机械

性能。中心偏析形成机理有以下几种:(a)小钢锭凝固理论认为,当浇注碳的质量分数超过0.45%的钢时,即使是中等过热度的钢液也有柱状晶强烈增长的趋势,易形成枝晶“搭桥”和“小钢锭”结构而产生中心疏松和中心偏析;(b)溶质元素析出与富集理论认为,铸坯从外表面到中心结晶过程中,由于钢中一些溶质元素(如碳、锰、硼、硫、磷),在固液边界上溶解并平衡移动,从柱状晶析出的溶质元素排到尚未凝固的金属液中,随结晶的继续进行,把富集的溶质推向最后凝固中心,即产生铸坯的中心偏析;(c)铸坯芯部空穴抽吸理论认为,铸坯在结晶末期,由于液相向固相的转变,伴随着体积收缩或因铸坯鼓肚而产生一定的空穴,使得富集了溶质元素的钢液被吸入芯部,造成中心偏析。等轴晶率是影响中心偏析的一个重要因素,电磁搅拌的作用降低了钢液的温度梯度,提高了等轴晶的比率,同时搅拌使液相穴内的溶质分布更加均匀,中心偏析会大大改善。

5连铸中应用电磁搅拌技术时面临的问题

(1)电磁搅拌过程中的连铸工艺参数未进行合理的优化:钢液流速是控制铸坯质量的重要参数,而配合电磁搅拌工艺的连铸工艺参数的确定也直接影响到电磁搅拌效果,如二冷配水制度等。

(2)电磁搅拌器的结构布置和电磁搅拌参数未进行充分的优化:由于电磁搅拌器内有效电磁搅拌力的大小取决于磁感应强度的分布情况。而电磁搅拌器的磁轭布置,线圈的绕线方式都会影响到电磁搅拌器内的磁场分布。对馈电频率,馈电电流强度进行优化可以有效的提高电磁搅拌效果。

(3)功率问题:由于连铸电磁搅拌器采用低频率高强度的三相交流电流馈电,馈电线圈上的电能损失和搅拌器内由于感应涡电流而造成的铁磁损耗严重。强迫钢水运动的能量源是电能转化的磁场能,磁场范围中如果有导电材料,将不同程度地形成磁屏蔽,造成由电能转化成的有效搅拌磁场能效率大大降低,所以需要对电磁搅拌器内的铁损进行分析。另外,由于电磁搅拌器工艺复杂,安装不配套,气隙大,电磁搅拌器内的磁漏严重,电磁场衰减严重。

(4)搅拌器的冷却问题:电磁搅拌线圈下作时,将产生很大的电流,会引起线圈发热,若没有保护措施,必然将线圈烧坏。一般都是给线圈通水冷却的方式,可以将线圈浸漆绝缘后,浸入循环冷却水中,但这种方式线圈的使用寿命短,一般最多使用两年。线圈采用中空铜管绕制而成,中间通循环冷却水冷却,但这种方式对冷却水的水质要求较高,必须采用水处理技术保证在线圈中循环流动的水不至结垢。还要考虑生产净水不合理配水引起热交换器的冷却水量不足等问题。

6影响连铸电磁搅拌效果的因素及发展方向

电磁搅拌系统的选择决定于电磁搅拌效果的影响因素。一般来说,在连铸机不同的位置采用不同类型的搅拌器,对改善铸坯质量都会有不同的效果。在实际

应用中各种电磁搅拌方式都存在最佳冶金效果的问题。影响电磁搅拌效果的主要因素:(1)钢种:不同的钢种为达到理想的搅拌效果,最佳搅拌强度往往不同。比如,合金钢含有较多的合金元素。为得到相同的搅拌钢水流速,搅拌不锈钢的磁感强度比碳钢要高一些;不锈钢的柱状晶比碳钢发达,折断不锈钢的枝晶就需要较大的电磁力。(2)产品质量:应根据产品质量确定电磁搅拌要解决的连铸坯主要缺陷类型。如中厚板主要是中心疏松、偏析;薄板主要是皮下气孔和夹杂物。

(3)铸坯断面:铸坯断面大小决定了拉速和液相穴长度。因而就影响到搅拌器安装位置。(4)搅拌方式:根据产品质量,以确定搅拌器安装位置,是单一搅拌方式还是组合搅拌方式。(5)搅拌器参数:应根据钢种和工艺参数(如钢水过热度、拉速)来确定搅拌器形式、电流强度、电流频率、运行方式等。

随着对电磁搅拌技术研究的不断深入,该技术的应用将越来越广泛。电磁搅拌技术的发展趋势可以概括为以下几个方面:(1)组合式电磁搅拌将得到进一步发展,可能逐步取代单一位置的电磁搅拌方法,能够更好的改进铸坯质量和减少中心偏析。(2)随着计算机科学的飞速发展,数值模拟成为研究电磁搅拌技术的强有力工具。利用软件对电磁搅拌过程进行数值模拟,可以优化电磁感应的相关参数和结构设计,为实际生产提供依据。(3)进一步扩大电磁搅拌技术的应用范围,应用于板坯、方坯、圆坯连铸,将来该技术甚至在有色金属领域也会有广泛的应用。(4)随着电磁搅拌所应用的合金种类日益广泛及电磁搅拌凝固理论的发展,也将为金属凝固基础理论的研究开辟一个崭新的局面。

参考文献

[1]李建超,崔建忠,王宝峰,等.大方坯连铸二冷区电磁搅拌的数值模拟和实验分析[J].金属热处理,2007,32(8):69-71.

[2]李建超,王宝峰,董方,等.电磁场相位对小方坯结晶器电磁搅拌效果的影响[J].连铸,2007(1):43-46.

[3]吴其芬,李桦.磁流体力学,北京:国防科技大学出版社,2007,137-146.

[4]陈永,朱苗勇.280mm×380mm连铸坯结晶器电磁搅拌技术的应用[J].特殊钢,2008,29(1):51-53.

[5]Xu Honghai,Tao Guangjun,Zhang Caizheng.The application of delta PLC and touch screen in automatic zeolite filling machine control system[J].Manufacturing Automation,2010(7): 1-2

[6]Y an Laicheng,Chen Zeng-han,Yuan Huijian.Research on Real-Time Measuring and Control System Based on RTAI and IPC[J].Measurement & Control Technology,2007(4): 111-117

[7]吴存有,周月明,侯晓光.电磁搅拌技术的发展[J].世界钢铁,2010(2): 1-2

[8]高岩军,宋松.板柸连铸电磁搅拌器的研究与探讨[J].有设设备,2007(1):

99-104

[9]石瑞.电磁搅拌技术在冶金方面的应用[J].机械研究与应用,2012(2):5-7

[10]于湛,贾洪海,周月明.连铸用电磁搅拌技术[J].炼钢,2011(5):34-38

电磁搅拌

板坯电磁搅拌的现状 摘要:介绍了电磁搅拌技术的原理、电磁搅拌器的分类、电磁搅拌装置的应用条件 关键词:电磁搅拌技术; 板坯; 连铸; 应用 Electromagnetic Stirring of Slabs Abstract: It is introduced the principle of electromagnetic stirring technique as well as types and application condition of stirrer. Key words: electromagnetic stirring; continuous casting of slab; multi-mode EMS 1前言 在连续铸钢发展初期, 钢铁制造者们已认识到钢液的凝固及铸坯质量受液相穴钢液的运动和诸如对流、传热、收缩等基本物理现象的影响。毫无疑问, 电磁搅拌的研究是以优化上述运动和现象以提高钢的质量和消除不利因素等为目标的[1]。 电磁搅拌装置(Electro – Magnetic Stirring)英语缩写为EMS。目前采用电磁搅拌装置已经成为板坯连铸设备为提高铸坯产品质量的重要途径,其作用就是在铸线扇形段上安装多段电磁搅拌用的电磁线圈, 在各段辊内的电磁线圈上施加低压、低频、大电流的交流电源, 电磁力线贯穿铸坯的凝固相(即坯壳部分),在将要冷却凝固的钢水内部产生强磁场,通过钢水内流动的感应电流相互作用, 使液向部分能定向移动及旋转运动,从而对铸坯内的液相钢水进行搅拌,使铸坯内部结晶组织均匀, 提高了板坯的质量[2]。 2 电磁搅拌技术原理及作用 2.1 电磁搅拌技术原理 与已普及的长材产品生产中采用的转式电磁搅拌有所不同, 针对大断面的矩形, 板坯连铸生产采用独特的线形电磁搅拌。其原理十分简单, 如同由两相或三相电流驱动的, 能产生交变磁场的线性感应马达。电流发生相变时磁场从一极到达另一极, 并同时产生电磁推力, 将液态钢水向磁场运动的方向推动。通过电流相位变化选择方向, 通过电流密度和频率调整推力大小[3]。

电磁搅拌

电磁搅拌 科技名词定义 中文名称:电磁搅拌 英文名称:electromagnetic stirring,EMS 其他名称:EMS技术 定义:利用电磁效应实现熔体的搅拌,熔炼时使温度和成分均匀、连铸时控制凝固过程的工艺。 应用学科:材料科学技术(一级学科);材料科学技术基础(二级学科);材料合成、制备与加工(三级学科);特种冶金(四级学科) 以上内容由全国科学技术名词审定委员会审定公布 目录 定义 原理 模式 效果 编辑本段定义 任何通有电流的导体,都可以在其周围产生磁场的现象,称为电流的磁效应。 闭合电路的一部分导体在磁场里做切割磁力线的运动时,导体中就会产生电流这种现象叫电磁感应。 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。 三相交流电能够产生旋转磁场。 当旋转磁场半径很大时,就成了直线运动的行(xing)波磁场。 直线搅拌:由行波磁场产生的,使钢水以一定速度向磁场运动方向运动,故称直线搅拌。 钢水的流动方向始终和磁场的运动方向相一致。 编辑本段原理

电磁搅拌器(Electromagneticstirring:EMS)的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水内,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。 编辑本段模式 根据电磁搅拌器在铸机冶金长度上的不同安装位置大致有以下几种模式 结晶器电磁搅拌:MoldElectromagneticstirring:MEMS搅拌器安装在结晶器铜管外面 二冷区电磁搅拌:StrandElectromagneticStirring:SEMS搅拌器安装在铸坯外面 凝固末端电磁搅拌:FinalElectromagneticstirring:FEMS用于方坯连铸搅拌器安装在铸坯外面 编辑本段效果 搅拌位置冶金效果适用钢种 MEMS 增加等轴晶率低合金钢 减少表面和皮下的气孔和针孔 弹簧钢 减少表面和皮下的夹杂物 冷轧钢 坯壳均匀化 中高碳钢等 稍稍改善中心偏析 SEMS扩大等轴晶率不锈钢 减少内裂 改善中心偏析工具钢 减少中心疏松 FEMS细化等轴晶弹簧钢 有效地改善中心偏析轴承钢 有效地改善中心缩孔和疏松特殊高碳钢

1连铸与电磁搅拌理论

1 连铸与电磁搅拌理论 随着用户对钢材质量提出越来越高的要求,使得提高铸坯质量成为连铸生产中的首要问题。铸坯内部质量在很大程度上取决于铸坯内部是否呈现均匀而致密的等轴晶凝固组织。但是在连铸坯实际凝固过程中,由于钢水冷却速度很快,造成铸坯凝固时柱状晶的发展,往往产生“搭桥”现象,带来缩孔偏析、疏松、夹杂物聚集等缺陷。 由于电磁场的作用具有非接触的特点,特别适合于高温钢水这种特殊场合,连铸机的电磁搅拌(electromagnetic stirring:ems)技术随之应运而生,它可以显著改善铸坯质量,因此在国内外受到高度重视并得到快速发展与广泛应用。目前,炼钢厂连铸机电磁搅拌装置已经成为冶炼高性能品种钢水必不可少的设备。 电磁搅拌的工作原理基于电磁感应定律,载流导体处于磁场中就要受到电磁力的作用而发生运动。就此而言,电磁搅拌的工作原理和异步电机相同, 搅拌器相当于电机的定子,钢水相当于电机的转子。由电磁搅拌器的线圈绕组产生旋转磁场,在导电的钢水中产生感应电流,感应电流与磁场作用产生电磁力,对钢水起到了搅拌作用。连铸电磁搅拌的实质是借助在铸坯液相穴中感生的电磁力来强化钢水的运动。带有电磁搅拌器的结晶器结构形式如图1所示。 2 电磁搅拌对电源的特殊要求 电磁搅拌系统由两大部分组成:电磁搅拌器和变频电源。 钢水之所以能被搅拌,是由于搅拌器线圈激发的交变磁场穿透到铸坯的钢水内,在其中产生感应电流,感应电流与磁场相互作用产生电磁力,电磁力作用在钢水体积元上,从而推动钢水运动。其中感生电磁力与电流强度的平方成正比。电流越大,中心磁感应强度越高。一般情况下,结晶区电磁搅拌器要求中心磁感应强度幅值>500gs;为保证达到磁感应强度要求,必须要有足够大的电流。这就要求变频电源必须能够长时间提供大电流,通常要在达到400a以上。 电磁搅拌器作用在钢水中的电磁力和钢水搅拌的速度不仅与电流强度有关,而且受电源频率的影响很大。频率的选择主要和结晶器铜管的导磁率、厚度、断面等因素密切相关,它们不仅影响最大电磁力的量值,选择不当还会弱化搅拌功率。一般情况下,为了保证磁场的穿透效果,最佳搅拌频率在1-8hz之间。一般铸坯断面大、结晶器铜管厚的电源频率取低一点;断面小、铜管薄的电源频率取高一点。 由于大电流和钢水的热效应,搅拌器线圈温度较高,为了散热,搅拌器浸泡在冷却水中,这就要求搅拌器线圈的绝缘要很高,进而造成搅拌器线圈造价不菲。为了尽可能延长搅拌器的使用寿命,变频电源要采用低电压、大电流的设计原则,并要有平滑的输出波形,以防止输出电压中的高压峰值对线圈绝缘造成破坏。 综上所述,电磁搅拌配套的变频电源要能够在低电压、低频率、大电流的情况下长时间可靠工作,对电磁搅拌器要提供必要的保护。另外,通常情况下,连铸机启用电磁搅拌时,会有多台大功率变频电源同时工作,这就要考虑避免对电网产生有害影响,影响其它用电设备的正常运行。 3 vacon变频器适于电磁搅拌使用的特点 电磁搅拌电源基本可以分为两类:一是采用分立元件,配合plc或单片机、工控机,组成变频电源;二是采用改装通用型变频器的方法。 很多电源厂家通过攻关,研制出了采用分立元件的变频电源,但是由于国内电力电子技术和产品工艺相对落后,只能采用通用型控制芯片和电子技术,难以制造出高性能的交-直-交模式的专用电源;同时因为元件数目多,而生产没有规模,制造厂缺乏严格的质量控制手段,这种电源的可靠性比大规模生产的通用型变频器要低,故障率偏高,且在出现问题时不易查找到准确的故障点。 采用改装通用型变频器的方法与采用分立元件组装相比,电源的可靠性要高很多,但并不是每一种变频器都适合用来改装。这主要是因为通用型变频器是为控制交流电机而设计的,并不适于用作电磁搅拌电源。 vacon公司的nxp系列变频器,与同类变频器相比较,更为适合改装成电磁搅拌用的变频电源。

连铸电磁搅拌

1.什么叫电磁搅拌(简称EMS)? 大家知道,一个载流的导体处于磁场中,就受到电磁力的作用而发生运动。同样。载流钢水处于磁场中就会产生一个电磁力推动钢水运动,这就是电磁搅拌的原理。 电磁搅拌是改善金属凝固组织,提高产品质量的有效手段。应用于连续铸钢,已显示改善铸坯质量的良好效果。 早在1922年就提出了电磁搅拌的专利。论述了流动对金属结构、致密性、偏析和夹杂物等方面的影响。1952年开始在钢厂连铸机二次冷却区装置电磁搅拌的试验。随着连铸技术的发展,为改善连铸坯质量,人们对电磁搅拌结构、类型、搅拌方式和冶金效果进行广泛深入研究,使电磁搅拌技术日益成熟,得到了广泛的应用。 2.电磁搅拌器有哪几种类型? 电磁搅拌器型式和结构是多种多样的。根据铸机类型、铸坯断面和搅拌器安装位置的不同,目前处于实用阶段的有以下几种类型。 (1)按使用电源来分,有直流传导式和交流感应式。 (2)按激发的磁场形态来分,有:恒定磁场型,即磁场在空间恒定,不随时间变化;旋转磁场型,即磁场在空间绕轴以一定速度作旋转运动;行波磁场型,即磁场在空间以一定速度向一个方向作直线运动;螺旋磁场型,即磁场在空间以一定速度绕轴作螺旋运动。 目前,正在开发多功能组合式电磁搅拌器.即一台搅拌器具有旋转、行波或螺旋磁场等多种功能。 (3)按使用电源相数来分,有两相电磁搅拌器,三相电磁搅拌器。 (4)按搅拌器在连铸机安装位置来分,有结晶器电磁搅拌器、二次冷却区电磁搅拌器、凝固末端电磁搅拌器。 3.电磁搅拌技术有何特点? 与其他搅拌钢水方法(如振动、吹气)相比,电磁搅拌技术有以下特点: (1)通过电磁感应实现能量无接触转换,不和钢水接触就可将电磁能转换成钢水的动能。也有部分转变为热能。 (2)电磁搅拌器的磁场可以人为控制,因而电磁力也可人为控制,也就是钢水流动方向和形态也可以控制。钢水可以是旋转运动、直线运动或螺旋运动。可根据连铸钢钢种质量的要求,调节参数获得不同的搅拌效果。 (3)电磁搅拌是改善连铸坯质量、扩大连铸品种的一种有效手段。 4.什么叫结晶器电磁搅拌(简称M--EMS),有何作用? 结晶器电磁搅拌器特点:钢水在结晶器内,搅拌器置于结晶器外围。搅拌器内的铁芯所激发的磁场通过结晶器的钢质水套和铜板渗入钢水中,借助电磁感应产生的电磁力,促使钢水产生旋转运动或上下垂直运动。 结晶器铜板的高导电性,使用工频(50Hz)电源,由于集肤效应,磁场在铜层厚度由外向里穿透能力只有几毫米,小于铜壁的厚度,也就是磁场被结晶器铜壁屏蔽不能渗入钢水内,无法搅拌钢水。为此采用低电源频率(2~10Hz),使磁场穿过铜壁搅拌钢水。 结晶器电磁搅拌作用:1)钢水运动可清洗凝固壳表层区的气泡和夹杂物,改善了铸坯表面质量。2)钢水运动有利于过热度的降低,这样可适当提高钢水过热度,有利于去除夹杂物,提高铸坯清洁度。3)钢水运动可把树枝晶打碎,增加等轴晶核心,改善铸坯内部结构。4)结晶器钢-渣界面经常更新,有利于保护渣吸收上浮的夹杂物。

连铸电磁搅拌器设计

目录 目录 (1) 一、前言 (1) 二、电磁搅拌的基本知识 (2) (一)、电磁搅拌技术的概述 (2) (二)、电磁搅拌器的组成与主要分类 (2) (三)、电磁搅拌器的工作原理 (3) (四)、电磁搅拌力的计算 (4) (五)、电磁场在铸坯中透入深度 (6) 三、连铸电磁搅拌器设计过程 (7) (一)、电磁搅拌器电源的选择 (7) (二)、电磁搅拌器本体设计 (7) 1、铁芯的设计 (7) 2、线圈的设计 (11) (三)、电磁搅拌器控制系统的设计 (13) 四、课程设计体会 (15) 五、参考文献 (17)

一、前言 (一)、电磁冶金原理与工艺课程设计的目的: 电磁冶金原理与工艺课程设计是高等工业学校材料专业方向学生第一次较全面的对电磁冶金的了解和对电磁搅拌器设计的训练,是电磁冶金原理与工艺课程的一个重要实践环节。其主要目的在于: (1)进一步加深学生所学的理论知识,培养学生独立解决有关本课程实际问题的能力。 (2)通过课程设计,使学生将所学理论与生产实际相结合,将知识转化为分析和解决生产实际问题的能力。 (3)通过电磁冶金原理与工艺课程设计的训练,使学生对电磁连铸和电磁搅拌有一较完整的概念和全面的认识。并初步掌握电磁搅拌器结构设计和工艺设计的方法,树立正确的工程设计观点。 (4)进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。 (5)通过创新意识的教育,初步培养学生的革新、创造能力。(二)、电磁冶金原理与工艺课程设计的任务: 电磁冶金原理与工艺课程设计任务是对连铸电磁搅拌器的主组成(电源、电磁搅拌器本体、控制系统等)和电磁搅拌工艺进行分析和设计,并给出相关计算的过程、绘制部分结构的草图,画出连铸电磁搅拌器的总装图,最后编写说明书一份。

搅拌器及其选型

小直径高转速搅拌机的选型及使用 目前在SW中国的几个工厂使用最多的搅拌设备是小直径高转速搅拌机。其中尤其以涡轮式搅拌器(齿式叶片)为主,推进式搅拌器(桨状叶片)为辅,其他形式的叶片就更少了。现仅以前二种搅拌机为例,互相学习探讨一下相关的问题。 一、搅拌 搅拌是使釜(或槽)内物料形成某种特定方式的运动(通常为循环流动)。 搅拌注重的是釜内物料的运动方式和剧烈程度,以及这种运动状况对于给定过程的适应性。

二.小直径高转速搅拌机1.种类: (1)。推进式搅拌器 (2)。涡轮式搅拌器

(1)推进式搅拌器(旋桨式搅拌器) 其叶轮直径较小,通常仅为釜直径的0.2~0.5倍,但转速较高,可达 100~500r/min。 叶片端部的圆周速度较大,可达5~15m/s。 工作原理: 工作时,推进式搅拌器如同一台无外壳的轴流泵,高速旋转的叶轮使液体作轴向和切向运动。 液体的轴向分速度使液体沿轴向向下流动,流至釜底时再沿釜壁折回,并重新返回旋桨入口,从而形成如图3-3所示的总体循环流动,起到混合液体的作用。 液体的切向分速度使液体在容器内作圆周运动,这种圆周运动使釜中心处的液面下凹,釜壁处的液面上升,从而使釜的有效容积减小。下凹严重时桨叶的中心甚至会吸入空气,便搅拌效果急剧下降。 当釜内物料为液-液或液-固多相体系时,圆周运动还会使物料出现分层现象,

起着与混合相反的作用,故应采取措施抑制釜内物料的圆周运动。 推进式搅拌器的特点是液体循环量较大,但产生的湍动程度不高,常用于低黏度( <2Pa·s)液体的反应、混合、传热以及固液比较小的溶解和悬浮等过程。 (2)涡轮式搅拌器(齿状叶片为例) 该搅拌器有多种型式。大部分盘状叶片都属此类(如齿状叶片)其叶轮直径亦较小,通常也仅为釜径的0.2~0.5倍,转速可达10 ~ 500 r/min,叶端圆周速度可达4~ 10m/s。

凝固末端电磁搅拌器设计及应用

凝固末端电磁搅拌器设计及应用 岳阳中科电气有限公司李爱武、蒋海波 天津钢管集团有限公司姚家华、刘强 1.概述 连铸电磁搅拌能有效地改善连铸坯内部的组织结构,减少中心偏析及中心缩孔,大大增加等轴晶率。已成为连铸、特别是品种钢连铸必不可少的一种工艺手段。 连铸电磁搅拌的实质在于借助电磁力的作用来强化铸坯中末凝固钢液的运动,从而改变钢水凝固过程中的流动,传热和迁移过程,达到改善铸坯质量的目的。 结晶器电磁搅拌可以明显改善中碳钢、中低合金钢的内部及皮下质量,但对于高碳钢和高合金钢来说,仍存在中心偏析、中心缩孔、中心裂纹等问题,甚至在所谓的糊状区终点处形成“V”形槽即“V”形宏观偏析。尤其对于象不锈钢这样的多合金高合金钢,由于枝晶发达中心裂纹及缩孔非常明显。要解决这些问题必须在凝固末端上电磁搅拌。 2.高碳钢、高合金钢连铸的凝固特征和可能出现的缺陷 高含碳量、高合金含量有使凝固组织恶化的趋势。高碳钢、高合金钢的液相与固相间温度区间较大,凝固间隙长度增加,粘稠区加宽。因此容易形成中心偏析、中心裂纹和中心缩孔。这些缺陷对产品的机械性能和耐腐蚀性能会产生有害的影响。在不锈钢冷轧板中出现单相波纹。 宏观偏析是在凝固末端粘稠区内的溶质富集的钢液由于凝固收缩引起流动、沿粘稠区内枝晶间通道传输、聚集而成的。显然它极大地受粘稠区内钢液流动和传质所控制,有时形成中心偏析,有时形成V形偏析。中心偏析是由于铸坯在凝固过程中倾向于生成柱状晶,产生搭桥现象而产生的。V形偏析形成的原因比较复杂,主要是由粘稠区内等轴晶凝固时产生的收缩力及对钢液的抽吸力和钢液沿树枝晶的渗透引起的,可以用著名的V形偏析凝固模型来解释。偏析的严重程度与凝固时间有关,时间越长越严重。由于高含碳量、高合金含量的钢凝固时间长,因此偏析也就更严重。 3.影响凝固末端电磁搅拌的冶金效果的主要因素及措施 影响凝固末端电磁搅拌的冶金效果的主要因素在于:1)是否有结晶器电磁搅拌作用。2)电磁搅拌器能否提供足够大的电磁推力。3)电磁搅拌作用区域内磁场是否均匀。4)电磁搅拌的作用区域是否足够大。5)搅拌的时机即电磁搅拌的安装位置是否得当。其中第2、3、4个因素取决于凝固末端电磁搅拌器的参数及结构设计,而第1、5个因素则取决于电磁搅拌器与连铸机性能参数及连铸工艺的匹配是否合理。因此,一套电磁搅拌装置要达到最佳的冶金效果,除了要求其本身性能优良外,还要求设计者有较丰富的理论与实践经验。

辊式电磁搅拌器的试验与应用

辊式电磁搅拌器的试验与应用 发表日期:2007-4-10 阅读次数:423 摘要:阐述了武钢第二炼钢厂辊式电磁搅拌器的结构与原理。通过对电磁搅拌安装位置、电流强度、频率等参数的选择,确定了电磁搅拌最佳的工艺参数,同时经过一年多的应用表明,该辊式电磁搅拌器可以明显改善铸坯的凝固组织,提高铸坯的内部质量。 关键词:辊式电磁搅拌;等轴晶率;负偏析率;白亮带 武汉钢铁集团公司第二炼钢厂于2004年在对2号板坯连铸机进行高效化改造的同时,为满足中厚板及硅钢的生产要求,配套引进了法国罗德瑞克公司(ROTELEC)的辊式电磁搅拌装置。该装置于2004年6月24日完成安装、调试工作,并于当日在碳素钢上进行了设备试运行。经过多轮试验,确定了二对电磁搅拌器安装的最佳位置、搅拌频率、电流和搅拌模式,能满足中厚板、硅钢及其它需要电磁搅拌钢种的生产要求。经过一年多的生产,该装置运行正常,具有可靠性高、维护方便等优点。 1 辊式电磁搅拌装置简介 1.1 结构特点 辊式电磁搅拌器又称安装在支承辊内的电磁搅拌器,电磁搅拌器本体感应器线性马达制成辊状形式,安装在无磁性高强度的不锈钢支承辊外套内,支承辊外套直径不小于240mm,厚度25~30mm,其几何特征与常规的连铸机支承辊一样,但辊子的外表面应加工成螺线型凹槽,以限制由于热应力而产生的裂纹和变形。其本体线性马达为固定不动的行波磁场感应器,在加厚的不锈钢外套与辊心间保持动配合间隔,使外套可随铸坯移动而自由转动。感应器由带有2个极的双相绕组和磁铁芯组成。电接头和冷却水由辊子的两端接入接出。使用这种电磁搅拌器,不会干扰原有的二冷气雾冷却系统,感应器与铸坯面很近,故电工效率较高。同时可方便地对安装位置进行优化调整,电磁搅拌器结构见图1。 图1 辊式电磁搅拌器结构图 1.2 辊式电磁搅拌装置的技术参数 辊式电磁搅拌器辊径240mm,辊长1700mm,每个辊重约700kg。冷却水用量每个辊11m3/h。共有4个电磁搅拌辊,2个为一组成对配置在铸流弯曲段、弧线段内外弧的某一位置。感应器为二相直线型,有2个极,每相最大电流400A,频率为2~5Hz。搅拌类型为:三环/双蝶,如图2所示。搅拌模式可以选择连续和交替。搅拌断面为210~250mm×700~1600mm。

电磁搅拌器的分类与应用

电磁搅拌器的分类与应用 (一)电磁搅拌器装置 电磁搅拌装置在许多的大型钢铁企业中的到使用,极大的改善了钢铁企业的产品质量。 近年来,随着连铸技术的发展,对连铸坯内部质量提出了更高的要求,而铸坯内部质量在很大程度上取决于铸坯内部是否呈现均匀而致密的等轴晶凝固组织。但是在连铸坯实际凝固过程中,由于冷却速度很快,造成铸坯凝固时柱状晶的发展,往往产生“搭桥”现象,导致铸坯内缩孔偏析、疏松、夹杂物聚集等缺陷产生。 一个载流的导体处于磁场中就要受到电磁力的作用而发生运动。同样,钢水流过磁场,流动的钢水会产生感生电流,感生电流产生的磁场与设定磁场之间的相互作用,会推动钢液运动,这就是电磁搅拌的原理。采用电磁搅拌装置,有利于改善连铸坯的凝固组织,也是改善以及提高铸坯表面的有效措施。 (二)电磁搅拌装置的形式 电磁搅拌装置的形式是多种多样的。根据铸机的类型,铸坯断面和电磁搅拌器安装的位置不同,连铸机常用的有如下几种类型: 1、按感应形式分:有直流传导式、交流感应式和近年来发展起来的永磁式。 2、按激发的磁场形态分:有恒定磁场型,即菜场在空间恒定,不随时间变化;有旋转磁场型,即磁场在空间绕轴以一定的速度作旋转运动;行波磁场型,即磁场在空间以一定的速度向一个方向做直线运动;螺旋磁场型,即磁场在空间以一定速度绕轴做螺旋运动。 目前正在开发多功能组合式电磁搅拌器,即一台搅拌器同时具有旋转、行波或螺旋磁场等多种功能。 3、按使用电源相数分:有两相电源电磁搅拌器,有三相电源电磁搅拌器。 4、按搅拌器在连铸机安装位置分:有结晶器电磁搅拌装置,有二次冷却电磁搅

拌器,有凝固末端电磁搅拌器。 一般公认的就是用第4种分法来说明用什么形式的电磁搅拌装置设备。 (三)电磁搅拌装置的性能,对钢质的影响 1、结晶器电磁搅拌(简称M-EMS或M搅拌) 钢水在结晶器内,电磁搅拌器安装于结晶器外围。电磁搅拌器的铁芯所激发的磁场通过结晶器的钢质水套,和铜套侵入钢水中,借助于电磁感应产生的电磁力,使钢水产生旋转左右或上下垂直运动。 结晶器的电磁搅拌主要改善钢坯的表面质量和皮下质量。图1-2表示结晶器电磁搅拌器引起的冷隔变化。从图中可以看出,在不考虑拉坯频率的情况下,磁通密度较高的地方(在结晶器内壁表面上磁通密度最大),冷隔趋于变浅。这是因为,结晶器内电磁搅拌使得结晶器冷却均匀。事实证明,凝固界面被通过搅拌形成的钢流冲刷和早期形成的凝固坯壳重新熔化,与新进入的钢水混合后再凝固。在进行搅拌的地方,冷隔的深度就变得很浅。因此M搅拌器可以增强结晶器内钢液均匀凝壳的生成,从而导致表面纵裂的消除。 实践证明电源频率取6HZ比较合适。频率没有取下限1HZ的原因是因为频率小于1HZ时搅拌不充分;如果频率超过15HZ,在钢水中衰减严重,结果只能进行表面搅拌,因此不能完全发挥仰制冷隔的作用。 一般有以下几种搅拌方法: 一、单台旋转磁场 电磁搅拌器置于结晶器外围,通以两相低频电流,激发一旋转磁场,使结晶器内钢液产生旋转运动。绕组采用直接水冷,结构简单,冷却效果好。与结晶器水

电磁搅拌技术的发展_吴存有

世 界 钢 铁2010年第2期 电磁搅拌技术的发展 吴存有,周月明,侯晓光 (宝山钢铁股份有限公司,上海201900) 摘要:主要介绍了电磁搅拌技术的发展历史、在国内的应用现状,探讨了该技术未来的发展方向,特别以辊式搅拌器为例着重介绍了电磁搅拌技术在宝钢的研究进展。根据电磁搅拌的技术特点,探讨了电磁搅拌技术应用过程中设备与工艺之间的相互关系,以及影响电磁搅拌最终使用效果的关键因素。 关键词:电磁搅拌;辊式搅拌器;连铸 A p p l i c a t i o na n dd e v e l o p m e n t o f E MS t e c h n o l o g y W UC u n y o u ,Z H O UY u e m i n g ,H O UX i a o G u a n g (B a o s h a n I r o n &S t e e l C o .,L t d .,S h a n g h a i 201900,C h i n a ) A b s t r a c t :T h e d e v e l o p m e n t o f e l e c t r o m a g n e t i c s t i r r i n g t e c h n o l o g y a n d i t s a p p l i c a t i o ni n C h i n a a r e i n t r o d u c e d ,a n d t h e f u t u r e d e v e l o p m e n t d i r e c t i o n o f t h e t e c h n o l o g y i s d i s c u s s e d .T h e E M S r o l l e r s i n B a o s t e e l a s w e l l a s s i m i l a r E M St e c h n o l o g i e s a n dt h e i r a p p l i c a t i o na r e s t u d i e d .A c c o r d i n g t ot h e c h a r a c t e r i s t i c s o f E M S t e c h n o l o g y ,t h e r e l a t i o n s h i p b e t w e e n E M S e q u i p m e n t a n d p r o c e s s ,a s w e l l a s t h e k e y f a c t o r s t h a t i n f l u e n c e t h e f i n a l e f f e c t s o f E M S t e c h n o l o g y a r e d i s c u s s e d .K e y w o r d s :e l e c t r o m a g n e t i c s t i r r i n g ;E M S r o l l e r ;c o n t i n u o u s c a s t i n g 0 前言 高质量、高附加值钢铁产品的生产离不开特殊冶金装备的使用,连铸电磁搅拌装置就是其中之一。电磁搅拌技术的研究历史可以追溯到20世纪20或30年代,经过多年的发展,电磁搅拌技术日趋成熟,但时至今日国外大型钢铁公司对这一技术仍然在开展持续研究,例如日本J F E 就有将近15人左右的研发团队专门从事电磁搅拌等电磁冶金学科相关的研究工作。同时,电磁搅拌技术也还是国际及国内E P M (E l e c t r o m a g n e t i c P r o -c e s s i n go f M a t e r i a l s )学术研究的重要内容之一 [1-3] 。近年来,通过企业与高校及科研机构的 合作研究,国内在这一技术领域也取得了长足发展,特别是装备制造能力方面逐渐缩短了与国际先进水平的差距。目前已经具备了如方圆坯结晶器、凝固末端电磁搅拌器及板坯二冷区电磁搅拌辊的设计制造能力。但是,如板坯结晶器电磁搅拌器/电磁制动、板坯电磁加速/减速器等较为大型和复杂的设备,相关技术实力相对还比较薄弱,特别是当今世界最为先进的多模式电磁搅拌,国 内钢厂还没有使用的先例。其次,在使用参数的优化方面,即电磁搅拌工艺方面的研究还略显不足 [4-8] 。随着钢铁行业竞争日益激烈,国外钢厂 开始加紧了对我国实行技术封锁。因此,针对电磁搅拌相关的设备、工艺等相关技术开展深入的系统研究已变得日益迫切。本文着重介绍了电磁搅拌技术的发展历史、在国内以及宝钢的应用现状和研究成果,并探讨了该技术的特点、关键问题和未来的发展方向。1 电磁搅拌的发展 1.1 电磁搅拌的特点与发展历史 [9-14] 电磁搅拌的本质是根据工艺要求改变铸坯凝固过程中钢液的流场,从而最终改善产品的质量。电磁搅拌的重要优点在于非接触和无污染,前一优点也造就了电磁搅拌设备在使用过程中比起一般的冶金设备更具有复杂性和专业性。实际生产过程中,电磁搅拌的冶金效果受多种因素的影响,包括钢水过热度、拉速、搅拌位置、搅拌强度和钢种等等,是一个和设备及工艺都密切相关的系统问题。 ·36·

各种搅拌器介绍

复合叶桨式搅拌器 这是一种高效轴向流叶轮,它在主叶片上再增加了一个辅助叶片,该辅叶片有消除主叶片后方发生的流动剥离现象,使搅拌功率减少;同时在叶端能产生交叉的垂直分流,提高了混合效果,适用于中、低粘度的混合、分散、传热。特别适用于大型罐槽的固液悬浮。 螺旋叶桨式(推进式)搅拌器 推进式搅拌机(螺旋浆叶)一般为2叶,也可为3叶或4叶。推进式搅拌机(器)容积循环速率大,在工作时能很好地使流体在随浆叶旋转的同时进行上下翻腾,即容易使低粘度流体流动处于湍流状态。但由于其在旋转时,主要对流体作用轴向的推力,对流体所作用的剪力很小,这种搅拌器难以使高粘度流体处于湍流状态,也难以使高粘度流体充分搅拌混合。推进式搅拌器的转速一般应在60—200r/min范围内,故这种搅拌器一般适用于低粘度流体的混合操作。

曲边斜叶桨式搅拌器 本类搅拌器是斜叶桨式的一种变型,浆底旋转面接近容器的椭圆面,浆叶平面与旋转轴垂直面又成倾角45,兼起刮板作用,多为低转速运行,可在过流或层流区操作。

六斜叶开启涡轮式搅拌器 四斜叶开启涡轮式搅拌器 三斜叶开启涡轮式搅拌器

六叶开启涡轮搅拌器 六直叶开启涡轮式 径流型搅拌器,使用转速范围大,使用粘度范围广,具有高剪切力及湍流扩散能力。因其没有圆盘,不会阻碍浆叶上下液层混合,在有挡板槽中可以形成较大的对流循环,特别适用于剪切分散操作,同时因其具有良好的循环和剪切能力,也用于一般的固体溶解、反应、传热、乳化、结晶、固体悬浮操作。 六弯叶开启涡轮式 具有平直叶涡轮几乎所有的特点,又因其具有特殊的后弯结构,排出性能更好,浆叶也不易磨损,特别适用于固体含量多时固液悬浮的操作,一般配挡板使用;同时也适用于一般的反应、传热、乳化等操作。 异形搅拌器 三直叶锥底式SZP 本类搅拌器为径流型搅拌器,使用条件同平直叶开启涡轮,适用于锥形容器搅拌的最下层搅拌,可应用于一般的反应、溶解、悬浮、传热、乳化、结晶等操作。

电磁搅拌

电磁搅拌 电磁搅拌技术和应用效果目前已经比较成熟。对于大方坯和小方坯(>150mm,≤150mm)连铸,为了生产高质量铸坯和轧材,电磁搅拌是必须采取的措施,而且必须采取提高铸坯表面质量的结晶器电磁搅拌(M-EMS)和改善中心偏析的二冷电磁搅拌(S-EMS)的组合式搅拌。由于方圆坯断面积比板坯小,所以表面的清理损耗和工作量要比板坯大得多,因此提高方圆坯的表面质量的经济效益也比板坯大得多。M-EMS搅拌对提高铸坯表面质量有重要作用。其机理是:(1)液芯的运动均匀了内部钢水的温度,并使保护渣均匀熔化,因此形成振痕稳定和厚度均匀的坯壳并与结晶器壁接触良好;(2)液芯的流动冲洗使凝固壳内表层的夹杂和气泡上浮到液面中心,人工捞出可提高铸坯的表面质量和钢的纯净度。S-EMS搅拌的作用是大幅度减小铸坯表层细等轴晶内侧的柱状晶厚度,使其变成等轴晶,从而可以明显降低中心偏析和疏松。这对最终成品圆钢和线材的质量判定和二次加工性带有决定性。为了消除轧材的柱状晶,不使用S-EMS的铸坯压缩比约在10左右,而采取S-EMS的压缩比为5时就可以达到。因此采用S-EMS也可以使用较小尺寸的铸坯生产较大规格的成品,或在同等条件下进一步提高轧材的强度、塑性和冲击性。中心偏析产生的原因是铸坯在凝固过程中碳、硫、磷、锰等溶质(含非金属夹杂物及气相等轻质相)元素的浓度逐渐增高的结果,因此S-EMS的作用机理是铸坯出结晶器后,利用电磁的作用使液芯钢水在转动的过程中凝固,这样,一方面使溶质元素分布均匀,改善中心偏析度;另一方面,由于钢水的转动冲刷凝固的前沿,使已成固态的微粒变成新的结晶核,因此扩大了等轴晶比率,相对减少了柱状晶量。M-EMS与S-EMS组合式电磁搅拌可以适应优质钢和不锈钢的质量需要,但是对于碳含量>0.50%的高碳钢和弹簧钢等钢种,为了解决芯部碳的偏析,应在铸坯凝固末期对糊状钢液进行电磁搅拌,即F-EMS。 电磁搅拌的原理,以电磁感应原理为基础,闭合电路的一部分导体在磁场中运动会产生电流,带电的导体在磁场中运动会产生阻碍其运动的电磁力。在结晶器内安装电磁搅拌,使钢水形成与之运动相反方向的力。 电磁搅拌分为螺旋搅拌、直线搅拌、旋转搅拌。直线搅拌使钢水产生上下的运动;旋转搅拌使之产生水平方向的运动;螺旋搅拌即能产生水平方向也能产生竖直方向的运动。目前中小方坯使用旋转搅拌,板坯使用直线旋转和螺旋旋转。 连铸机上电磁搅拌安装的位置一般有三处:1、结晶器电磁搅拌(M-EMS或E-MBR)2、二冷区电磁搅拌(S-EMS)3、凝固末端电磁搅拌(F-EMS)。 结晶器电磁搅拌的安装,线圈位置安装偏下,防止旋转钢液将表面保护渣卷入钢中。有些结晶器还在搅拌线圈上安装一个能使钢液向相反方向运动的制动线圈(线圈通电方向与搅拌线圈方向相反)。为保证有足够的电磁力能穿透结晶器壁,使用低频电流,采用不锈钢或铝等非铁磁性物质作结晶器水套(铜)。结晶器电磁搅拌能够均匀钢水温度,减少钢水过热,促进气体和夹杂物的上浮,增加等轴晶晶核。 二冷区电磁搅拌安装在二冷区铸坯柱状晶“搭桥”之前,即坯壳厚度是铸坯的1/4处;其搅拌效果最好,也有利于减少中心疏松和中心偏析。一般情况下小方坯搅拌器安装在结晶器下口1.3-4m 处,采用旋转搅拌方式较多;大方坯和厚板坯可安装在离结晶器下口9-10m处,采用直线搅拌或旋转搅拌方式。当采用旋转搅拌时,为了防止在钢中产生负偏析白亮带,可采用正转-停止-反转(小方坯、大方坯、板坯、均采用此方法?)的间歇式搅拌技术。二冷区电磁搅拌主要用来获得中心宽大的等轴晶带,使晶粒细化,减少中心疏松和中心偏析,使夹杂物在横断面上分布均匀,从而使铸坯内部质量得到改善。 凝固末端电磁搅拌安装在连铸坯凝固末端,可根据液心长度计算出具体的安装位置。凝固末端电磁搅拌可使铸坯得到中心宽大的等轴晶带,消除或减少中心疏松和中心偏析。对于高碳钢效果尤其明显。 结晶器电磁制动:在板坯连铸中,结晶器内向下的流股将夹杂物带入铸坯液相穴深处难于上浮;同时热中心下移造成坯壳重熔和发生角裂,水口外壁附近钢液容易凝结,保护渣不能均匀流动等。为此在结晶器宽面加两个恒定磁场,产生于注流方向相反的电磁力,对流股起到制动作用,

方坯连铸电磁搅拌器使用说明书1

1概述 1.1 主要用途及适用范围 冶金连铸电磁搅拌器是应用在冶金连铸中,借助电磁力强化铸坯内未凝固钢水运动,来改变凝固过程的流动、传热和传质条件,达到改善铸坯质量的目的。 1.2 电磁搅拌的基本特点 1.2.1不接触性 借助电磁感应实现能量的无接触转换,因而不和钢水接触就能将电磁能转换成钢水的动能。 1.2.2 可控制性 由于感应器激发的磁场可以人为的控制,进而电磁力可以人为控制,因此可以人为地控制钢水的流动形态。其参数也易于调节,且调节范围较宽,可以适合不同断面和钢种的需要。 1.2.3低效率性 由于EMS和铸坯之间的电磁气隙较大,漏磁严重,感应器激发的磁场只有小部分到达铸坯内的钢水中,对钢水起搅拌作用,因此搅拌器效率和功率因数较低。 2 产品型号及其含义

磁搅拌工作原理就交流感应而言和普通异步电动机相类似,基于两个基本定律:电磁感应和载(电)流导体与磁场相互作用,即当钢水处于交变磁场B中,由于磁场以一定速度V切割钢水,就在其中感应起电流: J =σe =σ(V×B) 式中:J ——电流密度; σ——钢水导电率; e ——感应电势 V ——磁场运动速度; B ——磁感应强度。 该电流J与当地磁场B相互作用产生电磁力: F = J×B 式中:F ——电磁力; J ——电流密度; B ——磁感应强度。 电磁力是体积力,作用在钢水每个体积元上,从而驱动钢水运动。 方坯电磁搅拌器(EMS)在通以三相电源时,EMS内的感应器便会产生旋转磁场,作用于铸坯,磁场为一对极性,这样垂直穿过铸坯的磁场分量最大,根据电磁场理论,只有垂直穿过铸坯的磁场才能对铸坯内的钢液产生推力。为此,EMS内部连线已在制造厂接好,用户只需把三相电源连接到EMS三根接线柱上即可。

半固态电磁搅拌器

半固态电磁搅拌器 产品简介: 本文介绍半固态电磁搅拌器概述,半固态电磁搅拌器工艺原理,半固态电磁搅拌 器展望以及半固态实验用电磁搅拌器的工作原理,系统组成,系统优点,主要技术参数,系统概况,基本功能,安装注意事项 1、半固态电磁搅拌器概述 自1971年美国麻省理工学院的 D.B.Spencer和M.C.Flemings发明了一种搅动铸造(stir cast)新工艺,即用旋转双桶机械搅拌法制备出Srr15%pb流变浆料以来,半固态金属(SSM)铸造工艺技术经历了20余年的研究与发展。搅动铸造制备的合金一般称为非枝晶组织合金或称部分凝固铸造合金(Partially Solidified Casting Alloys)。由于采用该技 术的产品具有高质量、高性能和高合金化的特点,因此具有强大的生命力。除军事装备上的应用外,开始主要集中用于自动车的关键部件上,例如,用于汽车轮毂,可提高性能、减轻重量、降低废品率。此后,逐渐在其它领域获得应用,生产高性能和近净成型的部件。半固 态金属铸造工艺的成型机械也相继推出。目前已研制生产出从600吨到2000吨的半固态铸造用压铸机,成形件重量可达7kg以上。当前,在美国和欧洲,该项工艺技术的应用较为广泛。半固态金属铸造工艺被认为是21世纪最具发展前途的近净成型和新材料制备技术之一。 2、半固态电磁搅拌器工艺原理 在普通铸造过程中,初晶以枝晶方式长大,当固相率达到0.2左右时,枝晶就形成连续网 络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌,则使普通铸造成形时易于形成的树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余 液相中。这种颗粒状非枝晶的显微组织,在固相率达0.5-0.6时仍具有一定的流变性,从而可利用常规的成形工艺如压铸、挤压,模锻等实现金属的成形。

电磁搅拌器的分类与应用

电磁搅拌器的分类与应用 电磁搅拌器的分类与应用 (一)电磁搅拌装置 电磁搅拌装置在许多的大型钢铁企业中的到使用,极大的改善了钢铁企业的产品质量。 近年来,随着连铸技术的发展,对连铸坯内部质量提出了更高的要求,而铸坯内部质量在很大程度上取决于铸坯内部是否呈现均匀而致密的等轴晶凝固组织。但是在连铸坯实际凝固过程中,由于冷却速度很快,造成铸坯凝固时柱状晶的发展,往往产生“搭桥”现象,导致铸坯内缩孔偏析、疏松、夹杂物聚集等缺陷产生。 一个载流的导体处于磁场中就要受到电磁力的作用而发生运动。同样,钢水流过磁场,流动的钢水会产生感生电流,感生电流产生的磁场与设定磁场之间的相互作用,会推动钢液运动,这就是电磁搅拌的原理。采用电磁搅拌装置,有利于改善连铸坯的凝固组织,也是改善以及提高铸坯表面的有效措施。 (二)电磁搅拌装置的形式 电磁搅拌装置的形式是多种多样的。根据铸机的类型,铸坯断面和电磁搅拌器安装的位置不同,连铸机常用的有如下几种类型: 1、按感应形式分:有直流传导式、交流感应式和近年来发展起来的永磁式。 2、按激发的磁场形态分:有恒定磁场型,即菜场在空间恒定,不随时间变化;有旋转磁场型,即磁场在空间绕轴以一定的速度作旋转运动;行波磁场型,即磁场在空间以一定的速度向一个方向做直线运动;螺旋磁场型,即磁场在空间以一定速度绕轴做螺旋运动。 目前正在开发多功能组合式电磁搅拌器,即一台搅拌器同时具有旋转、行波或螺旋磁场等多种功能。 3、按使用电源相数分:有两相电源电磁搅拌器,有三相电源电磁搅拌器。 4、按搅拌器在连铸机安装位置分:有结晶器电磁搅拌装置,有二次冷却电磁搅拌器,有凝固末端电磁搅拌器。 一般公认的就是用第4种分法来说明用什么形式的电磁搅拌装置设备。 (三)电磁搅拌装置的性能,对钢质的影响 1、结晶器电磁搅拌(简称M-EMS或M搅拌) 钢水在结晶器内,电磁搅拌器安装于结晶器外围。电磁搅拌器的铁芯所激发的磁场通过结晶器的钢质水套,和铜套侵入钢水中,借助于电磁感应产生的电磁力,使钢水产生旋转左右或上下垂直运动。 结晶器的电磁搅拌主要改善钢坯的表面质量和皮下质量。图1-2表示结晶器电磁搅拌器引起的冷隔变化。从图中可以看出,在不考虑拉坯频率的情况下,磁通密度较高的地方(在结晶器内壁表面上磁通密度最大),冷隔趋于变浅。这是因为,结晶器内电磁搅拌使得结晶器冷却均匀。事实证明,凝固界面被通过搅拌形成的钢流冲刷和早期形成的凝固坯壳重新熔化,与新进入的钢水混合后再凝固。在进行搅拌的地方,冷隔的深度就变得很浅。因此M搅拌

电磁搅拌在钢水连铸中的应用

电磁技术在连铸中的应用 摘要:介绍了电磁技术的产生及发展,以及电磁技术在连铸过程中的应用,包括电磁搅拌、电磁制动、软接触电磁连铸技术,总结了前人的研究,分析了电磁连铸的优点与不足,以便连铸工作者们参考。 关键词:电磁搅拌连铸 1 前言 19世纪以来,钢铁工业出现了最重要的三大技术,连续铸钢就是其一。连续铸钢工艺的出现带来了节能降耗,降低生产成本,减轻环境负荷,提高金属收得率,实现连铸连轧短流程生产工艺,还能净化钢液、改善铸坯的组织、细化晶粒、提高钢材成品的质量[1- 2]。 目前世界上先进国家的钢铁连铸比几乎达到的100%,我国的钢铁企业总体连铸比也达到了95%以上[3]。刚成形的连铸坯要喷水冷却,在运动过程中具有很长的液相穴凝固过程,受钢水运动和传热两个基本物理现象所控制。液相穴钢水对流运动对减轻成分偏析、改善凝固组织和消除过热度有重大影响[4]。 对钢材质量要求日益严格的今天,炼钢技术也日益提高,作为提高钢材生产率的辅助手段,可以控制钢液流动状态的电磁力在冶金中得到越来越广泛的应用[5]。 电磁流体力学(MHD)是电磁冶金理论的基础,它的发展,带动了电磁连铸技术在冶金工业中的应用和发展。电磁搅拌最早应用于钢铁的连铸工艺中[6],主要是由于熔融金属是电的良导体,在磁场和电流作用下,金属熔体产生电磁力,利用电磁力就可以对熔融金属进行非接触性搅拌、传输和形状控制。电磁冶金技术具有能量的高密度性和清洁性、优越的响应性和可控性、易于自动化以及能量利用率高等特点,被广泛地应用于冶炼、精炼、铸造、连铸、钢水的检测等领域,并已在许多领域取得了重大进展[7]。在冶金中应用电磁场力,一是应用电磁感应热,如熔炼金属;二是应用其搅拌力以改善材料的性能[8-9]。 2 电磁搅拌 2.1 电磁搅拌简介 电作用产生电磁力,该电磁力推动钢水运动,从而控制铸坯的凝固过程,达到增大等磁搅拌的实质是借助借助在铸坯液相穴中感生的电磁力,强化钢水的运动[10]。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水,就在其中产生感应电流,感应电流与当地磁场相互轴晶率,改善铸坯表面、皮下和部质量的目的[4]。 电磁搅拌技术可以大幅度提高钢的清洁度,减小皮下气孔,扩大铸坯的等轴晶区,降低成分偏析和过热度,减少钢水中的夹渣,减轻或消除金属的中心疏松和中心缩孔的现

电磁搅拌技术在连铸中的应用

电磁搅拌技术在连铸中的应用 近年来,连铸坯的质量越来越受到重视,因而围绕提高连铸坯质量的研究工作也取得了很大的进展。电磁搅拌技术是电磁流体力学在钢铁工业中最成功的应用之一。通过定量认识电磁场在多层介质中的传递,控制连铸过程中钢水的流动、传热和凝固,进而降低钢水的过热度、去除夹杂从而扩大等轴晶区,减少成分偏析,减轻中心疏松和中心缩孔。几十年来,国内外学者对电磁搅拌技术进行了大量的理论及实验研究,并应用于工业生产。电磁搅拌技术已经成为连铸过程中改善铸坯质量的最重要和最有效的手段之一。 1国内外电磁搅拌技术的发展概况 磁流体力学是电磁学,流体力学以及热力学相互交叉的学科,简称MHD(magnetohydrodynamics),主要研究电磁场作用下,导电金属流体的运动规律。在磁场里,导体的运动产生电动势,从而产生感应电流,导体本身也产生磁场。液态金属作为载流导体,在外加磁场的作用下产生了电磁力,这种电磁力的作用促使载流液体流动,同时伴随着三种基本的物理现象——电磁热,电磁搅拌,电磁压力。这三种现象在材料的冶炼、成形、凝固等工艺中已广泛应用。 连铸钢液电磁搅拌技术已经历几十年的试验研究和发展的过程。早在上世纪50年代,就由在德国Schorndorf和Huckingen半工业连铸机上。进行了首例连续铸钢电磁搅拌的试验。60年代,在奥地利Kapfenberg厂的Boehler连铸机上用于浇铸合金钢。60年代末一些工作者还进行了结晶器电磁搅拌和二冷区电磁搅拌的实验。1973年法国的一家工厂率先在其连铸机上安装了电磁搅拌器并投入工业应用,从而奠定了连铸电磁搅拌技术工业应用的基础。1977年,法国的Rotelec公司开发了小方坯和大方坯结晶器电磁搅拌器并以Magnetogyr-Process 注册商标,将其商品化。1979年,法国钢研院又在德国Dunkirk厂板坯连铸机上采用了线性搅拌技术,取得良好效果。进入80年代后,电磁搅拌技术发展更快,特别是日本,发展更为迅速。在神户钢铁公司的加古川厂,开发应用了线性马达型电磁搅拌器来控制结晶器内钢水流动的工艺。日本住友金属工业公司也相继提出并采用了静磁场通电型电磁搅拌技术,用作板坯二冷区的电磁搅拌。日本川崎公司也和瑞典ASEA公司共同开发了新的搅拌技术,并在川崎公司水岛钢铁厂的5号板坯连铸机上进行了实验,收到了良好的冶金效果。 国内连铸电磁搅拌技术的应用比国外相对较晚。自1986年武钢公司从联邦德国引进ORC.1600型电磁搅拌装置(EMS)安装在二炼钢三号铸机的二冷段,用于改善连铸板坯的宏观组织,增加等轴晶率,减少铸坯中心偏析疏松及铸坯内裂等缺陷,以期实现改善钢坯质量,扩大浇铸品种的目的才开始了我国电磁搅拌技术的工业应用。最初只在少数钢铁厂采用电磁搅拌技术如:重庆三厂、洛钢、

相关文档