文档库 最新最全的文档下载
当前位置:文档库 › 第二章 过渡金属配合物的电子光谱-3

第二章 过渡金属配合物的电子光谱-3

荧光光谱分析

第十七章荧光光谱分析 当紫外线照射到某些物质的时候,这些物质会发射出各种颜色与不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。 西班牙的内科医生与植物学家N、Monardes于1575年第一次记录了荧光现象。17世纪,Boyle与Newton等著名科学家再次观察到荧光现象。17世纪与18世纪,又陆续发现了其它一些发荧光的材料与溶液,但就是在荧光现象的解释方面却没有什么进展。1852年,Stokes在考察奎宁与叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍长,才判明这种现象就是这些物质在吸收光能后重新发射不同波长的光,而不就是由光的漫射所引起的,从而导入了荧光就是光发射的概念。同时,她由发荧光的矿物“萤石”推演而提出“荧光”这一术语。1867年,Coppelsroder进行了历史上首次的荧光分析工作,应用铝-桑色素配合物的荧光进行铝的测定。1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则。到19世纪末,人们已经知道了600种以上的荧光化合物。20世纪以来,荧光现象被研究得更多了。例如,1905年Wood发现了共振荧光;1914年Frank与Hertz利用电子冲击发光进行定量研究;1922年Frank与Cario发现了增感应光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等。 荧光分析方法的发展离不开仪器应用的发展。19世纪以前,荧光的观察就是靠肉眼进行的,直到1928年,才由Jette与West研制出第一台光电荧光计。早期的光电荧光计的灵敏度就是有限的,1939年Zworykin与Rajchman发明光电倍增管以后,在增加灵敏度与容许使用分辨率更高的单色器等方面,就是一个非常重要的阶段。1943年Dutton与Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer 推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。 荧光光谱分析法除了可以用作组分的定性检测与定量测定的手段之外,还被广泛地作为一种表征技术应用于表征所研究体系的物理、化学性质及其变化情况。例如,在生命科学领域的研究中,人们经常可以利用荧光检测的手段,通过检测某种荧光特定参数(如荧光的波长、强度、偏振与寿命)的变化情况来表征生物大分子在性质与构象上的变化。 很多化合物由于本身具有大的共轭体系与刚性的平面结构,因而具有能发射荧光的内在本质,我们称这些化合物为荧光化合物。在某些所要研究的体系中,由于体系自身含有这种荧光团而具有内源荧光,人们就可以利用其内源荧光,通过检测某种荧光特性参数的变化,对该体系的某些性质加以研究。但就是,如果所要研究的体系本身不含有荧光团而不具有内源荧光,或者其内源性质很弱,这时候就必须在体系中外加一种荧光化合物即所谓荧光探针,再通过测量荧光探针的荧光特性的变化来对该体系加以研究。例如,如果我们要检测体系的极性,便可以将对极性敏感的荧光探针加入到体系中,然后通过对荧光探针的荧光特性的检测,求得体系的极性,或通过探针的荧光特性的变化来表征体系的极性的变化情况。 荧光分析法之所以发展如此迅速,应用日益广泛,其原因之一就是荧光分析法具有很高的灵敏度。在微量分析的各种方法中,应用较为广泛的有比色法与分光光度法。但在方法的灵敏度方面,荧光分析法的灵敏度一般要比这两种方法高2~3各数量级。随着现代电子技术的迅速发展,对于微弱光信号检测的灵敏度已大大提高,荧光分析的灵敏度常可达亿分之几,在与毛细管电泳分离技术结合、采用激

有机稀土配合物的合成及其荧光特z征

有机稀土配合物的合成及荧光特征 王彦飞刘宇韬胡婧 (中南大学化学化工院应化1302班1502130220) 摘要:稀土光致发光配合物是一类具有独特性能的发光材料,具有荧光单色性好,发光强度高等优点。本实验采用络合法,在常温条件下,EuCl3与C6H5COOH按1:3的比例反应生成Eu(C6H5COO)3二元配合物,按n(Eu3+):n(苯甲酸):n(phen)=1:3:1摩尔比例反应生成苯甲酸-邻菲咯啉-铕三元配合物。在260nm的紫外光激发下测定其荧光光谱。通过分析两配合物的荧光光谱知:三元配合物的荧光强度大于二元配合物的荧光强度,可用引入第二配体的方法来提高Eu3+的发光强度。 关键词:苯甲酸铕;邻菲啰啉;荧光光谱;发光强度;稀土配合物; 前言:聚稀土元素是指周期表中ⅢB族,21号元素钪(Sc)、39号元素钇(Y)和57~71的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素。由于稀土离子具有独特的结构和性质,使其与适当的有机配体配合后发出的荧光兼有稀土离子发光强度高,颜色纯和激发能量低,荧光效率高等优点。 稀土光致发光配合物是一类具有独特性能的发光材料,它的荧光单色性好,发光强度高,因此受到了人们的重视。早在20世纪80年代中期,前苏联地Golodkova LN等人已经研制出了保温大棚膜的稀土光转换剂。它能吸收97%的200-450nm的紫外光,并能将其转换为500-750nm的红橙光。稀土离子Sm(Ⅲ)、Eu(Ⅲ)、Tb(Ⅲ)和Dy(Ⅲ)发射线状光谱,属于4f 层电子跃迁发射,但都较微弱。但是当它们与含芳环的有机配位体形成二元或三元配合物时,受激发的配位体的能量可能转移给金属离子,然后由激发态的金属离子返回基态而发出强的荧光,例如稀土芳香族有机羧酸配合物就是一类性能良好的发光材料。近代以来,稀土有机配合物由于具有发光强度高和稳定性较好的优点,越来越引起人们的广泛关注。本试验以苯甲酸、邻菲啰啉为配体,研究了铕的二元、三元配合物的合成和荧光性能。 1实验材料 主要仪器:DF-101S集热试恒温加热磁力搅拌器(郑州长盛公司);SHB-ⅢA循环水式多用真空泵(郑州长盛实验仪器有限公司);F-2500荧光分光光度计;烘箱。 主要试剂:邻菲罗啉(天津市大茂化学试剂厂),36%-38%的盐酸,氢氧化钠,苯甲酸钠,邻菲啰啉(phen),pH试纸,无水乙醇。 2实验方案 2.1实验原理 (1)Eu(Ⅲ)配合物的制备

过渡金属配合物的电子光谱

第4章(4)过渡金属配合物的电子光谱 第一节概论 一、什么是电子光谱? 定义:当连续辐射通过配合物时,配合物选择性地吸收某些频率的光,会使电子在不同能级间发生跃迁,形成的光谱称为电子吸收光谱(简称电子光谱)。 二、配合物电子光谱所包含的成份(参见过渡金属配合物的电子光谱.ppt) 1、电荷迁移光谱(荷移光谱) 由于电子在金属与配体间迁移产生的光谱。 2、d—d跃迁光谱 电子在金属离子d轨道间跃迁产生的光谱。 3、异号离子光谱 外界抗衡离子的吸收光谱。如[Cu(NH3)4](NO3)2中

二、d电子间相互作用(谱项与基谱项;又称光谱项、光谱支项) 原子光谱的光谱项符号是:2s+1L或2s+1L J 其构成方法为:(1)用字母表示总轨道角动量量子数L的值,对应规则是L=0,1,2,3,4,…→S,P,D,F,G,…;(2)用数字表示光谱项的多重性2S+1,其中S为原子的总自旋角动量量子数;(3)谱项的支项用右下标的J值加以区分;原子总角量子J 的取值为L + S ,L + S ?1,……L ?S )。一个原子的一定的电子组态存在多个能级,相应就可以有多个原子光谱项;每个光谱项可有多个光谱支项,代表精细的能级;每个光谱支项还对应有2J +1个量子态,说明精细能级在外磁场中会进一步分裂。 1、单电子运动的描述 运动:自旋运动轨道运动 描述:自旋角动量s 轨道角动量l │s│=[s(s+1)]1/2(h/2π) │l│=[l(l+1)] 1/2(h/2π) 自旋角量子数s=1/2

—轨道角量子数 注*矢量用黑体字母表示。 *角动量:就是质量乘以角速度(单位角度/秒)。自旋角动量:角动量是由物体自旋产生的,而不是外力给它的。 轨道角动量:角动量是由轨道运动产生的 2、电子间相互作用 在多电子体系中,l i与l j主要是通过电性相互作用;而s i与l i或s j之间则主要通过磁性作用。 s i s j l i l j 对轻元素(原子序数<30),电子间偶合强于电子内偶合,即: l i——l j s i——s j的作用要大于s i——l i的作用。 此时电子间相互作用,可用L—S偶合方案处理:(参见L—S偶合方案.pdf)

荧光光谱分析讲义

荧光光谱分析 一、实验目的 1、了解荧光光谱的基本原理; 2、熟悉荧光光谱仪的基本原理和操作规程; 3、了解荧光光谱的基本分析方法。 二、荧光光谱原理 分子吸收辐射后,使其价电子处于不稳定的激发态,随后以光的形式辐射出能量、这称为“光致发光”。在二次发光的发射过程中,最常见的两种光致发光是分子荧光(fluorescence)和分子磷光(phosphorescence)。由测量分子荧光和磷光强度而建立起来的定量分析法称为分子荧光分析法和分子磷光分析法。在化学反应过程中,分子吸收反应释放出的化学能产生激发态物质,这种激发态物质发出的光辐射称为化学发光(chemiluminescence)。根据化学发光强度或发光总量来确定物质组分含量的分析方法称为化学发光分析法。化学发光分析、分子荧光分析和磷光分析统称为分子发光分析法。 2.1、荧光及磷光的产生原理 含有孤对电子n和π轨道的分子,吸收光能后产生π→π*和n→π*电子跃迁。在通常情况下,基态分子的电子自旋是配对的,净自旋S=0,光谱项的多重性2S+1=l,这种状态称为单重态。电子激发态的多重性也是2S+1。若有一个电子激发至高能轨道时,当S=0, 此时分子所处的状态就称为激发单重态;若—个电子激发至高能轨道,但S=1时,即2S+l =3,这种状态的分子就处于激发三重态。假若分子中含有奇数电子,则S=1/2时,分子处于二重态。 在图11-1电子激发能级图中,处于激发态的分子可以有多种辐射形式去激发而回到基态。首先由于与同类分子或其它分子碰撞,损失一部分能量,产生无辐射跃迁。然后,若能态的多重性不变(激发单重态向基态单重态跃迁)所产生的辐射称为荧光。而能态的多重性改变(激发三重态向基态单重态跃迁)时产生的辐射称为磷光。由图11-1可知,吸收光谱的能级高于荧光光谱能级,荧光光谱能级又高于磷光光谱能级。所以,荧光波长较磷光短;荧光的寿命约为10-9~10-6s, 而磷光的寿命约为10-3~10s; 一般荧光在常温下即可以发射,但磷光必须在极低的温度下(液氮,-196o C)才可以发射。

荧光分析法基本概念

紫外可见吸收光谱 一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。 二紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱 分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子:(1)形成单键的σ电子;(2)形成双键的π电子;(3)分子中非键电子即n 电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是:(σ)<(π)<(n)<(π*)<(σ* )σ,π是成键轨道,n 是非键轨道,σ* ,π* 是反键轨道 由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。 二紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。 横坐标表示吸收光的波长,用nm(纳米)为单位。 纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、 (吸收系数) 中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。

四、紫外光谱中常用的几个术语 1.发色基团和助色基团 发色基团:是能导致化合物在紫外及可见光区产生吸收的基团,不论是否显示颜色都称为发色基团。一般不饱和的基团都是发色基团(C=C、C=O、N=N 、三键、苯环等) 助色基团:指那些本身不会使化合物分子产生颜色或者在紫外及可见光区不产生吸收的一些基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时使吸收强度增加。助色基团通常是由含有孤对电子的元素所组成(-NH2, -NR2, -OH , -OR , -Cl等),这些基团借助P-π共轭使发色基团增加共轭程度,从而使电子跃迁的能量下降。 2.红移、蓝移、增色效应和减色效应 由于有机化合物分子中引入了助色基团或其他发色基团而产生

中南大学有机稀土配合物的合成及荧光特性

中南大学 有机稀土配合物的合成及 其荧光特性 学院名称:化学化工学院 、

有机稀土配合物的合成及其荧光特性 一、实验目的 1.掌握苯甲酸铕、苯甲酸-邻菲咯啉-铕三元配合物的制备方法; 2.了解苯甲酸铕、苯甲酸-邻菲咯啉-铕的荧光性质; 3.了解三元配合物第二配体的协同效应。 二、背景知识及实验原理 稀土有机配合物发光是无机发光、有机发光与生物发光的交叉学科,有着重要的理论研究意义及应用价值。稀土铕、铽配合物具有荧光强度高,单色性好,耐候性强和不易被氧化等优点,越来越受到人们的重视。以苯甲酸、邻苯二甲酸为配体的稀土配合物的合成及荧光性能已有较多研究,并且以二羧酸为桥联配体,可更有效地传递能量。 在20世纪80年代中期,前苏联地Golodkova LN等人已经研制出了保温大棚膜的稀土光转换剂。它能吸收97%的200-450nm的紫外光,并能将其转换为500-750nm 的红橙光。近年来,稀土有机配合物由于具有发光强度高和稳定性较好的优点,越来越引起人们的广泛关注,其应用研究非常活跃。稀土配合物发光机理在于有机配位体将所吸收的能量传递给稀土离子,使其4f电子被激发产生f-f电子跃迁并发光,例如铕β-二酮配合物是发红光的荧光材料,主要产生5D0-7F2的跃迁。这种发光材料能吸收太阳光中的紫外光并转换为可见光,将其添加到塑料膜中能改善光质,更好地利用太阳能。 这种铕的配合物在365nm高压汞灯下观察有明亮的红色发光。从荧光的激发与发射光谱结果来看,配合物激发态处于长波紫外范围,这是配体的吸收,由于配合物是个大的共轭体系,所以π-π*吸收强度特别高,吸收的能量通过分子内能量传递,使中心离子Eu3+发出强的红光。 金属离子与有机配体的配位反应: EuCI3+3C6H5COOH Eu(C6H5COOH)3+3HCI Eu(C6H5COOH)3+phen Eu(C6H5COOH)3 phen 三.仪器与试剂 试剂:36%-38%的盐酸,氢氧化钠,苯甲酸(或苯甲酸钠),邻菲咯啉(phen),pH试纸(或ph计),无水乙醇。 仪器:荧光分光光度计,恒温磁力搅拌器,烘箱,减压抽滤装置,烧杯,温度计,移液管等。

配合物的合成及荧光性能

___________________________________________________________________________________________________________XXXXXXXX 配合物[La(PIP)2?2H 2O](NO 3)3的合成及荧光性能 XX ,XX ,XXX ,XXX (XXXX XXXX ,XXXX ) 摘 要:合成了镧(Ⅲ) 配合物[La(PIP)2?2H 2O](NO 3)3(PIP=2-苯基咪唑并[5,6-f]-1,10邻菲罗啉),通过核磁氢谱、元素分析、红外光谱、紫外-可见吸收光谱以及荧光光谱和热重分析对配合物的组成、结构、光学带隙、发光特性和热稳定性能进行表征。结果表明,配合物具有良好的热稳定性,光学带隙为4.08eV ,在437nm 最佳激发波长下,产生发光峰在约534nm 纯绿光发射。这为进一步研究La -PIP 配合物的发光性质和开发新型功能器件提供了基础。 关键词:邻菲罗啉;镧(Ⅲ)配合物;合成;光学性能 Synthesis and Fluorescence Properties of [La(PIP)2?2H 2O](NO 3)3 XXXXXXX (XXXXXXXX) Email*:XXXXXXX Abstract: A New Lanthanum (III) coordination compound [La(PIP)2?2H 2O](NO 3)3 (PIP=2-phenyl -imazole[5,6-f]-1,10 phenanthroline) was synthesized. Its structure, optical gap, fluorescence properties and thermal properties were charaterized by 1HNMR, elemental analysis, FT -IR spectra, Uv -vis spectra, fluorescence spectra and DTA -TG technique. The results show that the complex has excellent thermal stability properties. The optical gap is 4.08eV . A Strong pure green emission at 543nm was found under the optimum excitation wavelength 437 nm. These results can be used in further studies of the structural and functional properties of electrolumescence devices based on the La -PIP assembly. Key words: 1, 10-phenanthroline; Lanthanum (III) complex; Synthesis; Fluorescence properties 引言 近年来,发光材料被广泛的应用于社会的各行各业,国内外学者们对于新型的发光材料的探索也不断的深入,稀土发光配合物发光谱带窄、色纯度高、光吸收能力强、荧光寿命长、物理和化学性能稳定等诸多优点,一直是人们研究的焦点[1-2]。研究发现,稀土配合物的发光特性主要取决于中心离子,修饰配体并不影响发光颜色等优点,通过对配体进行修饰,使配体三重激发态与中心离子的能级相匹配,可提高配合物材料的发光效率,改变其热稳定性等[3]。在诸多稀土配合物配体中,邻菲罗啉衍生物因含两个可同时螯合配位的氮原子,易于与稳定低价态的稀土元素离子形成反馈π键,具有良好的配位能力等优点,其开发与应用受到科研人员的极大关注[4-5]。王蕊等[6]通过对邻菲咯啉进行修饰,合成了2,9-二-(n -2,5,8,-三氮杂壬烷基)-1,10-菲罗啉,并以此为配体,合成稀土金属离子荧光配合物,表现出良好的光致发光和电致发光性能。 为了得到结构新颖、发光性能好的稀土金属配合物,本文合成了2-苯基咪唑并[5,6-f]邻菲罗啉镧(Ⅲ),通过元素分析确定了配合物组成,利用红外、紫外光谱分析对其结构进行了表征,采用荧光光谱和热分析对配合物的发光性能和热稳定性进行了研究。 1 实验 1.1 实验药品与仪器 实验药品:1,10-邻菲罗啉(天津市津北精细化工有限公司);溴化钾、二氯甲烷、三氯甲烷、冰醋酸、

配位化学讲义 第五章 配合物的电子光谱

配位化学讲义第五章配合物的电子光谱

第五章过渡金属配合物的电子光谱第一节概论 一、什么是电子光谱? 定义:当连续辐射通过配合物时,配合物选择性地吸收某些频率的光,会使电子在不同能级间发生 跃迁,形成的光谱称为电子吸收光谱(简称电 子光谱)。 二、配合物电子光谱所包含的成份 1、电荷迁移光谱(荷移光谱) 由于电子在金属与配体间迁移产生的光谱。 2、d—d跃迁光谱 电子在金属离子d轨道间跃迁产生的光谱。 3、异号离子光谱 外界抗衡离子的吸收光谱。如[Cu(NH3)4](NO3)2中

NO3-的吸收。 4、配体光谱 配体本身的吸收光谱。如[Ti(H2O)6]3+中H2O的吸收。 第二节电荷迁移光谱、异号离子光谱及配体光谱 一、电荷迁移光谱 1、L→M的跃迁 以[MCl6]n-为例,分子轨道能级图: e g* e g* Δo t2g* t2gν1 ν2 ν4 ν3 低能充满配体 t2g t2gπ群轨道 e g e g、t2g主要成份为配体轨道;而t2g*、e g*主要成份为 金属离子轨道。 四种跃迁:ν1 = t2g t2g*

ν2 = t2g e g* ν3 = e g t2g* ν4 = e g e g* 2、M→L的跃迁 ν1 e g* e g* Δo ν2 t2g配体高能空轨道 t2g t2g、e g*主要为金属离子轨道成份,而t2g*主要为配体轨道。 例:[Co(CN)6]3-, M→L跃迁, ν1=49500cm-1 二、异号离子光谱 可分为三种情况: 1、在紫外区有吸收,如NO3—,NO2—;

2、在可见区有吸收,如CrO42—、MnO4—; 3、无吸收,如Cl—、SO42—、ClO4—。 由于ClO4—既无吸收,配位能力又差。因此测定 水合离子的光谱时,为防止水解现象,常加入 HClO4。如测定[Ti(H2O)6]3+的光谱时,若在 HCl中进行,则吸收峰移向长波方向。 三、配体光谱 配体如水、有机分子通常在紫外区有吸收。形成配合物后,这些谱带仍保留在配合物的光谱中,吸收峰位置有可能发生移动。 第三节d—d跃迁光谱 一、概论 不考虑d电子间相互作用时,d2组态的能态分析:基态激发态1 激发态2

苯并咪唑羧酸及其碱土金属配合物电子光谱性质的含时密度泛函及其概念密度泛函研究

收稿日期:2009201216 联系人简介:钟爱国(19642),男,副教授,从事理论及计算化学研究工作.E 2m ail :zhongaiguo @https://www.wendangku.net/doc/e76947620.html, [文章编号]100029035(2009)0320200205 苯并咪唑羧酸及其碱土金属配合物电子光谱 性质的含时密度泛函及其概念密度泛函研究 钟爱国3,黄 凌,陈定奔 (台州学院化学系,浙江临海317000) [摘 要] 用密度泛函理论(DFT )以及B3LY P 泛函在62311++G 33水平上,对苯并咪唑羧酸(L )及其3种碱土金属配合物M L (M =Mg ,Ca ,Ba )的基态(S 0)结构进行优化,用含时密度泛函 理论(T D 2DFT )在62311++G 33水平下计算其吸收光谱.用单激发组态相互作用(CIS )法在HF/ 6231+G 3上优化其最低激发单重态(S 1)的几何结构,用T D 2DFT B3LY P/62311++G 33计算其 发射光谱.结果表明,配体L 与M (Ⅱ )结合成M L 后,随原子序数的增大(Mg

第三章配合物的电子光谱学

过渡金属配合物的电子光谱 电子光谱 配体内部的电子光谱 配位场光谱 电荷迁移光谱

一电子光谱 过渡金属配合物的电子光谱属于分子光谱, 它是分子中电子在不同能级 的分子轨道间跃迁而产生的光谱。 根据电子跃迁的机理, 可将过渡金属配合物的电子光谱分为 三种: ★d轨道能级之间的跃迁光谱, 即配位场光谱; ★配位体至金属离子或金属离子至配位体之间的电荷迁移光谱; ★配体内部的电子转移光谱。 电子光谱有两个显著的特点: ①为带状光谱。这是因为电子跃迁时伴随有不同振动精细 结构能级间的跃迁之故。 ②在可见光区有吸收, 但强度不大。但在紫外区, 常有强度 很大的配位体内部吸收带。

紫红过渡金属配合物电子运动所吸收的辐射能量一般处于可见区或紫外区, 所以这种电子光谱通常也称为可见光谱及紫外光谱。当吸收的辐射落在可见区时, 物质就显示出颜色。物质所 显示的颜色是它吸收最少的 那一部分可见光的颜色, 或 者说是它的吸收色的补色。 红橙黄黄绿 蓝绿蓝蓝紫绿780650598580560 500490480435380 右表和下图给列出可见 光的吸收与物质颜色之间的 对应关系。 绿表

二配体内部的电子光谱 配位体如水和有机分子等在紫外区经常出现吸收谱带。形成配合物后, 这些谱带仍保留在配合物光谱中, 但从原来的位置稍微有一点移动。 配位体内部的光谱包括以下三种类型: ①n→σ*处于非键轨道的孤对电子到最低未占据的空轨道ζ*反键轨道的跃迁。水、醇、胺、卤化物等配体常发生这类跃迁。 ②n→π* 处于非键轨道的孤对电子到最低未占据空轨道π*反键分子轨道的跃迁, 常出现在含羰基的醛和酮类分子中。 ③π→π*处于最高占据轨道π分子轨道的π电子向最低未占据的空轨道π*反键分子轨道跃迁, 这类跃迁经常出现在含双键、叁键的有机分子中。 配体分子,可以具有上述一种,也可同时具有两种跃迁方式,但同配位场光谱相比,只要记住他们的特点,一是大都出现在紫外区,一是吸收强度大,一般不难识别。

配合物的电子光谱

第五章过渡金属配合物的电子光谱 第一节概论 一、什么是电子光谱? 定义:当连续辐射通过配合物时,配合物选择性地吸收某些频率的光,会使电子在不同能级间发生跃迁,形成的光谱称为电子吸收光谱(简称电子光谱)。

配合物 配体 20030040050060 wavelength (nm) 二、配合物电子光谱所包含的成份 1、电荷迁移光谱(荷移光谱) 由于电子在金属与配体间迁移产生 的光谱。 2、d—d跃迁光谱 电子在金属离子d轨道间跃迁产 生的光谱。

3、异号离子光谱 外界抗衡离子的吸收光谱。如[Cu(NH3)4](NO3)2中NO3?的吸收。 可分为三种情况: (1)在紫外区有吸收,如NO3?,NO2?; (2)在可见区有吸收,如CrO42?、MnO4?; (3)无吸收,如Cl?、SO42?、ClO4?。 HClO4:ClO4?无吸收,配位能力又差。

[Ti(H 2O)5(OH)] 2+ [Ti(H 2O)6]3+ [Ti(H 2O)5Cl] 2+ H + Cl OH 4、配体光谱 配体如水、有机分子通常在紫外区有吸收。形成配合物后,这些谱带仍保留在配合物的光谱中,吸收峰位置有可能发生移动。 如[Ti(H 2O)6]3+ 中H 2O 的吸 收。 第二节 电荷迁移光谱

不同对称类型的轨道间跃迁是允许的(u → g 、 g → u ) 1、无π分子轨道的配体(NH 3、CH 3? ) t 1u *a 1g *e g *t 2g e g t 1u a 1g ν2 ν1 NH 3配体

L →M 跃迁: 跃迁类型 M(t 2g ) = ν1M(e g *) = ν2 L σ(t 1u ) L σ(t 1u ) . . 弱场(Δ

振动分辨的电子光谱的计算

振动分辨的电子光谱的计算 文/Sobereva 2014-Feb-24 1 原理 表面上看,光电子能谱、UV-Vis都只是电子态之间的变化的光谱(本文只讨论UV-Vis吸收光谱),吸收峰来自于电子态之间的跃迁。但是实际上每个电子态还对应诸多振动模式。比如从A电子态向B电子态跃迁的光谱,只要有对应频率的光射进来,电子实际上就会从A 的振动基态跃迁到B的各种振动态上,它们的跃迁能是不同的。因此,一个电子态跃迁的峰,如果将光谱分辨率增加来获得精细结构,就会看到它是由许多与振动相关峰构成的。这称为振动分辨的电子光谱(Vibrationally-resolved electronic spectra)。 在0K下体系会处于振动基态。而在有限的温度下,A的振动激发态也会有一定分布,故也可以从A的振动激发态跃迁到B的各个振动态上。根据波尔兹曼分布,求出A的各个振动态的分布比例,将A的每个振动态向B跃迁的光谱进行权重叠加,就是实际温度下观测到的振动分辨的电子光谱。因此,振动分辨的电子光谱对温度的依赖性是可以理论计算的。 理论计算振动分辨的电子光谱需要考虑|电子基态v=0>到各种|激发态v=?>的"电子+核"波函数Ψ间的跃迁,v代表振动量子数,0对应振动基态。在基态和激发态任务中做振动分析分别得到这两个电子态下的各振动能级,并求差值,就得到了振动分辨的电子光谱中涉及的各种态之间的跃迁能。但光知道这是没用的,为了做出图来,我们关键要求的是每个这样的跃迁的振子强度,这就要知道各个Ψ之间的跃迁偶极矩,振子强度正比于跃迁偶极矩的模方。在BO近似下,跃迁偶极矩<Ψ'|μ|Ψ''>可以分离为电子波函数φ和核波函数ψ部分:<Ψ'|μ|Ψ''>=<ψ'|μ_e|ψ''>,其中μ_e为电子跃迁偶极矩<φ'|μ|φ''>. μ_e显然是依赖于核坐标的,可以相对于激发态平衡结构进行Taylor展开,对它的处理导致了<Ψ'|μ|Ψ''>计算的三种方法: (1)FC(Franck-Condon)近似:μ_e只取Taylor展开的第一项,因此μ_e是个常量,即激发态平衡结构时的电子跃迁偶极矩。通常这个假设已经足够给出合理结果了。 (2)HT(Herzberg-Teller)方法:只取Taylor展开的第二项,μ_e故为核坐标的函数。通常不单独用这个方法,因为结果肯定和实际对不上,毕竟Taylor展开的第一项是最重要的。单独使用HT的场合仅在于讨论Herzberg-Teller效应对振动分辨的电子光谱的影响。不过,有的时候两个态之间由于电子态对称性的原因从电子跃迁偶极矩上看是严格跃迁禁阻的,但是若用比如HT方法把核振动也考虑进去后,两个态之间跃迁偶极矩就不再为0了,这使得跃迁有一定(但很小)的几率能够发生。所以如果要研究很弱的跃迁,特别是暗态,必须考虑HT。 (3)FCHT方法:即FC和HT部分都算上,把Taylor展开的第一项(常数项)和第二项(一阶校正)都考虑。这样的结果适用范围显然比FC近似要宽。 PS:FC原理、FC因子(或称FC积分)、FC近似不要搞混,虽然有关,但是具体说的问题不同。FC原理是指的电子跃迁过程很短暂,核坐标来不及改变。FC因子是指的基态振动波函数和激发态振动波函数之间的重叠积分的平方。而FC近似则是计算振动分辨的电子光谱

相关文档
相关文档 最新文档