文档库 最新最全的文档下载
当前位置:文档库 › (完整版)线性代数试题及答案

(完整版)线性代数试题及答案

(完整版)线性代数试题及答案
(完整版)线性代数试题及答案

线性代数习题和答案

第一部分选择题(共28分)

一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有

一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。

1.设行列式a a

a a

1112

2122

=m,

a a

a a

1311

2321

=n,则行列式

a a a

a a a

111213

212223

+

+

等于()

A. m+n

B. -(m+n)

C. n-m

D. m-n

2.设矩阵A=

100

020

003

?

?

?

?

?

?

?

,则A-1等于()

A.

1

3

00

1

2

001

?

?

?

?

?

?

?

?

?

?

B.

100

1

2

00

1

3

?

?

?

?

?

?

?

?

??

C.

1

3

00

010

00

1

2

?

?

?

?

?

?

?

??

D.

1

2

00

1

3

001

?

?

?

?

?

?

?

?

?

?

3.设矩阵A=

312

101

214

-

-

-

?

?

?

?

?

?

?

,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()

A. –6

B. 6

C. 2

D. –2

4.设A是方阵,如有矩阵关系式AB=AC,则必有()

A. A =0

B. B≠C时A=0

C. A≠0时B=C

D. |A|≠0时B=C

5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()

A. 1

B. 2

C. 3

D. 4

6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()

A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0

B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0

C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0

D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+

λsαs=0和μ1β1+μ2β2+…+μsβs=0

7.设矩阵A的秩为r,则A中()

A.所有r-1阶子式都不为0

B.所有r-1阶子式全为0

C.至少有一个r阶子式不等于0

D.所有r阶子式都不为0

8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()

A.η1+η2是Ax=0的一个解

B.1

2

η1+

1

2

η2是Ax=b的一个解

C.η1-η2是Ax=0的一个解

D.2η1-η2是Ax=b的一个解

9.设n阶方阵A不可逆,则必有()

A.秩(A)

B.秩(A)=n-1

C.A=0

D.方程组Ax=0只有零解

10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()

A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量

B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值

C.A的2个不同的特征值可以有同一个特征向量

D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,

λ3的特征向量,则α1,α2,α3有可能线性相关

11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必

有()

A. k≤3

B. k<3

C. k=3

D. k>3

12.设A是正交矩阵,则下列结论错误的是()

A.|A|2必为1

B.|A|必为1

C.A-1=A T

D.A的行(列)向量组是正交单位向量组

13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()

A.A与B相似

B. A与B不等价

C. A与B有相同的特征值

D. A与B合同

14.下列矩阵中是正定矩阵的为()

A.

23

34

?

?

?

?

? B.

34

26

?

?

?

?

?

C.

100

023

035

-

-

?

?

?

?

?

?

?

D.

111

120

102

?

?

?

?

?

?

?

第二部分非选择题(共72分)

二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每

小题的空格内。错填或不填均无分。

15.111

356

92536

=.

16.设A=

1

1

1

1

1

1

-

-

?

?

?

?

?,B=

1

1

2

2

3

4

--

?

?

?

?

?.则A+2B= .

17.设A=(a ij)3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式(i,j=1,2,3),则

(a11A21+a12A22+a13A23)2+(a21A21+a22A22+a23A23)2+(a31A21+a32A22+a33A23)2= .

18.设向量(2,-3,5)与向量(-4,6,a)线性相关,则a= .

19.设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它

的通解为.

20.设A是m×n矩阵,A的秩为r(

数为.

21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α-β)= .

22.设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .

23.设矩阵A =010********---?? ?

?

???

,已知α=212-?? ???

??是它的一个特征向量,则α所对应的特征值

为 .

24.设实二次型f(x 1,x 2,x 3,x 4,x 5)的秩为4,正惯性指数为3,则其规范形为 . 三、计算题(本大题共7小题,每小题6分,共42分)

25.设A =120340121-?? ?

?

?

??

,B =223410--?? ???.求(1)AB T ;

(2)|4A |. 26.试计算行列式31125134

20111533

------.

27.设矩阵A =423110123-?? ??

?

??,求矩阵B 使其满足矩阵方程AB =A +2B .

28.给定向量组α1=-?? ??

????

2103,α2=1324-?? ??????,α3=3021-?? ??????,α4=0149-?? ???

???. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。 29.设矩阵A =121

02242

66210233

3334-----??

?

?

??

?

?. 求:(1)秩(A );

(2)A 的列向量组的一个最大线性无关组。

30.设矩阵A=022234243----?? ??

?

??的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .

31.试用配方法化下列二次型为标准形

f(x 1,x 2,x 3)=x x x x x x x x x 12223212132323444+-+--,

并写出所用的满秩线性变换。

四、证明题(本大题共2小题,每小题5分,共10分)

32.设方阵A 满足A 3=0,试证明E -A 可逆,且(E -A )-1=E +A +A 2.

33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明

(1)η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解; (2)η0,η1,η2线性无关。

答案:

一、单项选择题(本大题共14小题,每小题2分,共28分) 1.D 2.B 3.B 4.D 5.C

6.D

7.C

8.A

9.A 10.B 11.A 12.B 13.D 14.C

二、填空题(本大题共10空,每空2分,共20分) 15. 6 16. 337137--??

?

?

?

17. 4 18. –10

19. η1+c(η2-η1)(或η2+c(η2-η1)),c 为任意常数 20. n -r 21. –5 22. –2 23. 1

24. z z z z 12223242++-

三、计算题(本大题共7小题,每小题6分,共42分)

25.解(1)AB T =120340*********-?? ?????--?? ??

?

??

=861810310?? ??

???. (2)|4A |=43|A |=64|A |,而

|A |=1

20

3

40121

2-=-. 所以|4A |=64·(-2)=-128

26.解 3112513420111

5

3

3

51111113100105

5

3

------=-----

=51111

11550---- =5

11

6

2

0550

62

55

301040---=

---=+=.

27.解 AB =A +2B 即(A -2E )B =A ,而

(A -2E )-1=2231101211431531641

--?? ??

?

?

?=-----?? ??

???-. 所以 B =(A -2E )-1A =143153164423110123-----?? ?????-?? ??

?

??

=

386 296 2129

--

---

?

?

?

?

?

?

?

.

28.解一

-

--

-

?

?

?

?

?

?

?

?

?→

?

--

--

-

?

?

?

?

?

?

?

?

2130

1301

0224

3419

0532

1301

0112

013112

?→

?

--

?

?

?

?

?

?

?

?

?→

?

?

?

?

?

?

?

?

?

1035

0112

0088

001414

1035

0112

0011

0000

?→

?

?

?

?

?

?

?

?

?

1002

0101

0011

0000

,

所以α4=2α1+α2+α3,组合系数为(2,1,1).

解二考虑α4=x1α1+x2α2+x3α3,

-++=

-=-

+=

+-=

?

?

?

?

?

?

?

230

31

224

349

123

12

23

123

x x x

x x

x x

x x x.

方程组有唯一解(2,1,1)T,组合系数为(2,1,1).

29.解对矩阵A施行初等行变换

A?→

?

--

-

-

-?

?

?

?

?

?

?

?12102 00062 03282 09632

?→?

--

-

-

-

?

?

?

?

?

?

?

?

?→

?

--

-

-

?

?

?

?

?

?

?

?12102

03283

00062

000217

12102

03283

00031

00000

=B.

(1)秩(B)=3,所以秩(A)=秩(B)=3.

(2)由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一

个最大线性无关组。

(A的第1、2、5列或1、3、4列,或1、3、5列也是)

30.解A的属于特征值λ=1的2个线性无关的特征向量为

ξ1=(2,-1,0)T,ξ2=(2,0,1)T.

经正交标准化,得η1=

255

55

/

/

-

?

?

?

?

?

?

?

,η2=

2515

4515

53

/

/

/

?

?

?

?

?

?

?

.

λ=-8的一个特征向量为

ξ3=

1

2

2-

?

?

?

?

?

?

?

,经单位化得η3=

13

23

23

/

/

/

.

-

?

?

?

?

?

?

?

所求正交矩阵为T=

2552151513

55451523

05323

///

///

//

-

-

?

?

?

?

?

?

?

.

对角矩阵D=

100 010 008-?

?

?

?

?

?

?

.

(也可取T=

2552151513

05323

55451523

///

//

///

-

--

?

?

?

?

?

?

?

.)

31.解f(x1,x2,x3)=(x1+2x2-2x3)2-2x22+4x2x3-7x32

=(x1+2x2-2x3)2-2(x2-x3)2-5x32.

y x x x

y x x

y x

1123

223

33

22

=+-

=-

=

?

?

?

?

?

?

?

,即

x y y

x y y

x y

112

223

33

2

=-

=+

=

?

?

?

?

?

因其系数矩阵C=

120

011

001

-

?

?

?

?

?

?

?

可逆,故此线性变换满秩。

经此变换即得f(x1,x2,x3)的标准形

y12-2y22-5y32 .

四、证明题(本大题共2小题,每小题5分,共10分)

32.证由于(E-A)(E+A+A2)=E-A3=E,

所以E-A可逆,且

(E-A)-1= E+A+A2 .

33.证由假设Aη0=b,Aξ1=0,Aξ2=0.

(1)Aη1=A(η0+ξ1)=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解。

(2)考虑l0η0+l1η1+l2η2=0,

即(l0+l1+l2)η0+l1ξ1+l2ξ2=0.

则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾。所以

l1ξ1+l2ξ2=0.

又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而l0=0 .

所以η0,η1,η2线性无关。

相关文档
相关文档 最新文档