文档库 最新最全的文档下载
当前位置:文档库 › 视觉导航寻迹

视觉导航寻迹

视觉导航寻迹
视觉导航寻迹

大学生科技活动项目资助申请书

项目名称基于视觉导航的AGV智能寻迹机器人

项目类别:课外科技制作

申请人冯文所在单位机电工程学院

指导教师:职称

填报时间 2010.06. 18

校大学生科技活动领导办公室

项目概况

项目名称基于视觉导航的AGV智能寻迹机器人

预期成果形式论文论著□研究报告□新产品√鉴定成果□专利□申请经费

(元)

姓名性别出生年月专业班级

注:学生限报5人

项目简介(300字)(简要说明申请项目的意义、研究内容及预期目标)

项目的意义:

AGV指装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的机器人,以可充电之蓄电池为其动力来源。一般可透过电脑来控制其行进路线以及行为,该机器人则依循设定的轨道所带来的讯息进行移动与动作。在我国,随着物流系统的迅速发展,AGV的应用范围也在不断扩展,开发出能够满足用户各方面需求(功能价格质量)的AGV系统技术是未来我们必须面对的现实问题,并且充分地体现其自动性和柔性,实现高效、经济、灵活的无人化生产。

研究内容及预期目标:

曾有国外专家对AGV控制系统需解决的主要问题做了恰当的比喻:Where am I (我在哪里)Where am I going(我要去哪里)How can I get there(我怎么去),这三个问题归纳起来分别就是AGV控制系统中的三个主要技术:AGV的导航(通过图像处理技术自动识别路线),AGV的路径规划(根据工业生产需要利用计算机模拟最佳路径),AGV的导引控制(利用无线技术实时反馈并安全对其控制)。为了能够解决好这些问题,AGV控制系统是技术的核心。

预期目标:

1,能够实现视觉导航,按一定速度移动。

2,能够实现无线实时反馈,并对控制命令做出准确反映

3,能够实现对路径的记忆和优化

第1页

(一)申请项目的依据和意义(国内外相关领域的研究现状及发展趋势,开展此项研究的必要性):

自动导向车辆AGV的研究始于20世纪50年代的美国。在发达工业国家,AGV已实现商品化,并在机械工业、自动仓库、物流中心等各个领域得到了广泛应用。AGV的引导与控制方式是AGV的核心问题之一,所采用的引导技术主要有:电磁感应技术,激光检测技术,超声检测技术,光反射检测技术,惯性导航技术,图像识别技术和坐标识别技术等。在这些导航方式中,有线式引导的研究最早也应用最为广泛;然而视觉导航方式是最有潜力的,如此成为大量研究人员关注的热点。对现在的图像处理技术和计算机技术而言,很难依据三维图像进行导航,而最为普遍的方式是路面上涂设白色条带状路标来标识车辆欲行驶路径,并利用机器视觉识别路径以实现车辆自主导航。为了开展这一领域的研究,我们设计并制造了一辆用CCD识别地面铺设的条状路标而进行导航的AGV。该AGV自主导航系统主要由路径图象识别系统、行驶驱动系统、转向驱动系统、制动系统、避障系统及其它辅助系我国在“十五”规划中已经将先进制造技术作为科技发展的重点以提高企业的竞争力。自动车辆AGV是实现FMS.FAS,CIMS的一项关键基础设备,以此种自动车辆AGV为核心设备,附加必要的配套设施和管理软件.可构成物流自动运输系统或组态式柔性生产组织管理系统,适用于我国企业的传统生产模式向柔性或准柔性生产组织模式的转化,对提高企业的市场竞争力和经济效益具有十分重大的意义。AGV的应用领域扩大而且工作条件也变得多样化。因此,新的引导方式和技术得到了更广泛的研究与开发,在最近的几年里,各种新式的AGV 被广泛地应用于各个领域。单元式AGV主要用于短距离的物料运输并与自动化程度较高的加工设备组成柔性生产线。例如,自动引导叉车(ForkingVehicle)用于仓贮货物的自动装卸和搬运,小型载货式AGV用于办公室信件的自动分发和电子行业的装配平台。除此以外,AGV 还用于搬运体积和重量都很大的物品,尤其是在汽车制造过程中用多个载货平台式AGV组成了移动式输送线,构成了整车柔性装配生产线。最近.小型的AGV应用更为广泛,而且以长距离不复杂的路径规划为主,根据对国外物料搬运系统装备类型的统计,采用自动引导车的占41%,有轨搬运车的占29%,起重机的占9%,辊子输送机的占10%,悬挂运输机的占10%。AGV在我国的研究及应用起步较晚.,所以开展此项目非常有必要。并且AGV所采用的图像导航技术,图像识别技术和坐标识别技术用于其它自动化方面也是很有潜力的。

第2页

(二)研究内容及目标

1,图象识别系统:

摄像头本身没有智能,它拍到一幅图像的时候,不知道拍到的是什么,所以要经过一定的处理,变成有用的信息,而且所有的控制和处理都以图像信息为基础。图像处理其基本内容一般指数字图像处理。数字图像是指用数字摄像机、摄像头等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。由数字化得到的一幅图像的数据量十分巨大,。如果是动态图像,是其数据量更大。因此图像压缩对于图像的存储和传输都十分必要,因此我们的目标是改进图片的质量,例如增加对比度,去掉模糊和噪声,修正几何畸变等;图像复原是在假定已知模糊或噪声的模型时

2,行驶驱动,制动系统和转向驱动系统:

该部分主要有驱动电路板控制,它主要负责系统各部分电压分配以及电机的驱动,由于这部分电路功耗较大,单独设计一块电路板可以使散热性能更好。通过核心控制板,获取速度并输出舵机和驱动电机的控制信号,我们的目标电机和舵机能够灵活和及时响应控制中心发出的命令。

3,避障系统及其它辅助系统:

通过图像检测,目标轨迹和其它障碍物之间的区别,利用软件实现,机器人的自动避障,或者利用超声波测距对障碍物和机器人之间的距离进行测量控制

(三)实施方案及要解决的关键问题

根据视觉导航方案设计,该机器人包括六大模块:控制处理芯片的选择,图像采样模块,速度传感模块,舵机驱动模块,电机驱动模块和辅助调试模块。我们选择的是飞思卡尔的S12单片机,它是本系统的核心部分,主要负责收集赛道图像数据,赛车速度等反馈信息,并对这些信息进行恰当的处理,形成合适的控制量来对舵机和电机进行控制,

1,图像采样模块由S12的AD模块,外围芯片(LM1881)和电路,与摄像头组成。其功能是获取前方的图形数据,以供S12作进一步的分析处理。

2 ,速度传感器由小型的编码器和ECT脉冲捕捉功能构成。

3,舵机模块和驱动模块分别用于实现赛车传向和驱动。

4,辅助调试模块主要用于赛车系统的程序烧写,功能调试和测试,赛车状态监控,赛车系统参数和运行策略设置等方面。

关键问题:如果说系统硬件对于机器人来说是它的骨架和躯体,那么软件算法就是它的思想,所以软件系统对于赛车来说至关重要。首先,赛车系统通过图像采样模块获取前方赛道图像数据,同时通过速度传感器模块实时获取机器人的速度,然后S12利用边缘检测方法从图像数据中提取赛道信息,求得机器人与路径之间的相对位置,利用PID方法对舵机进行反馈控制,最终根据检测到的速度控制策略,对机器人进行控制,使机器人按照预定的路径行驶。

(四)计划进度

第一阶段:方案整定及优化

1,广泛收集技术报告,及国内外相关研究论文

2,对各种方案进行整合确定大体的思路和方法

3,准备材料和硬件器件

第二阶段:方案实施

1,对硬件电路的设计

2,对模型的组装及整体布局

3,对软件的编写

4,对辅助工具的开发

第三阶段:对机器人的调试和测试

1,对图像处理程序的调试

2,对硬件电路的调试

3,对主控制的调试

4,整体优化调试

第四阶段:对问题的优化和整体升级

1,对比预期目标,总结差距提出解决的方案

2,对调试过程中出现的问题总结,找到解决办法

3,写研制报告

(五)经费预算

资料费500 元说明:购买参考书籍,邮购期刊打印材料材料费1800 元说明:电子元器件印PCB板芯片舵机电机模型上机费600 元说明:(6小时每天)*(100天)*(1元每时)其它300元说明:车费电话费等

(六)指导老师意见

指导老师:

(七)申报单位意见:

院(系)科技活动领导小组

(签名)

年月日

(八)专家评审意见:

专家签名:

年月日

(九)校大学生科技活动领导小组意见:

校大学科技活动领导小组(章)

年月日

第5页

AGV视觉导航设计实施方案-经典

AGV视觉导航设计方案-经典

————————————————————————————————作者:————————————————————————————————日期:

AGV搬运机器人视觉导航方案 AGV(Automated Guided Vehicle,AGV)作为现代制造系统中的物料传送设备已经得到了广泛应用。从理论上看,视觉导引AGV具有较好的技术应用前景,然而其却没能像电磁导引和激光导引AGV 那样广泛使用,主要问题在于视觉导引技术在实时性、鲁棒性和测量精度方面还有待进一步突破。 由多个AGV 单元组成的AGV 系统(Automated Guided Vehicle System,AGVS)配有系统集成控制平台,对AGV 的作业过程进行监管和优化,例如,创建任务、地图生成、发出搬运指令、控制AGV 的运行路线、跟踪传送中的零件以及多AGV 的任务规划和调度。将AGV 与外部自动化物流系统、生产管理系统有机结合,对系统内每台AGV 合理地分配当前任务、选择最佳路径、实时图形监控、管理运行安全,实现信息化的管理和生产,方便地构成由调配中心计算机控制的自动化生产线、自动仓库和全自动物流系统。 目前视觉导引方式主要方法有基于局部视觉和全局视觉两种方法。基于视觉导引的AGV 还没有大规模产业化,但其潜在的市场前景使其成为近几年来国内外AGV 研究的热点。 全局视觉导引方法是将摄像机安装在天花板或者墙上,以整个工作环境为目标,对包括AGV、导引路径、障碍物等进行对象识别,对各个摄像机获取的图像进行基于特征的图像融合,得到全局地图。在生成的全局地图中,每个AGV 单元,导引线,障碍物的绝对坐标都能够实时获取。全局视觉方法相对于将摄像机安装在车体上的局部视觉方法,在多AGV 调度、障碍物检测(固定和移动)、避障、全局监测方面更具优势。尤其是可以对AGV 和障碍物的特征进行分类,通过增强型的卡尔曼滤波方法进行运动估计,动态跟踪每一个目标的位置、速度。但是这种方法要根据不同的现场环境,按照视野不被遮挡并覆盖整个工作空间的原则,根据摄像机放置算法决定摄像机的数目、安装位姿。因此这张全局视觉方法仅仅适用于室内且空间较大的场合,而且导引精度较低。 相对而言,目前国内外研究较多的是局部视觉导引方式。局部视觉导引方式是将单车看作一个智能体,在车上安装摄像机和图像采集系统实时地处理环境信息,其主要有基于自然场景和结构化场景两种导航方式。基于自然场景的导航方式通过运行路径周围环境的图像信息与环境图像数据库中的信息进行比较,从而确定当前位置并对运行路线做出决策。这种方法不要求设置任何物理路径,在理论上具有最佳的柔性;但三维图像处理的实时性差和环境图像数据库的难以建立,限制了它的实际应用。 基于结构化场景的导引方式一般是在地面粘贴或铺设一些特殊形状或颜色的线路和符号,由视觉系统识别预定义的路经,包括导引路径相对AGV 的位置偏差和角度偏差、路径节点、工位、转弯、停车、加减速等标识。这种视觉导航方式的优点是视觉系统只需提取预设的特定目标,并根据目标特征的先验知识做进一步的计算,提高了图像处理的速度和系统的鲁棒性。基于结构化场景的视觉导航技术能较好满足柔性制造系统对物流设备在导向柔性、空间利用、运行安全性以及成本等方面的要求,具有路径设置柔性高、信息识别速度快、导航稳定程度好、导航行走精度高和导向信息容量大等突出优点,因此有着更广阔的应用前景,也是国内外研究机构和学者近年来研究较多的视觉导引方式。

基于图像的视觉伺服系统

基于图像的机器人视觉伺服系统研究 班级:自121 姓名:成佳宇 学号:3120413006

基于图像的机器人视觉伺服系统 摘要本文采用基于图像的眼在手(eye in hand)视觉伺服结构,通过计算图像雅克比矩阵实现机械手的定位任务。本文采用应用最广泛的机器人工具箱(Robotics Toolbox for Matlab),在该工具箱的基础上,运用Sub-system实现Matlab和Simulink的有机结合,建立基于图像反馈的六自由度PUMA560机器人视觉伺服系统Simulink模型,仿真验证该模型的有效性。 关键字:puma560机器人;视觉伺服;图像的雅可比矩阵Abstract:In this paper,we use Image-based visual servoing control system, via image jacobin matrix function the positioning of the manipulator by calculation task. on the basis of Robotics Toolbox for Matlab, and using Sub - system to realize the organic combination of Matlab and Simulink, based on the image feedback Simulink model of six degrees of freedom PUMA560 robot visual servoing system, the simulation verify the validity of the model. Keyword:PUMA560robot;IBVS;Image jacobin 引言: 机器人视觉伺服己成为机器人领域重要的研究内容之一,但是机器人视觉伺服系统是一个十分复杂的非线性系统。视觉是一种复杂的感官,视觉信息中包含有大量的数据,要从 中提取特征信息,需要复杂的算法及耗费大量的运算时间,

一种结构化道路环境中的视觉导航系统

第36卷第6期2002年11月 浙 江 大 学 学 报(工学版) Journal of Zhejiang U niversity (Engineering Science ) V o l .36N o .6N ov .2002 收稿日期:2002203215. 作者简介:李欣(1977-),男,江西宁都人,硕士生,从事自主机器人视觉导航算法研究.E 2m ail :ndlixin @21cn .com 一种结构化道路环境中的视觉导航系统 李 欣,李宏东,顾伟康,李庆中 (浙江大学信息与电子工程系,浙江杭州310027) 摘 要:根据结构化道路环境的特点提出了一种将边沿检测和道路环境知识相结合的机器视觉算法,并结合基于行为响应的路径规划方法和智能预瞄控制方法,实现了一套基本的机器人视觉导航系统.在自主机器人实验平台 A TRV 22上的实验结果表明,该视觉导航系统能够实时理解结构化道路环境,并且能够控制机器人沿着合理路径 行驶. 关键词:结构化道路;视觉导航;机器视觉;路径规划;预瞄控制 中图分类号:T P 242.6 文献标识码:A 文章编号:10082973X (2002)0620630204 A v ision -based nav igation system i n structural road env ironm en t L I X in ,L I Hong 2dong ,GU W ei 2kang ,L I Q ing 2zhong (D ep art m ent of Inf or m ation and E lectronics E ng ineering ,Z hej iang U niversity ,H ang z hou 310027,Ch ina ) Abstract :Com b in ing the know ledge of structu ral road and edge detecting m ethod ,a m ach ine visi on algo 2rithm w as p ropo sed to understand the su rrounding environm en t .W ith the behavi o r 2based path p lann ing and in telligen t p review con tro lling ,a basic visi on based navigati on system w as created and i m p lem en ted on ou r au tonom ou s robo t test bed A TRV 22.Experi m en tal resu lts show ed that the p ropo sed visi on based sys 2tem can recogn ize drivab le area in real 2ti m e and drive the A TRV 22along a reasonab le p ath . Key words :structu ral road ;visi on 2based navigati on ;m ach ine visi on ;path p lann ing ;p review con tro l 结构化道路是指地面平坦,无障碍,有良好视觉效果的白线导航的道路环境.结构化道路可以用一条白线也可用两条白线来表示可通行区域,更复杂的是高速公路网上的白线.结构化道路环境下视觉导航系统能够实现自主移动平台道路实时理解和自主行驶.一个基于视觉的导航系统从功能结构来看应包括道路检测、路径规划、运动控制等各种性质各异的功能模块.在这个系统中关键技术是机器视觉、路径规划和运动控制,在这几个方面已有大量的研究[1,2],问题主要集中于机器视觉对路面环境的快速识别和理解能力差,大部分的算法受到光照和路面环境影响,鲁棒性能较差,而且算法无法实时实现.在路径规划和运动控制方面缺乏智能性.本文提出一种基于知识的视觉导航算法,充分利用结构化道 路环境知识和道路理解的历史记录进行道路环境理解,并且采用智能预瞄控制方法.该视觉导航算法在机器人实验平台A TRV 22上实现,并且进行大量实验.结果表明该自主机器人能快速准确地理解结构化道路环境,自主行驶的轨迹平滑,并且自主行驶路径是该结构化道路环境下的合理路径. 1 实验平台和视觉导航系统 在研究中所用的实验机器人平台是美国 I ROBO T 公司的A TRV 22产品 .机器人的运动由底层运动控制模块控制,该模块直接控制车轮电机.I ROBO T 公司提供底层运动控制模块软件接口,高层控制只需给接口给定线速度和角速度就可以实现

机器人视觉伺服系统综述

机器人视觉伺服系统综述 摘要:对机器人视觉伺服系统进行阐述,介绍了机器人视觉伺服系统的概念、发展历程以及研究背景;并从不同的角度对机器人视觉伺服系统进行了分类。最后介绍了该领域的研究现状、所取得的成就,以及今后的发展趋势。 关键词:机器人;视觉伺服;综述 Survey of robot visual servoing system Abstract:: In this paper,the survey of robot visual servoing system are introduced.The paper reviews the concept and history background of robot visual servoing system.This article also classify the robot visual servo system from different aspects. Finally, it introduce the research status quo, achievements and future trends in the field. Key words:robot, visual servoing, summary 1.引言 随着先进科学技术的不断发展,机器人已经在生产和生活中起到了越来越重要的作用,因次人们不断对机器人技术提出更高的要求。为了使机器人能够完成更加复杂的工作,适应更加复杂的环境,机器人不仅需要更加完善的控制统,还需要能够更多的感知环境的变化。而影响其发展的一个重要原因就是机器人缺少像人一样的感知能力,在人们为机器人添加各种外部传感器的过程中,机器人视觉以其信息大、信息完整成为最重要的机器人感知功能[1]。 机器人的视觉伺服系统是机器人的视觉和机器人控制的相结合的复杂系统。其内容包括了图像的采集与处理、运动学和动力学、自动控制理论及其系统数据实时分析等领域于一体的新兴交叉学科。随着摄像技术和计算机技术的发展,以及相关理论的日益完善和实践的不断检验,视觉伺服已具备了在实际中应用的条件;而随着机器人应用领域的不断扩展,重要性也不断提高,与其相关技术问题已经成为了当前的研究热点[2]。所以实现机器人视觉伺服控制有相当的难度,是机器人研究领域中具有挑战性的课题。 2.机器人视觉伺服系统 2.1机器人视觉伺服系统的定义

AGV视觉导航设计方案经典

AGV视觉导航设计方案经典

AGV搬运机器人视觉导航方案 AGV(Automated Guided Vehicle,AGV)作为现代制造系统中的物料传送设备已经得到了广泛应用。从理论上看,视觉导引AGV具有较好的技术应用前景,然而其却没能像电磁导引和激光导引 AGV 那样广泛使用,主要问题在于视觉导引技术在实时性、鲁棒性和测量精度方面还有待进一步突破。 由多个 AGV 单元组成的 AGV 系统( Automated Guided Vehicle System,AGVS)配有系统集成控制平台,对 AGV 的作业过程进行监管和优化,例如,创立任务、地图生成、发出搬运指令、控制AGV 的运行路线、跟踪传送中的零件以及多 AGV 的任务规划和调度。将 AGV 与外部自动化物流系统、生产管理系统有机结合,对系统内每台 AGV 合理地分配当前任务、选择最佳路径、实时图形监控、管理运行安全,实现信息化的管理和生产,方便地构成由调配中心计算机控制的自动化生产线、自动仓库和全自动物流系统。 当前视觉导引方式主要方法有基于局部视觉和全局视觉两种方法。基于视觉导引的 AGV 还没有大规模产业化,但其潜在的市场前景使其成为近几年来国内外 AGV 研究的热点。 全局视觉导引方法是将摄像机安装在天花板或者墙上,以整个工作环境为目标,对包括 AGV、导引路径、障碍物等进行对象识别,对各个摄像机获取的图像进行基于特征的图像融合,得到全局地图。在生成的全局地图中,每个 AGV 单元,导引线,障碍

物的绝对坐标都能够实时获取。全局视觉方法相对于将摄像机安装在车体上的局部视觉方法,在多 AGV 调度、障碍物检测(固定和移动)、避障、全局监测方面更具优势。特别是能够对AGV 和障碍物的特征进行分类,经过增强型的卡尔曼滤波方法进行运动估计,动态跟踪每一个目标的位置、速度。可是这种方法要根据不同的现场环境,按照视野不被遮挡并覆盖整个工作空间的原则,根据摄像机放置算法决定摄像机的数目、安装位姿。因此这张全局视觉方法仅仅适用于室内且空间较大的场合,而且导引精度较低。 相对而言,当前国内外研究较多的是局部视觉导引方式。局部视觉导引方式是将单车看作一个智能体,在车上安装摄像机和图像采集系统实时地处理环境信息,其主要有基于自然场景和结构化场景两种导航方式。基于自然场景的导航方式经过运行路径周围环境的图像信息与环境图像数据库中的信息进行比较,从而确定当前位置并对运行路线做出决策。这种方法不要求设置任何物理路径,在理论上具有最佳的柔性;但三维图像处理的实时性差和环境图像数据库的难以建立,限制了它的实际应用。 基于结构化场景的导引方式一般是在地面粘贴或铺设一些特殊形状或颜色的线路和符号,由视觉系统识别预定义的路经,包括导引路径相对 AGV 的位置偏差和角度偏差、路径节点、工位、转弯、停车、加减速等标识。这种视觉导航方式的优点是视觉系统只需提取预设的特定目标,并根据目标特征的先验知识做进一

视觉伺服控制

有约束的无标定模型预测控制 在视觉伺服控制器的设计中,图像雅可比矩阵是建立运动学模型的关键。经典的IBVS采用比例控制律,它利用图像雅可比矩阵的逆(或伪逆)。然而,比 例控制器可能存在局部极小问题。也就是说,如果视觉特征数大于3,则图像雅可比矩阵不是满秩的,图像误差可能存在于图像雅可比矩阵的逆(或伪逆)的零空间中,从而导致局部收敛,使得最终的图像特征远离期望的图像特征。另外,系统约束处理困难,尤其是可见性约束。当相机的初始位置和所需位置之间的距离较大时,图像特征将不可见。在视觉伺服控制过程中,可能会违反关节的物理限制和机器人的工作空间。此外,比例控制器的主要缺点是需要知道摄像机内参数、摄像机外参数和特征点的深度参数,而这些特征点的精确值很难获得。 为了避免使用图像雅可比矩阵中元素的精确值,人们对图像雅可比矩阵的数值估计进行了广泛的研究,如神经网络、迭代学习、拟牛顿方法和模糊控 制。文献提出了许多基于深度无关交互(或图像雅可比)矩阵的自适应 控制器,以克服深度限制问题。文献首次针对摄像机参数未知且深度随时间 变化的固定摄像机构型,提出了与深度无关的交互矩阵。文献提出了眼在手 和固定眼构型的自适应视觉跟踪控制的统一设计方法。然而,这些方案没有明确考虑系统约束,而这些约束对于视觉伺服控制器的设计是至关重要的。 已经提出了许多方法来处理有约束的视觉伺服任务。例如路径规划、非线性反馈等,但大多需要给定摄像机的外部参数,并且假定摄像机的内部参数和深度信息是已知的。在IBVS中,通常采用模型预测控制(Model Predictive Control,MPC)来处理系统约束,且MPC控制器具有在未知影响和模型误差的情况下对 系统进行控制的能力。因此,MPC算法可以用来设计无标定环境下的视觉伺服控制器。本章主要提出了一种新的基于MPC的IBVS设计方法,该方法明确地考虑了系统的约束条件,能够有效地处理未知的摄像机参数和深度参数。通过模型预测控制获得控制输入,通过参数估计算法在线更新预测模型的未知参数,完成视觉伺服任务。 有约束和无标定视觉伺服的预测模型 模型预测控制被用来处理未标定环境中眼在手上和眼在手外摄像机构型的IBVS系统的控制约束。在无标定的环境中,摄像机的内外参数和特征的三维坐标是未知的。为了通过MPC获得最优控制输入,需要找到一个预测模型来描述系统的动态行为。介绍了基于深度无关交互矩阵的预测模型。在透视投影模型下,特征点的图像坐标可以描述为: s m (t) c

视觉伺服控制算法优化综述

视觉伺服控制算法优化综述 摘要:系统论述了视觉伺服控制的应用现状。重点介绍了针对不同的实际情况,提出优化的基于位置的视觉伺服系统和基于图像的视觉伺服系统的控制算法。优化后的算法效率高,具有很强的有效性和可行性。优化后的控制系统功能更强,更精确有效。 关键词:视觉伺服;优化;算法 Survey of Visual Servoing control algorithm Abstract:The application status of the visual servo control are reviewed . For different realities , we put fortward an improved position-based visual servo systems and image -based visual servo control algorithm of the system. High efficiency of the improved algorithm has strong effectiveness and feasibility. The improved control system functions stronger, and become more precise and effective. Keywords:Visual Servoing;improve;Algorithm

1 引言 随着科技的快速发展,在现代工业自动化生产过程中,机器视觉正成为一种提高生产效率和保证产品质量的关键技术,如机械零件的自动检测、智能机器人控制及生产线的自动监控等。 基于视觉的伺服策略是采用相机所观察的特征来控制机器人移动的一种灵活有效的方法。视觉伺服主要分为3种:基于位置的视觉伺服(PBVS)、基于图像的视觉伺服(IBVS)和混合控制视觉伺服。早期的研究主要是基于位置的视觉伺服研究,近年来主要是基于图像的视觉伺服研究。 PBVS的反馈偏差在3D笛卡尔空间进行计算,IBVS的反馈偏差在2D图像平面空间进行计算。PBVS 的控制方式直接在笛卡尔空间下进行位姿估计和运动控制,具有很好的直观性和简单有效性。IBVS的控制方式其期望给定值直接以图像特征信息表示,所以不需要将特征信息投影逆变换到工作空间的过程,因此基于图像的控制方式对标定误差和空间模型误差不敏感,具有更高地定位精度,为多数的视觉伺服系统所采用。 2 视觉伺服控制算法 在进行任何一个基于伺服控制的控制系统的分析、综合或设计时,首先应建立该系统的数学模型,确定其控制算法。它反映了系统输入、内部状态和输出之间的数量和逻辑关系,这些关系式为计算机进行运算处理提供了依据。控制算法的正确与否直接影响控制系统的品质,甚至决定整个系统的成败。 2.1 基于位置的视觉伺服算法的优化 对于不同的功能要求,采用传统的基于位置的视觉伺服控制算法,常常造成稳定性不够、精度不够、准确性不足等问题,我们需要对算法进行优化处理,来满足要求。 例如,针对家庭环境中服务机器人物品的抓取问题,提出一种改进的基于位置的视觉伺服抓取算法。该算法主要包括4个部分: 1.基于Naomark 标签的物体识别,根据Naomark的ID确定抓取方式,并利用世界单应分解算法对目标物位姿进行估计。 通过在具有不同形状和特征的各类物品上布置Naomark 标签的方式,可以实现被操作物的快速识别与定位,从而解决家庭环境中物品种类多、操作方式复杂带来的困难。 利用Hough 变换和边缘检测可以得到Naomark 的各特征点。 2.对NAO机器人的五自由度手臂进行运动学建模,计算出运动学正解和逆解。

视觉导航综述.

视觉导航及实验验证平台综述摘要:本文概述视觉导航技术。视觉导航通过图像采集设备收集近距离的环境信息,并利用计算机视觉技术进行图像处理获得环境信息,实现导航。首先比较了各种导航方式的优缺点,分析视觉导航的意义。接着概述了视觉导航的应用领域和研究现状,然后分析比较了视觉导航中的一些关键技术,简单介绍了视觉导航领域的SLAM问题。最后,综合国内外视觉导航技术研究存在问题,提出进一步研究方向和应用途径。 关键词:视觉导航;移动机器人;智能车辆;图像匹配;路径识别 0 引言在当今世界的先进技术领域里,往往存在这样的问题:为了完成某种特殊的任务,需要在已知或者未知环境中,使特殊的能完成既定任务的实验设备或平台按照既定的且满足最 优条件的路径运动或者到达既定目的地,这一类的问题便是导航。对于一般的导航系统,在给定命令的前提下,结合环境中的各种探测信息,并根据自身位姿信息作出决策使运动体而到达目标,在运动过程中,还需要不断优化全局路径。导航系统需要完成的任务包括以下三点:一,获取信息;二,处理信息;三,作出决策(即路径规划)。目前广泛使用的导航方法有[1]:航标法,航位推算法,天文导航,惯性导航,无线电导航,卫星定位导航和组合导航等。下文对各种导航方法对比说明。

航标法习惯称之为目视方法,它借助于信标和参照物对运动物体进行引导。目前仍在应用,但是这种方法过于依赖经验,受天气、地理条件的影响。航位推算法是通过一系列的速度增量来确定位置的,是一种自主导航方法,保密性强。但是随着时间推移会产生误差积累。天文导航是通过仪器设备对天体的位置精确测定,根据地理关系算出位置的相对导航方法,其缺点是误差积累受时间和气象条件限制,定位时间长,操作计算复杂[1]。惯性导航通过加速度测量技术和积分技术的综合应用得到运动体的速度和位置信息。这种导航技术完全依靠载体上的设备自主完成导航任务,因此隐蔽性好,不受外界条件限制。但是加速度及精度和误差积累严重限制该方法的应用。目前,惯性导航常常和其他系统综合使用。无线电导航通过测量信号的相位和相角定位,但其易受干扰。卫星导航利用卫星发射无线电波到地面接收器的时间来推算地面接收器所在的经纬度,其中GPS是目前真正实用的一种卫星导航和定位系统,但其技术为美国所垄断,我国也正在致力于这方面的研究[2]。 而自主照相机和图像处理技术的发展促使视觉导航技术的发展。视觉导航是通过摄像机对周围环境进行图像采集,并对图像进行滤波和计算,完成自身位姿确定和路径识别,并做出导航决策的一种新的当行技术。由于视觉导航的采用被动工作方式,设备简单,成本低廉,其应用范围很广。最主要的特征是视觉导航的自主性和实时性。它不依靠外界任何设备,只需对储存系统和

机器人视觉伺服技术发展概况综述

机器人视觉伺服技术发展概况综述 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强耦合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 本文对机器人视觉伺服技术进行了综述,介绍了机器人视觉伺服系统的概念及发展历程和分类,重点介绍了基于位置的视觉伺服系统和基于图像的视觉伺服系统。对机器人视觉所涉及的前沿问题做了概括,并指出了目前研究中所存在的问题及今后发展方向。 机器人视觉伺服系统 视觉伺服的定义: 人类对于外部的信息获取大部分是通过眼睛获得的,千百年来人类一直梦想着能够制造出智能机器,这种智能机器首先具有人眼的功能,可以对外部世界进行认识和理解。人脑中有很多组织参与了视觉信息的处理,因而能够轻易的处理许多视觉问题,可是视觉认知作为一个过程,人类却知道的很少,从而造成了对智能机器的梦想一直难以实现。随着照相机技术的发展和计算机技术的出现,具有视觉功能的智能机器开始被人类制造出来,逐步形成了机器视觉学科和产业。所谓机器视觉,美国制造工程师协会(sme society of manufacturing engineers)机器视觉分会和美国机器人工业协会(ria robotic industries association) 的自动化视觉分会给出的定义是: “机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。”

视觉导航技术综述

视觉导航技术综述 唐超颖,杨忠,沈春林 (南京航空航天大学自动化学院,江苏 南京 210016) 摘要:概述了视觉导航技术。视觉导航依据视觉图像,利用图像处理、计算机视觉、模型识 别等相关技术获取运动体的运动信息和空间位置信息,实现导航。首先,简单比较了各种常 用的导航方式,分析了视觉导航的研究意义;其次,总结了目前视觉导航的应用领域及应用 概况;接着,介绍了局部视觉和分布式组合视觉两种导航方式的含义及应用情况;然后,分 析、比较了目前视觉导航研究中的一些关键技术;最后,综合国内外视觉导航技术研究的现 状及存在的问题,提出了进一步研究的方向与途径。 关键词:视觉导航、移动机器人、智能车辆、三维重建、图像匹配、路径识别 0 引 言 导航是指运动体按照预先给定的任务命令,根据已知的地图信息做出全局路径规划,并在行进过程中,不断感知周围的局部环境信息,做出各种决策,随时调整自身的姿态与位置,引导自身安全行驶,直至目标位置。导航系统要解决的问题包括:一、空间位置、方向、环境信息的检测;二、所获信息的分析、处理及综合;三、运动路径规划。根据环境信息的完整程度、导航指示信号类型、导航地域等因素的不同,目前常见的导航方法有:惯性导航、电磁导航、卫星导航、激光导航、红外导航、无线电导航、视觉导航及各种方式的组合导航等。 惯性导航利用加速度计与陀螺仪计算航程,推知当前位置和下一步目的地,不易受外界环境的影响,是目前的主要导航方法,但随着航程的增长,定位误差将会不断累加,导致定位精度下降[1];电磁导航也称地下埋线导航,20世纪70年代迅速发展并广泛应用于柔性生产,其原理是在路径上连续埋设多条引导电缆,分别流过不同频率的电流,通过感应线圈对电流的检测来感知路径信息,该技术简单实用,但其成本高,改造和维护困难,且不适用于长距离导航[2];卫星导航利用卫星发射无线电波到地面接收器的时间来推算地面接收器所在的经纬度,其中GPS是目前真正实用的一种卫星导航和定位系统,但其技术为美国所垄断,我国也正在致力于这方面的研究;激光和红外线定位由于可以达到很高的精度,近年也被广泛应用于导航领域,但激光导航需要向外界发射能量,不易隐身,红外导航易受日光影响,一般用于夜间导航;无线电导航方式中,角度到达定位和信号强度定位的精度不高,只能提供粗略的位置信息,抵达时间定位可以达到很高的精度,但是电波以光速传播,要达到米级精度,时间粒度需要纳秒级以上,且易受空中各种无线电波的干扰[3]。 视觉导航是采用CCD 摄像头拍摄路面图像,运用机器视觉等相关技术识别路径,实现自动导航的一种新兴导航方法[3]。由于视觉导航通常采用被动工作方式,设备简单、成本低、经济性好、应用范围较广,在理论上具有最佳引导柔性,因此近年来发展非常迅速。文中后续部分将对视觉导航的应用领域、适用范围、关键技术等方面做出综合分析。 基金项目:国家自然科学基金资助项目(60674100) 作者简介:唐超颖(1979-),女,江苏南京人,讲师,导航、制导与控制

机器人视觉伺服系统

机器人视觉伺服系统 2014-2-18 15:28:29 浏览:112 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强耦合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 本文对机器人视觉伺服技术进行了综述,介绍了机器人视觉伺服系统的概念及发展历程和分类,重点介绍了基于位置的视觉伺服系统和基于图像的视觉伺服系统。对机器人视觉所涉及的前沿问题做了概括,并指出了目前研究中所存在的问题及今后发展方向。 机器人视觉伺服系统 视觉伺服的定义: 人类对于外部的信息获取大部分是通过眼睛获得的,千百年来人类一直梦想着能够制造出智能机器,这种智能机器首先具有人眼的功能,可以对外部世界进行认识和理解。人脑中有很多组织参与了视觉信息的处理,因而能够轻易的处理许多视觉问题,可是视觉认知作为一个过程,人类却知道的很少,从而造成了对智能机器的梦想一直难以实现。随着照相机技术的发展和计算机技术的出现,具有视觉功能的智能机器开始被人类制造出来,逐步形成了机器视觉学科和产业。所谓机器视觉,美国制造工程师协会(sme society of manufacturing engineers)机器视觉分会和美国机器人工业协会(ria robotic industries association) 的自动化视觉分会给出的定义是: “机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。” 机器视觉作为与人眼类似的机器仿生系统,从广义角度凡是通过光学装置获取真实物体的信息以及对相关信息的处理与执行都是机器视觉,这就包括了可见视觉以及非可见视觉,甚至包括人类视觉不能直接观察到的、物体内部信息的获取与处理等。 机器人视觉发展历程 上个世纪60年代,由于机器人和计算机技术的发展,人们开始研究具有视觉功能的机器人。但在这些研究中,机器人的视觉与机器人的动作,严格上讲是开环的。机器人的视觉系统通过图像处理,得到目标位姿,然后根据目标位姿,计算出机器运动的位姿,在整个过程中,视觉系统一次性地“提供”信息,然后就不参与过程了。在1973年,有人将视觉系统应用于机器人控制系统,在这一时期把这一过程称作视觉反馈(visual feedback)。直到1979年,hill和park提出了“视觉伺服”(visual servo)概念。很明显,视觉反馈的含义只是从视觉信息中提取反馈信号,而视觉伺服则是包括了从视觉信号处理,到机器人控制的全过程,所以视觉伺服比视觉反馈能更全面地反映机器人视觉和控制的有关研究内容。 上个世纪80年以来,随着计算机技术和摄像设备的发展,机器人视觉伺服系统的技术问题吸引了众多研究人员的注意。在过去的几年里,机器人视觉伺服无论是在理论上还是在应用方面都取得了很大进展。在许多学术会议上,视觉伺服技术经常列为会议的一个专题。视觉伺服已逐渐发展为跨机器人、自动控制和图像

基于机器视觉的智能导航机器人控制系统设计

基于机器视觉的智能导览机器人控制系统设计 时间:2009-10-20 10:53:17 来源:国外电子元器件作者:张伟,鲁守银,谭林山东建筑大学 1 引言 移动机器人是机器人学一个重要分支,且随着相关技术的迅速发展,它正向着智能化和多样化方向发展,应用广泛,几乎渗透所有领域。于春和采用激光雷达的方式检测道路边界,效果较好,但干扰信号很强时,就会影响检测效果。付梦印等提出以踢脚线为参考目标的导航方法,可提高视觉导航的实时性。 这里采用视觉导航方式,机器人在基于结构化道路的环境下实现道路跟踪,目标点的停靠,以及导游解说,并取得较好的效果。 2 导览机器人简介 导览机器人用在大型展览馆、博物馆或其他会展中心,引导参访者沿着固定路线参访,向参访者解说以及进行简单对话。因此导览机器人必须具有自主导航、路径规划、智能避障、目标点的停靠与定位、语音解说以及能与参访者进行简单对话等功能,并具有对外界环境快速反应和自适应能力。基于层次结构,导览机器人可分为:人工智能层、控制协调层和运动执行层。其中人工智能层主要利用CCD摄像头规划和自主导航机器人的路径,控制层协调完成多传感信息的融合,而运动执行层完成机器人行走。图1为智能导览机器人的总体结构框图。 3 导览机器人硬件设计 3.1 人工智能层硬件实现 考虑到移动机器人控制系统要求处理速度快、方便外围设备扩展、体积和质量小等要求,因此上位机选用PC104系统,其软件用C语言编程。采用USB摄像头,采集机器人前方的视觉信息,为机器人视觉导航,路径规划提供依据。外设麦克和扬声器,当机器人到达目标点后,进行导览解说。 3.1.1 控制协调层的硬件实现 机器人传感器的选取应取决于机器人的工作需要和应用特点。这里选用超声波传感器、红外传感器、电子罗盘及陀螺仪,采集机器人周围环境信息,为机器人避障、路径规划提供帮助。利用ARM处理平台,通过RS-485总线驱动电机,驱动机器人行走。

视觉伺服论文

10.5 摄像机标定 对于视觉伺服应用的一个重要问题是摄像机的标定,这是靠传感器来提供反馈到控制器上的信息。标定包括内部参数的估计,以及外部参数,用以描述相机架相对于底座或者末端执行架的姿势。多种校准的技术都是基于与那些物体相对于相机的姿态估计算法相类似。 特别的,如果内部参数是知道的了,那么10.3.1节中PnP中的n 共面问题的解决方法就可以直接被用于相机的外部参数计算。 事实上,根据式(10.14),一个手眼相机的外部参数可以计算如下: 这里的矩阵是解决PnP的平面问题的算法输出。 提供矩阵,表现出物体架相对于基座的位置和方向,是知道的。相似的,根据式(10.15),手眼相机的外部参数可以计算如下: 这里的矩阵,表现了物体架相对于末端执行架的位置。 如果内部参数不知道,那么10.3.1节中所导出的公司将要继续推导并可能被以下三种相位所描述。 相1 一个平面的单应性可以从正常化的像素坐标来计算: 根据式(10.7)可以得到: 这里的是一个3x3矩阵: 是式5.41内部参数矩阵,矩阵在式(10.8)中定义。使用一个与10.3.1节中提到的相似算法,从平面n点坐标中,这里n 大于等于4就可以计算出平面单应性,得到一个比例因子。

相位2 矩阵可以从矩阵中算出来。事实上,考虑式(10.65),以及式(10。8)中的定义。 这里的是指矩阵中的第i列矩阵。从方程中计算和 ,在这些向量上施加的单位正交性和单位规范约束性。可以到得到下面两个标量方程: 由于它们之间是线性的,可以写成下面的形式。 在以上的方程中,是一个基于的系数矩阵。当 ,这里的是系数矩阵的通用元素: 通过重复相位1 k次,随着相同的平面在不同的时间处于不同的位置,式(10.66)中的2k方程即可获得。当k大于等于3时,这 些方程有唯一的结果,定义了一个比例因子从矩阵,考虑(10.67),内部参数的表达式如下: 10 视觉伺服

机器人视觉伺服研究综述

第3卷第2期2008年4月 智能系统学报 CAAITransactionsonIntelligentSystems V01.3№.2 Apr.2008 机器人视觉伺服研究综述 方勇纯 (南开大学信息技术科学学院,天津300071) 摘要:首先对于3种机器人视觉伺服策略,即基于位置的视觉伺服、基于图像的视觉伺服以及2.5维视觉伺服进行了讨论.然后,对于视觉伺服的研究方向和面l临的主要问题,如机器人位姿提取、视觉伺服系统的不确定性研究、图像空问的路径规划、智能视觉伺服等进行了分析和讨论.在此基础【:,对于机器人视觉伺服领域的未来研究重点,包括如何使参考点位于视场之内,高速伺服策略以及鲁棒视觉伺服技术进行了分析和展望. 关键词:机器人;视觉伺服;轨迹规划;鲁棒性 中图分类号:TP24文献标识码:A文章编号:1673—4785(2008)02-0109—06 Asurveyofrobotvisualservoing FANGYong-chun (CollegeofInformationTechnicalScience,NankaiUniversity,Tianjin300071.China) Abstract:Inthissurveyofvisualservoinginroboticsthreevisualservoingstrategiesarediscussed:posi—tion-basedvisualservoing,image-basedvisualservoing,and2.5Dvisualservoing.Themainresearchdi—rectionsandsomechallengingproblemsinthevisualservoingfieldarediscussed,includingtheextractionofposition/poseinformationfromimages,uncertaintiesinvisualservoingsystems,pathplanninginanim—agespace,andintelligentvisualseroving.Additionally,possiblefutureresearchareasareanalyzed.Ex-amplesarethechallengeofkeepingreferencepointswithincameraimages,fastservoingstrategies,androbustvisualservoingtechnologies. Keywords:robot;visualservoing;。pathplanning;robustness 为了使机器人能够在不确定动态环境下工作,必须提高它的学习能力与智能化水平,使其在恶劣或者危险环境下完成自身定位、地图构建、自主搜索等任务.为此,必须为机器人本体装配各种传感器,使它们能够获取关于外部环境的有关信息. 视觉传感器由于具有成本低、信息丰富、算法简单、可靠性高等优点而被广泛应用于机器人控制系统,因此基于视觉的机器人控制——视觉伺服逐渐发展成为机器人领域最活跃的研究方向之一.所谓机器人视觉伺服,就是采用视觉传感器来间接检测机器人当前位姿或者其关于目标体的相对位姿,在此基础上,实现机器人的定位控制或者轨迹跟 收稿日期:2007—09—20. 基金项目:围家自然科学基金资助项目(60574027);天津市应用基础研究计划资助项目(071CYBj0)5400);教育部额世纪优秀 人才支持计划资助项日(NCET-06—0210). 通讯作者:方勇纯.E—mail:yfang@robot.nankai.edu.ell踪[1-2|.这是一个集计算机、机器视觉、自动控制、机器人、实时系统分析等领域于一体的新兴交叉学科[3。4].近年来,随着图像处理、模式识别等领域的快速发展,图像中蕴含的信息被更多地挖掘出来并得以应用,视觉伺服的精度和可靠性也日益提高,因此增强了机器人对周同环境的学习能力,使其能够根据对环境的了解来进行智能决策,并完成指定的任务. 机器人视觉伺服策略 根据反馈信息类型的差别,机器人视觉伺服一般分为基于位置的视觉伺服(i维视觉伺服)和基于图像的视觉伺服(二维视觉伺服)2种[5].由于这2种伺服方法各自存在不同的缺陷,后来又提出了将两者相结合的2.5维视觉伺服方法. 1.1基于位置的视觉伺服 基于位置的视觉伺服基本结构如图l所示,它  万方数据

机器人视觉伺服系统综述

基于图像的机器人视觉伺服系统综述 摘要:本文介绍了机器人视觉伺服系统的概念、发展历程,而且从不同的角度对机器人视觉伺服系统进行了分类。最后重点介绍了基于图像的机器人视觉伺服系统,以及其的simulink仿真实现。 关键词:机器人;视觉伺服;仿真 Abstract:The concept and development process of the robot visual servo system is introduced in this paper, and from different angles of the robot visual servo system are classified. Finally the paper introduces the robot visual servo system based on image, and the realization of Simulink simulation. Key words: robot, visual servoing, simulation 1.引言 随着先进科学技术的不断发展,机器人已经在生产和生活中起到了越来越重要的作用,因此人们不断对机器人技术提出更高的要求。为了使机器人能够完成更加复杂的工作,适应更加复杂的环境,人们不断的为机器人寻求更为完善的控制系统。而影响其发展的一个重要原因就是机器人缺少像人一样的感知能力,在人们为机器人添加各种外部传感器的过程中,机器人视觉以其信息大、信息完整度高成为最重要的机器人感知功能。 机器人的视觉伺服系统是机器人视觉和控制的相结合的复杂系统。其内容包括了图像的采集与处理、运动学和动力学、自动控制理论及其系统数据实时分析等领域于一体的新兴学科。随着技术的发展,以及相关理论的日益完善,视觉伺服已具备了在实际中应用的条件;而随着机器人应用领域的不断扩展,重要性也不断提高,与其相关的技术问题已经成为了当前的研究热点。 2.机器人视觉伺服系统 2.1机器人视觉伺服系统的定义 机器人视觉伺服(visual servo)的概念,是由hill和park于1979年提出的。“伺服”—词源于希腊语“奴隶”的意思。人们想把“伺服机构”当个得心应手的驯服工具,服从控制信号的要求而动作。在讯号来到之前,转子静止不动;讯号来到之后,转子立即转动;当讯号消失,转子能即时自行停转。由于它的“伺服”性能,因此而得名——伺服系统。视觉伺服,一般指的是,通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,通过图像反馈的信息,来让控制系统对机器人做进一步控制或相应的自适应调整的行为。

相关文档