文档库 最新最全的文档下载
当前位置:文档库 › 大学物理(下)练习题

大学物理(下)练习题

大学物理(下)练习题
大学物理(下)练习题

大学物理(下)练习题

第十章

10-8一均匀带电的半圆形弧线,半径为R ,所带电量为Q ,以匀角速度ω绕轴OO /转动,如图所示,求O 点处的磁感应强度。 解:此题可利用运动电荷产生的磁场计算,

也可利用圆电流产生的磁场计算。以下根据圆

电流在轴线产生的磁感应强度来计算的。 如图电荷dq 旋转在O 处产生的磁感应强度为

3202R dIr dB μ=3

202)sin (2R

R Rd θπωθλμ= ?πθθπλωμ=

020sin 4d B 240ππλωμ=80λωμ= R

Q

πωμ=

80 方向沿轴线向上。

10-15一半径为R 的无限长半圆柱面形导体,与轴线上的长直导线载有等值反向的电流I ,如图所示。试求轴线上长直导线单位长度所受的磁力。

解:此电流结构俯视如图,圆柱面上的电流 与轴线电流反向,反向电流电流相斥,如图,对 称分析可知,合力沿x 轴正向,有

θππμ==Rd R I

R I BldI dF 20θπμ=d R I 2202

=

θ=?sin dF F θθπμ?π

d R

I 022

0sin 2 R

I 220πμ=

习题 10-8图

习题 10-15图

x

10-16半径为R 的圆形线圈载有电流I 2,无限长载有电流I 1的直导线沿线圈直径方向放置,求圆形线圈所受到的磁力。

解:此电流结构如图,对称分析可知,合力

沿x 轴负向,有

r I dl I dF πμ=2102θθπμ=Rd R I I cos 2210θθπμ=d I

I cos 2210

=θ=?cos dF F θθθπμ=?

π

d I I cos cos 220

210?

π

θπ

μ=20

2

102d I

I 210

I μ=

10-19一半径为R 的薄圆盘,放在磁感应强度为B

的均匀磁场中,B 的方向与盘面

平行,如图所示,圆盘表面的电荷面密度为σ,若圆盘以角速度ω绕其轴线转动,试求作用在圆盘上的磁力矩。

解:圆盘上任一薄层电荷运转时产生的电流为dI ,其对应的磁矩为

rdr r rdr

r dI dm σω=ππ

ωπσ=π=2

222 整个圆盘的磁矩为

4

4

R rdr dm m R

σωπ=σω==?

?

作用在圆盘上的磁力矩为B m M ?=

=

==mB mB M 0

90sin B R 4

4

σωπ,方向垂直纸面向里。

10-24 有一同轴电缆,其尺寸如图所示。两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。试计算以下各处的磁感强度:(1)rR 3;面出B -r 曲线。

解:由安培环路定理

I d 0

μ=??l B L

(1))( 2I 212

102

20

R r R Ir B r R πr B <=→=

πμππμ 习题 10-16图

习题 10-19图

dI

dm

习题 10-24图

(2))( 222100R r R r

I

B I πr B <<=

→=πμμ (3) ])()

([222232

220R R R r I I πr B ---=ππμ2

2

2322302R R r R r I B --πμ=→)( 32R r R << (4))( 0023R r B πr B >=→=

6. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I ,今取一

矩形平面S (长为1m ,宽为2R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量。

解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路安律可得:

B I R

r r R =μπ≤022,() 因而,穿过导体内画斜线部分平面的磁能φ1为

φμπμπ102024====???d Bds I

R rdr I o R . 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为

)(,20R r r

I

B >=πμ

因而,穿过导体外画斜线部分平面的磁通量φ2为

??

===R

R

I

dr r I S d B 20022ln 22.π

μπμφ 穿过整个平面的磁通量

ln 24400021π

μπμπμφφφI

I I ++=

+=

9. 一无限长直导线通以电流I ,其旁有一直角三角形线圈通以电流I 2,线圈与直导线

共面,相对位置如图,试求电流I 1对AB 、CA 两段载流导体的作用力。

解:dl l l a I dF AB 21

0.)(2+=

πμ ?+=+=b AB a

b a I I dl l a I I F 0210210ln 2)(2πμπμ 方向垂直AB 向下

计算题6图

I 12

计算题9图

)cos (2cos /210θπθ

μl a dl I I dF AC +=

l =l /cos θ

a

b a I I l a dl I I F t o AC

+=+=?ln cos 1.2)cos (2 210210θπμθπμ

第十二章

12-1在通有电流I=5A 的长直导线近旁有一导线ab ,长l =20cm ,离长直导线距离d=10cm (如图)。当它沿平行于长直导线的方向以v =10m/s 速率平移时,导线中的感应电动势多大?a 、b 哪端的电势高?

解:根据动生电动势的公式E =?

??L

l B v d )(

E 3ln 22030

10

μ=πμ=

?

Iv

x dx Iv

V 57

101.13ln 2105104--?=π

???π=

方向沿x 轴负向,a 电势高。

12-8 在水平放置的光滑平行导轨上,放置质量为m 的金属杆,其长度ab=l ,导轨一端由一电阻R 相连(其他电阻忽略),导轨又处于竖直向下的均匀磁场B 中,当杆以初速v 0运动时,求(1)金属杆能移动的距离;(2)在此过程中R 所发出的焦耳热。 解:(1)依题意,根据牛顿定律有

dx

vdv

m dt dv m R l vB IBl F -=-===22

分离变量积分

2

20

2

20

l B mRv x dv v m dx mR

l vB v x

=

→-=??

(2)202

1mv Q =

12-10均匀磁场B (t)被限制在半径为R 的圆柱形空间,磁场对时间的变化率为dB/dt ,在与磁场垂直的平面内有一正三角形回路aob ,位置如图所示,试求回路中的感应电动势

x

o

v 0

习题12-8图

的大小。

解:B R BS 2

6

1π=

=?,回路中的感应电动势的大小为 E dt d ?=dt

dB

R BS 261π==?

12-16在如图所示的电路中,线圈II 连线上有一长为l 的导体棒CD ,可在垂直于均匀磁场B 的平面内左右滑动并保持与线圈II 连线接触,导体棒的速度与棒垂直。设线圈I 和II 的互感系数为M ,电阻为R 1和R 2。分别就以下两情形求通过线圈I 和II 的电流:(1)CD 以匀速v 运动;(2)CD 由静止开始以加速度a 运动。 解:(1)CD 以匀速v 运动时

1

11R Bvl

R I =

ε=

,I 1是恒量,故I 2=0 (2)CD 由静止开始以加速度a 运动

1

11R Blat

R I =

ε=

,I 1是时间的函数,故I 2不为零 112R Bla M dt dI M ==ε, a R R MBl

R I 2

1222=ε=

12-20一圆柱形长直导线中各处电流密度相等,总电流为I ,试证每单位长度导线内

贮藏的磁能为π

μ162

0I 。

证:根据安培环路定理∑?

μ=?I d 0

L

l B

2

02

20

2022R

Ir B r R I r j r B πμ=→ππμ=πμ=π ?

πμ=R

rldr B W 0

2

221,单位长度l =1

习题12-10图

II I

习题12-16图

?

ππμμ=R

rdr R

r I W 0

4

22

220

02421?

πμ=R

dr r R I W 0

3

4204π

μ=162

0I ,本题得证。

1.如图,一长直导线中通有电流I ,另有一垂直于导线、长度为l 的金属棒AB 在包含导线的平面内,以恒定的速度v 沿与棒成θ角的方向移动,开始时,棒距导线的距离为a ,求任意时刻金属棒中的动生电动势,并指出棒哪端的电势高。

cos sin :θθ解∥⊥v v v v ==

sin 212??==x x o i i dx v x I

d θπμεε θθ式中cos cos :21vt a x vt l a x +=++=

θ

θ

θπμεcos cos ln

sin 2vt a vt l a v x I o i +++= A 端的电势高

2.如图,导体矩形框的平面与磁感应强度为B 的均匀磁场垂直,在此矩形框上有一质量为m ,长为L 的可移动细导体棒AB ,矩形框还接有一电阻R ,其值较之导线的电阻值要大得多,若开始时(t=0),细导体棒以速度v 0沿图示所示的矩形框运动,试求棒的速率随时间变化的函数关系。

解:按图中所示的o x 坐标,棒的初速度v 0

与o x 轴的正向相同。当棒的速率v 时,棒中动

生电动势为

ε=v B L

其方向由A 端指向B 端,故在图中矩形导体框 中的电流是逆时针流动,值为

R

vBL

R

I =

=

ε

由安培定律可知作用在棒上的安培力为

R

L vB IBL F 2

2==

安培力的方向与o x 轴反向,它使棒的运动速率越来越小,根据牛顿第二定律,有

R

L vB dt dv m 22-= 分离变量得

I 计算题1题

R

I

dt m R

L B v dv 2

2-= 式中B 、L 、m 、R 均为常量,依题意,t=0时,v =v 0,上式积分得

??-=t

v

v dt mR

L B v dv 0

220

t mR

L B v v 220ln -= 则任意时刻t 棒的速率即棒的速率随时间变化的函数关系为

t mR

L B e

v v 2

20-

=

第十六章

16-8用很薄的、折射率为1.58的云母片覆盖在双缝实验中的一条缝上,这时屏幕上的零级明条纹移到原来的第七级明条纹位置上,如果入射光波长为550nm ,试问此云母片的厚度为多少? 解:零级明条纹移到第七级明条纹上,则 原来零级明纹的地方出现的为-7级明纹,设

b 为云母片厚度,则

光程1为: r b nb -+ 光程2为: r

7r b nb r λ∴?=-+-=-

解得:36.610()b mm -=?

16-12 一折射率为1.5表面附有一层折射率为1.32油膜,今用一波长连续可调的单色光束垂直照射油面。当波长为485nm 时,反射光干涉相消。当波长增为670nm 时,反射光再次干涉相消。求油膜的厚度。 解:1

2(21)

2

nd k λ=+

2

2[2(1)1]

2

nd k λ=-+

O

习题16-8用图

其中 1.38n =,1485nm λ=,2670nm λ=,代入数据,可得

3k =, 643d nm =

16-17 白光照射到折射率为1.33的肥皂膜上,若从450角方向观察薄膜呈现绿色(500nm ),试求薄膜最小厚度。若从垂直方向观察,肥皂膜正面呈现什么颜色?

解:解:斜入射时,由膜的上下表面反射的光干涉加强的条件是

λλk i n e =+-2/sin 222 ,k =1,2,3,…

k =1给出

97min 1.1110m e --=

=

=?

从垂直方向观察,反射光加强的条件是2ne =λ/2。于是

λ=4ne =4?1.33?1.11?10-7=5.9?10-7m=590nm ,黄色。

16-19 当牛顿环装置中的透镜与平面玻璃之间充以某种液体时,某一级干涉条纹直径由1.40cm 变成1.27cm 时,试求该液体的折射率。

解:222222

nd r n R r λλ

?

?=+??=?+??=?

∵是等厚干涉,∴对于同一级条纹有:12?=?

221212222222

r r n n R R λλ

∴?+=?+

其中11n =

2

1222

1.21r n r ∴==

1.当牛顿环装置中的平凸透镜与平面玻璃之间充以某种折射率为n 的液体时,试推导此时的明环半径与暗环半径公式。

解:

2

2

22

22

nd r

n

R

r

λ

λ

?

?=+?

?=?+

?

?

=?

=

2

+

R

r

n

形成明环条件:λ

λ

k

R

r

n=

+

=

?

2

2

所以:

2

)1

2(

λ

-

=k

n

R

r

形成暗环条件:

2

)1

2(

2

λ

+

=

+

=

?k

R

r

n所以: λk

n

R

r=

2.在图示的双缝干涉实验中,若用折射率为n1=1.4的薄玻璃片覆盖缝S1,用同样厚度但折射率为n2=1.7的玻璃片覆盖缝S2,将使屏上原中央明条纹所在处o变为第五级明纹,设单色光波长λ=480.0nm,求玻璃片厚度d(可认为光线垂直穿过玻璃片)。

解:

设第五个明纹处膜厚为e

有:2ne+λ/2 =5λ

又:e =Lθ

得:2nLθ= 9λ/2

L= 9λ/4nθ

充满液体前L0= 9λ/4θ, (n0=1)

充满液体前后第五个明纹移动得距离

?L= L0 - L =9λ(1 - 1/n)/4θ=1.61mm

3.在杨氏双缝实验中,两缝之间的距离d=0.5mm,缝到屏的距离为25cm,若先后用波长为400nm和600nm两种单色光入射,求:(1)两种单色光产生的干涉条纹间距各是多少?(2)两种单色光的干涉条纹第一次重叠处距屏中心距离为多少?各是第几级条纹?

解:屏上p点处,从两缝射出的光程差为δ = x d / D

明纹条件δ = ±kλ

屏上明纹位置x = ±D kλ/ d

(1) 两明纹的间距?x = Dλ/d

?x1 = Dλ1/d = 0.2mm

?x2 = Dλ2/d = 0.3mm

(2) 两种单色光的干涉条纹重叠有

o

S

S

p

x 1=x 2 即k 1λ 1 = k 2λ2 k 1/k 2 =λ2/λ1=3/2 第一次重叠k 1=3,k 2 =2 x 1 = x 2 = 0.6mm

9. 白光照射到折射率为 1.33的肥皂膜上,若从45o角方向观察薄膜呈现绿色(500nm ),试求薄膜最小厚度。若从垂直方向观察,肥皂膜正面呈现什么颜色?

解:斜入射时,由膜的上下表面反射的光干涉加强的条件是

λλk i n e =+-2/sin 222 ,k =1,2,3,…

k =1给出

m 1011.145

sin 33.1410500sin 4722922min --÷=-?=

-=

i

n e λ

从垂直方向观察,反射光加强的条件是2ne =λ/2。于是

λ=4ne =4?1.33?1.11?10-7=5.9?10-7m=590nm ,黄色。

第十七章

17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。

解:单缝衍射明纹条件为

2

)

12(sin λ

θ+=k a

依题意有

2)122(2)132(2

1λλ+?=+?

代入数据得 nm 6.4287

600

57521=?==λλ

17-15 波长600nm 的单色光垂直入射在一光栅上,第二级明条纹分别出现在sin(=0.2处,第四级缺级,试问:

(1)此光栅常数多少?

(2)光栅上狭缝可能的最小宽度a 多少?

(3)按上述选定的d 、a 值,试问在光屏上可能观察到的全部级数是多少? 解:

2600 6.0sin 0.2

(2)a d (a );4 1.5;

(3)m d m

k

N N k m ?λλ??λ?λ?????===?'''='

''???=?-9-6-6(1)由光栅衍射明纹条件dsin =k 得正入射时k 1010由于光栅明纹位置由dsin =k 决定,单缝衍射极小位置由sin =k 决定,当=时光栅明纹位置和衍射极小位置重合,即缺级,此时=为整数),d

k=Nk (k =1,2,3,4,因第级缺级,故a=104

由dsin 9010

4,80,1,2,3,5,6,7,9,k k λλ

==∴=±±±±±±±

dsin =k 可得所能看到的最大级数k=缺级所能看到的亮纹级数为共15条

17-17 波长为500nm 的单色光,以300入射角斜入射到光栅上,发现原正入射时的中央明条纹的位置现在改变为第二级光谱的位置。求此光栅每毫米上共有多少条刻痕?最多能看到几级光谱?

解:

393

6922sin 2sin ,tan sin 21101103210,500250010(2)b b

b

x f

b b m N b θλλλ

?λ????

λ

-----=∴=≈=

'==??∴=≈?==

≈?? (1)由光栅衍射明纹条件bsin =k 得正入射时

第二级亮纹距中心点的宽度为x=ftg 当斜入射角和衍射角相等时出现中央极大,此时中央亮纹距中心点的宽度为

x =ftg30由光栅斜入射亮纹条件得sin ),sin )

sin 126,k k ?λ??λ

±=±-== b(sin30b(sin30当=时,k=

或所以最多能看到6级条纹

1. 在单缝夫朗和费衍射实验中,一级暗纹的衍射角为0.4°,求二级亮纹的衍射角。 解:由亮纹条件

a sin θ2=(2 k + 1)λ/ 2 k =2 得 a sin θ2=5 / 2λ

由暗纹条件

a sin θ1=2k λ/2

k = 1 得 a sin θ1=λ sin θ2/sin θ1=5/2 角度很小时,sin θ≈θ 得 θ2=5/2θ1=1°

5.平行单色光波长为500nm ,垂直入射到每毫米有200条刻痕的光栅上,光栅后放一焦距为60cm 的凸透镜,在透镜焦平面处放一屏幕,求屏上中央极大与第一级主极大的间距。

解:光栅常数a + b = 1 /200 mm = 5×1-6 m 由光栅公式( a + b ) sin ? = k λ 当k = 0时,为中央极大

当k = 1时,为第一中央主极大

所以:sin ? =0,sin ? =λ/(a + b )= 0.1

x 0 = 0,x 1=f tg ?1 ≈ f sin ?1 = 0.06m 中央极大与第一级主极大间距

Δx =x 1-x 0=0.06m=6cm

第十八章

18-1 两偏振片的方向成300夹角时,透射光强为I 1,若入射光不变,而两偏振片的偏振化方向成450夹角时,则透射光强如何变化?

解:设透过第一块偏振片后的振幅为A 0,透过第二块偏振片后的振幅为A 1。依题意

00130cos A A =020130cos I I =→4

30

I = 3

41

0I I =

→ 00245cos A A =020245cos I I =→210

I =2

1

341?I 123

1I I =

18-2 使自然光通过两个偏振化方向成600夹角的偏振片,透射光强为I 1,今在这两偏振片之间再插入另一偏振片,它的偏振化方向与前两偏振片均成300角,则透射光光强为多少?

解:设自然光的振幅为A 0透过第一块偏振片后的振幅为A /,透过第二块偏振片后的振幅为A 1。依题意

0160cos A A '=02160cos I I '=→4

1

20I =

108I I =→

在这两偏振片之间再插入另一偏振片,它的偏振化方向与前两偏振片均成300角,设自然光的振幅为A 0透过第一块偏振片后的振幅为A /,透过第二块偏振片后的振幅为A /1,透过第三块偏振片后的振幅为A 2。则

01

30cos A A '='02130cos I I '='→43

20I = 0/1230cos A A =02/1230cos I I =→434320?=I 4

8891?=I

124

9I I =

18-6 一束光是自然光和平面偏振光的混合,当它通过一偏振片时发现透射光的强度

取决于偏振片的取向,其强度可以变化5倍,求入射光中两种光的强度各占入射光强度的几分之几?

解:旋转偏振片混合光中的偏振光有影响,在旋转的过程中,透射光光强会从最大最小间变化。设混合光强为I ,其中偏振光光强为x I ,自然光光强为(1-x )I

最大透射光强为 I x x I ])1(2

1[m a x +-= 最小透射光强为 I x I )1(2

1

m i n -= 依题意

5min

max

=I I 即I x x ])1(21[+-I x )1(215-=

3

2

=

x 入射光中偏振光光强为2/3,自然光光强为1/3。

大学物理测试题及答案3

波动光学测试题 一.选择题 1. 如图3.1所示,折射率为n2 、厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分别为n1和n3,已知n1 <n2 >n3,若用波长为(的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是 (A) 2n2e. (B) 2n2e-(/(2 n2 ). (C) 2n2e-(. (D) 2n2e-(/2. 2. 如图 3.2所示,s1、s2是两个相干光源,它们到P点的距离分别为r1和r2,路径s1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径s2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (r2 + n2 t2)-(r1 + n1 t1). (B) [r2 + ( n2-1) t2]-[r1 + (n1-1)t1]. (C) (r2 -n2 t2)-(r1 -n1 t1). (D) n2 t2-n1 t1. 3. 如图3.3所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e,并且n1<n2>n3,(1 为入射光在折射率为n1 的媒质中的波长,则两束反射光在相遇点的位相差为 (A) 2 ( n2 e / (n1 (1 ). (B) 4 ( n1 e / (n2 (1 ) +(. (C) 4 ( n2 e / (n1 (1 ) +(. (D) 4( n2 e / (n1 (1 ). 4. 在如图3.4所示的单缝夫琅和费衍射实验装置中,s为单缝,L为透镜,C为放在L的焦面处的屏幕,当把单缝s沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样 (A) 向上平移.(B) 向下平移.(C) 不动.(D) 条纹间距变大. 5. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为 (A) a = b. (B) a = 2b. (C) a = 3b. (D) b = 2a. 二.填空题 1. 光的干涉和衍射现象反映了光的性质, 光的偏振现象说明光波是波. 2. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = . 3. 用白光(4000?~7600?)垂直照射每毫米200条刻痕的光栅,光栅后放一焦距为200cm的凸透镜,则第一级光谱的宽度为. 三.计算题 1. 波长为500nm的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边l = 1.56cm的A处是从棱边算起的第四条暗条纹中心. (1) 求此空气劈尖的劈尖角( . (2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹,还是暗条纹? 2. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为(=589 nm的钠黄光的光谱线. (1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数km 是多少? (2) 当光线以30(的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数km 是多少? 3.在杨氏实验中,两缝相距0.2mm,屏与缝相距1m,第3明条纹距中央明条纹7.5mm,求光波波长?

大学物理下答案习题14

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. [答案:B] (2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ] (A) N a sin=k. (B) a sin=k. (C) N d sin=k. (D) d sin=k. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。 (B)变大。 (C)不变。 (D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b (C) a=2b (D)a=3b [答案:B] 14.2 填空题 (1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

大学物理练习题(下)

第十一章真空中的静电场 1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度. L P 2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为???,通过立方体一面的电场强度通量是???,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是???,(2)另外三个面每个面的电通量是???。 3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是() A.E R2 π B. R2 2π C. E R2 2π D. E R2 2 1 π 4.根据高斯定理的数学表达式?∑ ?= S q S E / dε ? ? 可知下述各种说法中,正确的是() (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零. (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. 5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( ) E O r (A) E∝1/r 6.如图所示, 电荷-Q均匀分布在半径为R,长为L的圆弧上,圆弧的两端有一小空隙,空隙长为图11-2 图11-3

)(R L L <

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2 图所示.设小球的半径和线的质量都可 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

大学物理下综合练习题

综合练习题AII 一、 单项选择题(从每小题给出的四个备选答案中,选出一个正确答案,并 将其号码填在题干后的括号内,每小题2分,共计20分)。 1、 关于高斯定理,下面说法正确的是:( ) A. 高斯面内不包围电荷,则面上各点的电场强度E 处处为零; B. 高斯面上各点的E 与面内电荷有关,与面外的电荷无关; C. 穿过高斯面的电通量,仅与面内电荷有关; D. 穿过高斯面的电通量为零,则面上各点的E 必为零。 2、 真空中有两块互相平行的无限大均匀带电平板,其中一块的电荷面密度为 +σ,另一块的电荷面密度为-σ,两板间的电场强度大小为:( ) A. 0; B. 023εσ; C. 0 εσ ; D. 02εσ。 3、 图1所示,P 点在半圆中心处,载流导线旁P 点的磁感应强度B 的大小为:( ) A. μ0I(r r 2141+π); B. μ0I(r r 2121+π); C. μ0I(r r 4141+π); D. μ0I(r r 4121+π) 。 4、 一带电粒子以速率V 垂直射入某匀强磁场B 后,运动轨迹是圆,周期为T 。若以速率2V 垂直射入,则周期为:( ) A. T/2; B. 2T ; C. T ; D. 4T 。 5、 根据洛仑兹力的特点指出下列叙述错误的为:( ) A. 洛仑兹力与运动电荷的速度相垂直; B. 洛仑兹力不对运动电荷做功; C. 洛仑兹力始终与磁感应强度相垂直;D. 洛仑兹力不改变运动电荷的动量。 6、 在杨氏双缝干涉实验中,两条狭缝相距2mm ,离屏300cm ,用600nm 光 照射时,干涉条纹的相邻明纹间距为:( ) A. 4.5mm ; B. 0.9mm ; C. 3.12mm ; D. 4.15mm 。 7、 若白光垂直入射到光栅上,则第一级光谱中偏离中心最远的光是:( ) A. 蓝光; B. 黄光; C. 红光 ; D. 紫光。 8、 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片。若以此入射光为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为:( ) A. 2/3; B. 1/5; C. 1/3; D. 1/2。 9、 单缝夫琅和费衍射中,若屏幕上的P 点满足2/5sin λ?=a ,则该点为:( ) A. 第二级暗纹; B. 第五级暗纹; C. 第二级明纹; D. 第五级明纹。 10、 当加在光电管两极的电压足够高时,光电流会达到一个稳定值,这个稳定 值叫饱和电流。要使饱和电流增大,需增大照射光的:( ) A. 强度; B. 照射时间; C. 波长; D. 频率 。 二、 填空题(每小题2分,共计20分) 1、 图2所示,半径为R 电流为I 的圆形载流线圈在均 匀磁场B 中所受的磁力矩大小为 。 2、 电量均为+q 的两个点电荷相距2x ,则在这两个点电荷连线中点处的电势为 。 3、 在真空中,半径为R 的孤立导体球的电容为 。 4、 静电场由静止电荷产生,感生电场由 产生。 5、 真空中波长为λ的单色光在折射率为n 的介质中,由a 点传到b 点相位

大学物理下练习题答案汇总

大学物理下练习题 一、选择题(每题1分,共41分) 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B ) (A) 场强E 的大小与试验电荷q 0的大小成反比; (B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0. 2.下列几个说法中哪一个是正确的?(C ) (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。 (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。 (C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。 ( D )以上说法都不正确。 3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A ) (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C ) (A) 大小为零. (B) 大小为q/(2πε0a 2), 方向沿x 轴正向. (C) 大小为() 2022a q πε, 方向沿y 轴正向. (D) 大小为()2 022a q πε, 方向沿y 轴负向. 5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D ) (A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E . (D) 0 . 6. 下列关于高斯定理理解的说法中,正确的是:(B ) (A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零 +λ -λ ? (0, a ) x y O 图 1.1 图1.2 图1.3

大学物理下册练习题

静电场部分练习题 一、选择题 : 1.根据高斯定理的数学表达式?∑=?0 εq s d E ,可知下述各种说法中正确的是( ) A 闭合面的电荷代数和为零时,闭合面上各点场强一定为零。 B 闭合面的电荷代数和不为零时,闭合面上各点场强一定处处不为零。 C 闭合面的电荷代数和为零时,闭合面上各点场强不一定处处为零。 D 闭合面上各点场强均为零时,闭合面一定处处无电荷。 2.在静电场中电场线为平行直线的区域( ) A 电场强度相同,电势不同; B 电场强度不同,电势相同; C 电场强度、电势都相同; D 电场强度、电势都不相同; 3.当一个带电导体达到静电平衡时,( ) A 表面上电荷密度较大处电势较高。 B 表面曲率较大处电势较高。 C 导体部的电势比导体表面的电势高; D 导体任一点与其表面上任意点的电势差等于零。 4.有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零。则原点O 处电场强度和电势均为零的组态是( ) A 图 B 图 C 图 D 图 5.关于高斯定理,下列说法中哪一个是正确的?( ) A 高斯面不包围自由电荷,则面上各点电位移矢量D 为零。 B 高斯面上处处D 为零,则面必不存在自由电荷。 C 高斯面上D 通量仅与面自由电荷有关。 D 以上说法都不对。 6.A 和B 为两个均匀带电球体,A 带电量+q ,B 带电量-q ,作一个与A 同心的球面S 为高斯面,如图所示,则( ) S A B

A 通过S 面的电通量为零,S 面上各点的场强为零。 B 通过S 面的电通量为 εq ,S 面上各点的场强大小为2 04r q E πε= 。 C 通过S 面的电通量为- εq ,S 面上各点的场强大小为2 04r q E πε- =。 D 通过S 面的电通量为 εq ,但S 面上场强不能直接由高斯定理求出。 7.三块互相平行的导体板,相互之间的距离1d 和2d ,与板面积相比线度小得多,外面二板用导线连接,中间板上带电,设左、右两面上电荷面密度分别为1σ,2σ。如图所示,则比值1σ/2σ为( ) A 1d /2d ; B 1 C 2d /1d ; D (2d /1d )2 8.一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变?( ) A 电容器的电容量 B 两极板间的场强 C 两极板间的电势差 D 电容器储存的能量 9.一空心导体球壳,其外半径分别为1R 和2R ,带电量q ,当球壳中心处再放一电量为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为( )。 A 1 04R q πε B 2 04R q πε C 1 02R q πε D 2 02R q πε 10.以下说确的是( )。 A 场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零; B 场强大小相等的地方,电势也相等,等势面上各点场强大小相等; C 带正电的物体,也势一定是正的,不带电的物体,电势一定等于零。 D 沿着均场强的方向,电势一定降低。 11.两个点电荷相距一定的距离,若在这两个点电荷联线的中垂线上电势为零,那么这两个点电荷为( )。

大学物理计算题

第3大题: 计算题( 分) 3.1 (10分)如图所示,一个劲度系数为k 的轻弹簧与一轻柔绳相连接,该绳跨过一半径为R ,转动惯量为I 的定滑轮,绳的另一端悬挂一质量为m 的物体。开始时,弹簧无伸长,物体由静止释放。滑轮与轴之间的摩擦可以忽略不计。当物体下落h 时,试求物体的速度v ? Mg-T1=ma (T1-T2)R=I β T2-kx=0 a=βR 联立解得a=(mg-kx)/(m+I/R2) d )(1 d 0 2 ??-+= h v kx mg R I m v v 解得v=genhao (2mgh-kh2)/ (m+I/R2) 3.2 (10分)一皮带传动装置如图所示, B A,两轮上套有传动皮带。外力矩M 作用 在A 轮上,驱使其转动,并通过传动皮带带动B 轮转动。B A,两轮皆可视为质量均匀分布的圆盘,其质量分别为1m 和2m ,半径分别为1R 和2R 。设皮带在轮上不打滑,并略去转轴与轮之间的摩擦。试求B A,两轮的角加速度1β和2β。解 12 111212 1)(βR m R T T M = -- (1)……………………….2分 22222212 1)(βR m R T T = - (2)………………..2分 由于皮带不打滑,切向速度相同,其变化率即切相加速度相同: 2211ββR R = 由式(2)(3)得 2 1211)(2R m m M += β 代入式(3)得2 1212 )(2R R m m M += β 3.3 (10分)如图所示,一根细棒长为L ,总质量为m ,其质量分布与离O 点的距离成正比。现将细棒放在粗糙的水平桌面上,棒可绕过其端点O 的竖直轴转动。已知棒与桌面间的摩擦系数为μ,棒的初始角度为0ω。求: (1) 细棒对给定轴的转动惯量 (2) 细棒绕轴转动时所受的摩擦力矩; (3) 细棒从角速度0ω开始到停止转动所经过的时间。 解 (1)由题意可知细棒的质量线密度为 kr =λ 式中k 为常数。由于细棒的总质量为m ,所以 m r kr L =? d 0 … 由此得 22L m k = 故 r L m kr 22= =λ ……… 得一并代入式得由式得由式)1()3(21)2(1 21 222221???? ???== -βββR R R m T T

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理下册习题及答案

大学物理 练 习 册 物理教研室遍

热力学(一) 一、选择题: 1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程 (A)是平衡过程,它能用P—V图上的一条曲线表示。 (B)不是平衡过程,但它能用P—V图上的一条曲线表示。 (C)不是平衡过程,它不能用P—V图上的一条曲线表示。 (D)是平衡过程,但它不能用P—V图上的一条曲线表示。 [ ] 2、在下列各种说法中,哪些是正确的? [ ] (1)热平衡就是无摩擦的、平衡力作用的过程。 (2)热平衡过程一定是可逆过程。 (3)热平衡过程是无限多个连续变化的平衡态的连接。 (4)热平衡过程在P—V图上可用一连续曲线表示。 (A)(1)、(2)(B)(3)、(4) (C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4) 3、设有下列过程: [ ] (1)用活塞缓慢的压缩绝热容器中的理想气体。(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。 (3)冰溶解为水。 (4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。 其中是逆过程的为 (A)(1)、(2)、(4)(B)(1)、(2)、(3) (C)(1)、(3)、(4)(D)(1)、(4) 4、关于可逆过程和不可逆过程的判断: [ ] (1)可逆热力学过程一定是准静态过程。 (2)准静态过程一定是可逆过程。 (3)不可逆过程就是不能向相反方向进行的过程。 (4)凡有摩擦的过程,一定是不可逆过程。 以上四种判断,其中正确的是 (A)(1)、(2)、(3)(B)(1)、(2)、(4) (C)(2)、(4)(D)(1)、(4) 5、在下列说法中,哪些是正确的? [ ] (1)可逆过程一定是平衡过程。 (2)平衡过程一定是可逆的。 (3)不可逆过程一定是非平衡过程。 (4)非平衡过程一定是不可逆的。 (A)(1)、(4)(B)(2)、(3) (C)(1)、(2)、(3)、(4)(D)(1)、(3)

2014大学物理作业下作业和附加题

第9章 振动 作 业 一、教材:选择填空题 1~5;计算题:13,14,18 二、附加题 (一)、选择题 1、一沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t =0时,质点的位置在: (A)过A x 21=处,向负方向运动; (B) 过A x 2 1=处,向正方向运动; (C) 过A x 21-=处,向负方向运动; (D) 过A x 2 1-=处,向正方向运动。 2、一质点作简谐振动,振动方程为:x =A cos(ωt +φ )在t=T/2(T 为周期)时刻,质点的速度为: (A) sin A ω?-. (B) sin A ω?. (C) cos A ω?-. (D) cos A ω?. 3、一质点沿x 轴做简谐运动,振动方程为:21410cos(2)3 x t ππ-=?+。从t = 0时刻起,到x =-2cm 处,且向x 轴正方向运动的最短时间间隔为: (A) 1s 8. (B) 1s 4. (C) 1s 2. (D) 1s 3. (E) 1s 6 . (二)、计算题 1、一物体沿x 轴做简谐运动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x 0= 0.06m ,且向x 轴正向运动.求:(1)此简谐运动的运动方程;(2)t = T /4时物体的位置、速度和加速度; 2、一物体沿x 轴做简谐运动,振幅A = 10.0cm ,周期T = 2.0s .当t = 0时,物体的位移x 0= -5cm ,且向x 轴负方向运动.求:(1)简谐运动方程;(2)t = 0.5s 时,物体的位移;(3)何时物体第一次运动到x = 5cm 处?(4)再经过多少时间物体第二次运动到x = 5cm 处?

大学物理习题集(下)答案95268

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2=-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ] x o A ? x ω (A) A/2 ω (B) (C) (D) o o o x x x A ? x ω ω A ? A ? x A/2 -A/2 -A/2 (3) 题 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (4) 题(5) 题

大学物理下(计算题)

第9章 9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷 91 1.810C q -=?,B 点上有一点电荷 92 4.810C q -=-?,已知 0.04m BC =,0.03m AC =,求C 点电场强度E ρ 的大小和方向 (cos370.8?≈,sin370.6?≈). 解:如解图9-4所示C 点的电场强度为 12 E E E =+r r r 99 41 1122 0 1.810910 1.810(N C )4π()(0.03)q E AC ε--???===?? 9941 2222 0 4.810910 2.710(N C )4π()(0.04)q E BC ε--???===?? C 点电场强度E ρ 的大小 222244112 1.8 2.710 3.2410(N C ) E E E -=+=+?=?? 方向为 4o 14 2 1.810arctan arctan 33.7 2.710E E α?===? 即方向与BC 边成33.7°。 9-5 两个点电荷 6612410C,810C q q --=?=?的间距为0.1m ,求距离它们都是0.1m 处 的电场强度E ρ。 解:如解图9-5所示 9661 1122 01910410 3.610(N C )4π10q E r ε---???===?? 96612222 029108107.210(N C )4π10q E r ε---???===?? 1E ρ,2E ρ 沿x 、y 轴分解 611212cos60cos120 1.810(N C )x x x E E E E E -=+=?+?=-?? 611212sin60sin1209.3610(N C ) y y y E E E E E -=+=?+?=?? 电场强度为 22 619.5210(N C ) x y E E E -=+=?? 解图9-5 解图9-4 C 题图9-4

大学物理下册练习及答案

大学物理下册练习及答 案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

电磁学 磁力 A 点时,具有速率s m /10170?=。 (1) 欲使这电子沿半圆自A 至C 运动,试求所需 的磁场大小和方向; (2) 求电子自A 运动到C 所需的时间。 解:(1)电子所受洛仑兹力提供向心力 R v m B ev 20 0= 得出T eR mv B 3197 310101.105 .0106.11011011.9---?=?????== 磁场方向应该垂直纸面向里。 (2)所需的时间为s v R T t 87 0106.110 105 .0222-?=??===ππ eV 3100.2?的一个正电子,射入磁感应强度B =的匀强磁场中,其速度 B 成89角,路径成螺旋线,其轴在B 的方向。试求这螺旋线运动的周期T 、螺距h 和半径r 。 解:正电子的速率为 731 19 3106.210 11.9106.110222?=?????==--m E v k m/s 做螺旋运动的周期为 1019 31 106.31 .0106.11011.922---?=????==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --?=????==T v h m 半径为319 7310105.1 0106.189sin 106.21011.989sin ---?=??????==eB mv r m d =1.0mm ,放在 知铜片里每立方厘米有2210?个自由电子,每个电子的电荷19106.1-?-=-e C ,当铜片中有I =200A 的电流流通时, (1)求铜片两侧的电势差'aa U ; (2)铜片宽度b 对'aa U 有无影响为什么 解:(1)53 1928'1023.210 0.1)106.1(104.85 .1200---?-=???-???== nqd IB U aa V ,负号表示'a 侧电势高。 v A C

大学物理下册练习题

静电场部分练习题 一、选择题: 1.根据高斯定理的数学表达式?∑=?0 εq s d E ??,可知下述各种说法中正确的是( ) A 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零。 B 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零。 C 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零。 D 闭合面上各点场强均为零时,闭合面内一定处处无电荷。 2.在静电场中电场线为平行直线的区域内( ) A 电场强度相同,电势不同; B 电场强度不同,电势相同; C 电场强度、电势都相同; D 电场强度、电势都不相同; 3.当一个带电导体达到静电平衡时,( ) A 表面上电荷密度较大处电势较高。 B 表面曲率较大处电势较高。 C 导体内部的电势比导体表面的电势高; D 导体内任一点与其表面上任意点的电势差等于零。 4.有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零。则原点O 处电场强度和电势均为零的组态是( ) A 图 B 图 C 图 D 图 5.关于高斯定理,下列说法中哪一个是正确的?( ) A 高斯面内不包围自由电荷,则面上各点电位移矢量D ? 为零。 B 高斯面上处处D ? 为零,则面内必不存在自由电荷。 C 高斯面上 D ? 通量仅与面内自由电荷有关。 D 以上说法都不对。 6.A 和B 为两个均匀带电球体,A 带电量+q ,B 带电量-q ,作一个与A 同心的 S A B

球面S 为高斯面,如图所示,则( ) A 通过S 面的电通量为零,S 面上各点的场强为零。 B 通过S 面的电通量为 εq ,S 面上各点的场强大小为2 04r q E πε= 。 C 通过S 面的电通量为- εq ,S 面上各点的场强大小为2 04r q E πε- =。 D 通过S 面的电通量为 εq ,但S 面上场强不能直接由高斯定理求出。 7.三块互相平行的导体板,相互之间的距离1d 和2d ,与板面积相比线度小得多,外面二板用导线连接,中间板上带电,设左、右两面上电荷面密度分别为1σ,2σ。如图所示,则比值1σ/2σ为( ) A 1d /2d ; B 1 C 2d /1d ; D (2d /1d )2 8.一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变?( ) A 电容器的电容量 B 两极板间的场强 C 两极板间的电势差 D 电容器储存的能量 9.一空心导体球壳,其内外半径分别为1R 和2R ,带电量q ,当球壳中心处再放一电量为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为( )。 A 1 04R q πε B 2 04R q πε C 1 02R q πε D 2 02R q πε 10.以下说法正确的是( )。 A 场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零; B 场强大小相等的地方,电势也相等,等势面上各点场强大小相等; C 带正电的物体,也势一定是正的,不带电的物体,电势一定等于零。 D 沿着均场强的方向,电势一定降低。 11.两个点电荷相距一定的距离,若在这两个点电荷联线的中垂线上电势为零,那么这两个点电荷为

大学物理一计算题

1、均匀带电细线ABCD 弯成如图所示的形状,其线电荷密度为λ,试求圆心O 处的电势。 解: 两段直线的电势为 2ln 420 1πε λ =V 半圆的电势为 ππε λ 24=V , O 点电势)2ln 2(40 ππε λ += V 2、有一半径为 a 的半圆环,左半截均匀带有负电 荷,电荷线密度为-λ,右半截均匀带有正电荷,电线密度为λ ,如图。试求:环心处 O 点的电场强度。 解:如图,在半圆周上取电荷元dq a a dE dE E E a dq dE ad dl dq x x 02 2 2d cos 21 2cos 41πελθθλπε θ πε θλλπ - =-=-= = == ==???由对称性 3、一锥顶角为θ的圆台,上下底面半径分别为R 1和R 2,在 它的侧面上均匀带电,电荷面密度为σ,求顶点O 的电势。(以无穷远处为电势零点) 解::以顶点O 作坐标原点,圆锥轴线为X 轴向下为正. 在任意位置x 处取高度为d x 的小圆环, 其面积为 xdx dx r dS θ θπ θ πcos tan 2cos 2== 其上电量为 xdx tg dS dq θ θπσ σcos 2== 它在O 点产生的电势为 2 20 4x r dq dU += πε 2 2 2 2tan tan 4cos tan 2εθσθπε θ θπσdx x x xdx = += 总电势 ?? -= = = 120 2) (tan 22 1 εσθ εσR R dx dU U x x A B C O E d

4、已知一带电细杆,杆长为l ,其线电荷密度 为λ = cx ,其中c 为常数。试求距杆右端距离为a 的P 点电势。 解:考虑杆上坐标为x 的一小块d x d x 在P 点产生的电势为 x a l xdx c x a l dx dU -+= -+= 00441πελπε 求上式的积分,得P 点上的电势为 ] )ln( )[(440 l a a l a l c x a l xdx c U l -++= -+= ? πε πε 5、有一半径为 a 的非均匀带电的半球面,电荷面密度为σ = σ0 cos θ σ0为恒量 。试求:球心处 O 点的电势。 解: 6、有一半径为 a 的非均匀带电的半圆环,电荷线密度为λ =λ0 cos θ,λ0为恒量 。试求:圆心处 O 点的电势。 解: 020002 000 42sin cos 4sin 24sin 2sin 2εσεθθθσπεθθπσπεθθπσσθθπππR d R R Rd R dU U R dq dU Rd R ds dq Rd R ds =??=??===??==??=???圆环的电势 上取一圆环,y ??= == === -0 2 2 0024cos 4πε λπε θ θλθ λλπεπ π d dU U ad dl dq , a dq dU dq , 在半圆上取电荷元

大学物理自测题

附录I 检测题 检测题(一) 一、单项选择题 1. 下列哪一个物理量为矢量? ( ) A . 动能 B . 速度 C . 功 D . 路程 2. 关于质点,下面说法正确的是 ( ) A . 做精彩表演的花样滑冰运动员,可以被看成质点 B . 体积很小的物体可看作质点 C . 研究兵乓球旋转时,可以把兵乓球看作质点 D . 在某些情况下,地球可以看作质点 3. 某质点的运动方程为3 358x t t =-+,该质点做 ( ) A .匀加速直线运动,加速度方向沿x 正向 B .匀加速直线运动,加速度方向沿x 负向 C .变加速直线运动,加速度方向沿x 正向 D .变加速直线运动,加速度方向沿x 负向 4.关于圆周运动,下列说法正确的是 ( ) A .质点作圆周运动时的加速度指向圆心 B .匀速圆周运动的加速度为恒量 C .只有法向加速度的运动一定是圆周运动 D .只有切向加速度的运动一定是直线运动 5. 如下图所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是 ( ) A .P 、Q 两点的角速度大小相同 B .P 点的速率比Q 点的速率大 C .P 、Q 两点的摩擦力方向均与轮转动方向相反 D .P 点的摩擦力方向与甲轮的转动方向相反,Q 点的摩擦力方向与乙轮的转动方向相同 6. 物理知识渗透于我们生活各方面,以下的安全警示中涉及到惯性知识的是 ( ) A . 景区水池边立有“水深危险” B . 商场走廊过道标有“小心碰头” C . 汽车的尾部标有“保持车距” D . 输电铁塔下挂有“严禁攀爬” 7. 如下图所示,物体A 和 B 紧靠一起放在光滑水平桌面上,且A 物体质量为m ,B 的质量为2m 。如果它们分别受到水平推力F 1、F 2,且F 1>F 2,则A 、B 之间相互作用力的大小为 ( ) A . (F 1+2F 2)/3 B . (2F 1+F 2)/3 C . (F 1-F 2)/2 D . (F 1+F 2)/2

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-2 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解:如题8-2图示 ?? ? ? ? = = = 2 2 ) sin 2( π4 1 sin cos θ ε θ θ l q F T mg T e 解得θ πε θtan 4 sin 2 mg l q= 8-3 根据点电荷场强公式 2 4r q E πε =,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少? 解:题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用力 S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证:如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵l r >>

相关文档
相关文档 最新文档