文档库 最新最全的文档下载
当前位置:文档库 › 螺旋桨计算书

螺旋桨计算书

螺旋桨计算书
螺旋桨计算书

MAU型螺旋桨设计计算书

1.船体的主要参数

船体总长L OA=150m

设计水线长L WL=144m

垂线间长L PP=141m

型宽B=22m

型深D=11m

设计吃水T=5.5m

方形系数C b=0.84

菱形系数C p=0.849

中剖面系数C m=0.69

排水量△=14000t

桨轴中心距基线距离Z P=2m

船体有效马力曲线数据如下:

2.主机参数

型号N/A(两台)

额定功率P S =1714hp

转速N=775r/min

齿轮箱的减速比i=5

桨轴处转速n=155 r/min

轴系传送效率ηS=0.97(中机型船)减速装置的效率ηG=0.97

旋向双桨外旋

3.推进因子的决定

伴流分数ω=0.248

推力减额分数t =0.196

相对旋转效率ηR=1.00

4.船身效率计算

ηH=(1-t)/(1-ω)=1.069

5.收到马力计算

储备功率取 10%

收到马力P D =0.9* P S*ηG *ηS*ηR= 0.9*1714*0.97*0.97*1=1451.43hp 6.假定设计航速有效马力计算

根据MAU4-40,MAU4-55,MAU4-70的Bp-δ图谱列下表计算。

据表中的计算结果可绘制P TE--Vs曲线,如下图1所示。从P TE--Vs曲线P E曲线交点处可获得:

MAU4-40 Vs= 11.83Kn

MAU4-55 Vs= 11.73Kn

MAU4-70 Vs= 11.56Kn

7.初步确定桨的要素

8.空泡校核

根据柏利尔商船界限线计算

桨轴沉深 h

s =T–Z

P

=3.5m

计算t=15°C,则Pv=174kgf/m2

取水温15度,Pa-大气压为:10330Kgf/m2

P 0-P

v

= P

a

–P

v

+ h

s

γ= 13743.5kgf/m2

9.确定螺旋桨的要素

据上表计算结果,可得不发生空泡的最小盘面比以及所对应的最佳螺旋桨要素。

A E / A0 =0.40; MAU4-40桨;

Vs =11.83Kn ; P / D =0.722 ; D =3.48m ;η0 =0.628

N=155r/min

强度校核

根据2001年《钢制海船入籍建造规范》校核t

0.25R 及t

0.6R

应不小于按下式计

算之值:

X K Y

t -=

Y=1.36A 1Ne/(ZbN) X=A 2GA d N 2D 3/(1010Zb) 计算功率:

Ne=Ps ×ηS =1714×0.97=1662.58 HP

D=3.48 m A d =A E /A O =0.4

P/D=0.722 ε=10o

G=7.5 g/cm 3 N=155 r/min b 0.66R =0.226DA d /(0.1Z)=0.78648

b 0.25R =0.7212b 0.66R =0.5672 b 0.6R =0.9911b 0.66R =0.7795

10.确定设计的螺旋桨各切面厚度

桨叶厚度查表8-4 MAU标准桨可得出各切面最大厚度为:

t0.2R=141.3mm t0.3R=124.9mm t0.4R=108.6mm t0.5R=92.2mm t0.6R=75.9mm t0.7R=59.5mm t0.8R=43.2mm t0.9R=26.8mm

11.螺距修正

螺距比为:

P/D=(P/D)0 =0.722

12.重量及惯性矩计算

采用船舶及海洋工程设计研究院公式:

桨叶重:G

bl = 0.169γ·Zb

max

(0.5t

0.2

+t

0.6

) (1-d/D) D

=0.169·7500·4·0.7865·(0.5·0.141+0.076)·(1-0.18)·3.48 =1667kgf

桨毂重:G

n = (0.88-0.6·d

/ d) L

K

γd 2

=(0.88-0.6·0.236/0.6264) 0.470·7500·0.6264 2 = 904.5kgf

螺旋桨重量:G = G

bl + G

n

= 1667+904.5=2571.5kgf

螺旋桨的惯性矩:I

mp = 0.0948γ·Zb

max

(0.5t

0.2

+t

0.6

) D3

=0.0948·7500·4·0.7865(0.5·0.141+0.076) ·3.483

=13810.3kgf·cm·s2

13.敞水性征曲线之确定

由MAU4-40,P/D=0.7和P/D=0.8的敞水性征曲线内插得到MAU4-40,P/D=0.722的敞水性征曲线,其数据见下表。

14.系柱特性计算

由上图得J=0时,KT=0.302,KQ=0.0328.

计算功率P D=1714*0.97=1662.58hp

系柱推力减额分数取t0=0.04

主机转矩Q=P D*60*75/(2πN)=7682.16kgf·m 系柱推力T=K T Q/K Q D=20321kgf

螺旋桨转速N=60SQRT(T/ΡD4K T)=125.64r/min 15. 螺旋桨计算总结

螺旋桨直径 D=3.48 m

螺距比 P/D=0.722

叶数 Z=4

型式 MAU型

/Ao=0.40

盘面比 A

E

纵倾角ε=10o

=0.628

螺旋桨效率η

设计航速 Vs=11.83kn

/D=0.18

毂径比 d

b

旋向双桨外旋

材料锰铝黄铜

重量 2571.5kgf

惯性矩 13810.3kgf·cm·s2 15.螺旋桨型值表(详见附EXCEL表)

MAU型螺旋桨切面尺寸表:

最大厚

度t

43 43 43 43 43 43 43 X 0 20.7604 41.5208 62.2081 103.7289 155.5568 155.5568 Yo 15.05 22.2955 25.6925 28.4445 32.7015 36.6575 39.646 Yu 0 10.4275 8.1915 6.45 4.3 2.322 1.0105

0.9 叶宽b 579 579 579 579 579 579 579 最大厚

度t

27 27 27 27 27 27 27 X 0 17.7174 35.3769 53.0943 88.4712 132.7068 176.9424 Yo 8.2242 13.0194 14.9391 16.8588 20.007 23.0175 24.894 Yu 0 6.237 5.1408 4.1121 2.7405 1.458 0.6345

0.95 叶宽b 437 437 437 437 437 437 437 最大厚

度t

19 19 19 19 19 19 19 X 0 13.6781 27.3125 40.9906 68.3031 102.4328 136.5625 Yo 0 3.0172 4.9381 7.5354 9.6045 12.9884 15.9125 Yu 0 0 0 0 0 0 0

16.螺旋桨设计

船舶螺旋桨用不锈钢的发展

文章编号:100321545(2002)0620043204船舶螺旋桨用不锈钢的发展 方正春(洛阳船舶材料研究所 洛阳 471039) 摘 要 概述了船舶螺旋桨用不锈钢的发展,给出了几种性能优良的不锈钢螺旋桨材料,阐述了不锈钢作为螺旋桨材料的优缺点。 关键词 不锈钢 铜合金 螺旋桨 中图分类号:TG142.71,U664.34 文献标识码:A Development of the Stainless Steel of Marine Propeller Fang Zhengchun(Luoyang Ship Material Research Institute,Luoyang471039,China) Abstract The development of the stainless steel for marine propeller is reviewed.S ome types of stainless steel used in propeller have good properties.And in this paper,author also give the comparison between stainless steel and cop2 per alloy for marine propeller and show the advantages and disadvantages of stainless steel. K eyw ords Stainless steel Copper alloy Propeller 长期以来船用螺旋桨材料多选用铜合金,其 中镍铝青铜又是首选材料。其原因主要是:(1)铜合金的耐腐蚀性好,基本上可满足海水中螺旋桨的使用要求;(2)铜合金的熔点低,便于熔炼和铸造,铸件不需要进行热处理,经加工便可使用。 由于铜合金材料强度的大幅度提高受到限制,随着船舶的大型化和单轴功率的增大,迫切需要开发强度更高的螺旋桨材料。此外,近年来港湾和江河水域的海水污染加剧,铜合金螺旋桨的耐蚀性能也开始出现问题。因工业废水和城市污水的排放,使海水中的有机物大量增加,导致厌气性硫酸盐还原菌大量繁殖。海水中的硫酸盐被还原后产生了对铜合金具有强烈腐蚀作用的硫离子。因此,铜合金螺旋桨因这种腐蚀所造成的破坏常有发生,甚至仅使用数日螺旋桨表面便发黑且粗糙不堪。 取代铜合金的不锈钢螺旋桨材料便成为螺旋桨材料开发的新方向。本文就船舶螺旋桨用不锈钢的发展及其优缺点概要地加以论述。 收稿日期:20022022071 螺旋桨用不锈钢的发展 1.1 13%Cr和18%Cr钢 13%Cr钢是最早用于螺旋桨的马氏体型不锈钢[1],名义成分为13Cr21Ni21Mo。这种钢在海水中有良好的耐蚀性,在0℃的海水中不会产生间隙腐蚀和点蚀,非常适用于冰区航行的船舶螺旋桨,北欧各国和前苏联已大量采用此钢。但是,这种不锈钢在含中性盐类的海水中使用耐蚀性不佳,有产生间隙腐蚀和点蚀的倾向。此外,这种钢铸件必须进行固熔热处理,给整体铸造螺旋桨的生产带来困难。 18%Cr钢属于铁素体型不锈钢[2],在退火状态下使用。由于其强度不高,尤其是腐蚀疲劳强度较低,这是使用中的致命缺点。 1.2 1828和1724p H钢 1828不锈钢为奥氏体型不锈钢。这种钢用于大型螺旋桨时,不仅强度不足,而且晶间腐蚀和点蚀非常敏感,在海水中使用存在着各式各样的问题。 第17卷第6期 材 料 开 发 与 应 用 2002年12月

螺旋桨知识

空气螺旋桨把发动机旋转作功形式转变为直线作功形式;把发动机的功率转变为拉动飞机前进的有效功率。它的工作效率及与发动机有配合程度,直接影响模型飞机的性能。在航模竞技比赛中,出于追求动力组极限水平的需要,对螺旋桨的要求更为“苛刻”;因此以“量体裁衣”手工方式制作螺旋桨的好处显而易见。航模初学者能够扎实地掌握这一手艺很有必要。 本文以一个直径(D)200mm、几何桨距(H)120mm的两叶等距螺旋桨(适用于装有1.5cc 压燃式发动机或2.5cc电热式发动机的特技模型飞机)为例,介绍削制螺旋桨的方法。一、螺旋桨的一些基础概念 当我们把螺旋桨看成是一个一面旋转一面前进的机翼时,就能借助已知的空气动力学常识,直观地理解螺旋桨的基本工作原理。 1.桨距、动力桨距和几何桨距 桨距:从广义而言,可以理解为螺旋桨旋转一周沿桨轴方向所通过的直线距离。习惯上螺旋桨70%半径处的桨距值为“称呼值”,它具有标示意义。 动力桨距(Hg):桨叶旋转一周模型飞机所通过的距离(见图1)。设计螺旋桨时首先要确定动力桨距值。 几何桨距:(H):桨叶弦线迎角为零时,螺旋桨旋转一周所前进的距离(也见图1)。它体现了桨叶角的实际大小,是“看得见、摸得着”的实际参数。航模图纸上一般都标出几何桨距,是消制螺旋桨的主要依据。 2.动力桨距和几何桨距的关系 由于螺旋桨工作在接近于有利迎角下,与零度迎角之间的角差的存在,因此动力桨距值必然小于几何桨距值。几何桨距和动力桨距的关系是:几何桨距(H)= 1.1 ~ 1.3倍动力桨距(Hg)。也就是说,设计模型飞机时,动力桨距确定后,可以通过上述公式概略估算出螺旋桨的几何桨距。 3.通常使用的螺旋桨是各段几何桨距值相等的所谓等距桨。它的优点是设计、制作比较容易;缺点是工作效率劣于不等距桨。由于不等距桨各段的几何桨距值和桨角均不一样,尽管其效率高,但制作的难度大。故初学者从削等距桨起步较为稳妥。 4.桨叶角(β):桨叶角是指桨叶剖面弦线与旋转平面之间的夹角。 5.几何桨距和桨叶角的关系 几何桨距和桨叶角直接关联,是同一个问题的两种表达方式。几何桨距强调的是总体,桨叶角强调的是局部。就等距螺旋桨而言,桨叶角随其在螺旋桨半径方向上所处位置的不同而异;随着由桨根到桨尖方向的逐渐位移,桨叶角渐渐有规律地减小。(图2)

螺旋桨设计计算说明书.

某沿海单桨散货船螺旋桨设计计算说明书 姓名: XXX 班级:XXX 学号:XXX 联系方式:XXX 日期:XXX

1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--=w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.5 42.34 35.18 29.60 25.19

Bp 6.51 5.93 5.44 5.02 MAU 4-40 δ75.82 70.11 64.99 60.75 P/D 0.640 0.667 0.694 0.720 ηO0.5576 0.5828 0.6055 0.6260 P TE =P D ·η H ·η O hp 2862.09 2991.44 3107.95 3213.18 MAU 4-55 δ74.35 68.27 63.57 59.33 P/D 0.686 0.713 0.741 0.770 ηO0.5414 0.5672 0.5909 0.6112 P TE =P D ·η H ·η O hp 2778.94 2911.36 3043.28 3137.21 MAU 4-70 δ73.79 67.79 63.07 58.70 P/D 0.693 0.723 0.754 0.786 ηO0.5209 0.5456 0.5643 0.5828 P TE=P D ·η H ·η O hp 2673.71 2800.49 2891.86 2991.44 据上表的计算结果可绘制PT E、δ、P/D及η O 对V的曲线,如下图所示。

竹蜻蜓的力学原理

竹蜻蜓的力学原理 摘要:竹蜻蜓在生活中十分常见,然而它所蕴含的力学原理正是它给人们的魅力所在.竹蜻蜓的力学原理也恰恰应用在一些大型设备中,例如直升机的螺旋桨等,所以从竹蜻蜓入手,运用理论力学的知识对其原理的解释,将有助于之后的力学创新小发明的产生. 关键字:竹蜻蜓力学解析拓展运用 竹蜻蜓是许多青少年以及儿童喜爱的玩具,升入大学后,在一定的知识储备的条件下,结合《理论力学》的相关知识,我想从更深入的角度对竹蜻蜓结构进行力学分析。 首先介绍一下竹蜻蜓,竹蜻蜓是中国古老的玩具,其外形是一片呈翼形的竹片,当中有一个小孔,插一根笔直的竹棍儿,用两手搓转这根竹棍儿,竹蜻蜓便会旋转飞上天,当升力弱时才落到地面。竹蜻蜓的叶片是两片左右对称并带有一定角度的薄片,薄片的横截面一般是圆头尖尾型,上表面带一定的弧度,下表面一般为直线,这与现代低速飞机上所采用的翼型基本相同。当竹蜻蜓的叶片旋转时,通过竹蜻蜓叶片上的气流会绕过叶片本身,由于上表面的气流通过的距离比下表面要长(两点之间,直线距离最短),所以,迫使上表面的气流运动速度要高于下表面,以便气流在同一时间汇聚于叶片的尾部。在低速流动状态下,气流的速度越高,则其压力(静压)就越底,这就造成上表面的压力低于小表面,从而使得上下表面产生压力差,具体表现为叶片上产生一个指向上表面的合力,这个力就是叶片上的升力。 接下来是对竹蜻蜓的力学详细分析。首先绘制竹蜻蜓的示力图。 竹蜻蜓由两部分组成。一是竹柄,是一根长约20cm,直径约5cm的木棒。

二是飞翼,用一片长18至20厘米、宽2厘米、厚0.3厘米的竹片(现在多为塑料片),中间打一个直径4至5毫米的小圆孔,用于安装竹柄。叶片是斜面,并且两个叶片是中心对称的。 叶片的斜面起关键作用,当转动竹柄使得叶片旋转起来的时候,旋转的叶片将空气向下推,形成一股强风,而空气也给竹蜻蜓一股向上的反作用升力,这股升力随著叶片的倾斜角而改变。如图所示,竹蜻蜓以w 转动,空气给叶片的力为F ,可以分解为水平力x F 与竖向力y F ,当2y F >W 时,就会有向上的加速度使得竹蜻蜓向上飞起,由于两个叶片是中心对称的,所以两个x F 的方向相反,产生力矩使得竹蜻蜓角动量减小直到2 y F

螺旋桨的工作原理

飞机螺旋桨工作原理一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J?Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。螺距:它是桨叶角的另一种表示方法。图1—1—22是各种意义的螺矩与桨叶角的关系。几何螺距(H):桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。它反映了桨叶角的大小,更直接指出螺旋桨的工作特性。桨叶各剖面的几何螺矩可能是不相等的。习惯上以70%直径处的几何螺矩做名称值。国外可按照直径和螺距订购螺旋桨。如64/34,表示该桨直径为60英寸,几何螺矩为34英寸。实际螺距(Hg):桨叶旋转一周飞机所前进的距离。可用Hg=v/n计算螺旋桨的实际螺矩值。可按H=1.1~1.3Hg粗略估计该机所用螺旋桨几何螺矩的数值。理论螺矩(HT):设计螺旋桨时必须考虑空气流过螺旋桨时速度增加,流过螺旋桨旋转平面的气流速度大于飞行速度。因而螺旋桨相对空气而言所前进的距离一理论螺矩将大于实际螺矩。三、螺旋桨拉力在飞行中的变化1.桨叶迎角随转速的变化在飞行速度不变的情况下,转速增加,则切向速度(U)增大,进距比减小桨叶迎角增大,螺旋桨拉力系数增大(图1—1—20所示)。又由于拉力与转速平方成正比,所以增大油门时,可增大拉力。2.桨叶迎角随飞行速度的变化: 在转速不变的情况下,飞行速度增大,进距比加大,桨叶迎角减小,螺旋桨拉力系数减小。如图1—1—20所示,拉力随之降低。当飞行速度等于零时,切向速度就是合速度,桨叶迎角等于桨叶角。飞机在地面试车时,飞行速度(V)等于零,桨叶迎角最大,一些剖面由于迎角过大超过失速迎角气动性能变坏,因而螺旋桨产生的拉力不一定最大。3.螺旋桨拉力曲线: 根据螺旋桨拉力随飞行速度增大而减小的规律,可绘出螺旋桨可用拉力曲线。4.螺旋桨拉力随转速、飞行速度变化的综合情况: 在飞行中,加大油门后固定。螺旋桨的拉力随转速和飞行速度的变化过程如下: 由于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉

精馏塔的设计计算方法

各位尊敬的评委老师、领导、各位同学: 上午好! 这节课我们一起学习一下精馏塔的设计计算方法。 二元连续精馏的工程计算主要涉及两种类型:第一种是设计型,主要是根据分离任务确定设备的主要工艺尺寸;第二种是操作型,主要是根据已知设备条件,确定操作时的工况。对于板式精馏塔具体而言,前者是根据规定的分离要求,选择适宜的操作条件,计算所需理论塔板数,进而求出实际塔板数;而后者是根据已有的设备情况,由已知的操作条件预计分离结果。 设计型命题是本节的重点,连续精馏塔设计型计算的基本步骤是:在规定分离要求后(包括产品流量D、产品组成x D及回收率η等),确定操作条件(包括选定操作压力、进料热状况q及回流比R等),再利用相平衡方程和操作线方程计算所需的理论塔板数。计算理论塔板数有三种方法:逐板计算法、图解法及简捷法。本节就介绍前两种方法。 首先,我们看一下逐板计算法的原理。 该方法假设:塔顶为全凝器,泡点液体回流;塔底为再沸器,间接蒸汽加热;回流比R、进料热状况q和相对挥发度α已知,泡点进料。 从塔顶最上一层塔板(序号为1)上升的蒸汽经全凝器全部冷凝成饱和温度下的液体,因此馏出液和回流液的组成均为y1,且y1=x D。 根据理论塔板的概念,自第一层板下降的液相组成x1与上升的蒸汽组成y1符合平衡关系,所以可根据相平衡方程由y1 求得x1。 从第二层塔板上升的蒸汽组成y2与第一层塔板下降的液体组成x1符合操作关系,故可用根据精馏段操作线方程由 x1求得y2。 按以上方法交替进行计算。 因为在计算过程中,每使用一次相平衡关系,就表示需要一块理论塔板,所以经上述计算得到全塔总理论板数为m块。其中,塔底再沸器部分汽化釜残夜,气液两相达平衡状态,起到一定的分离作用,相当于一块理论板。这样得到的结果是:精馏段的理论塔板数为n-1块,提馏段为m-n块,进料板位于第n板上。 逐板计算法计算准确,但手算过程繁琐重复,当理论塔板数较多时可用计算机完成。 接下来,让我们看一下计算理论塔板数的第二种方法——图解法的原理。 图解法与逐板计算法原理相同,只是用图线代替方程,以图形的形式求取

模型飞机螺旋桨原理与拉力计算

模型飞机螺旋桨原理与拉力计算 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

螺旋桨的工作原理

螺旋桨的工作原理 上次课给大家介绍了船艇 水阻力的三种主要成分的形成原因及影响其大小的主要因素。(那么这三种阻力是哪三种?选其中一种提问其成因)。我们知道,船艇在水中运动要受到阻力的影响。那么船艇为什么能在水中运动?它是靠什么推动的呢?它又是怎样推动的呢?这就是我们这次课要给大家介绍的内容。 我们把推动船艇运动的装置称为推进器。推进器的种类很多,我们常见的有明轮推进器、喷水推进器、平旋推进器和螺旋桨等。目前应用最广泛的推进器是螺旋桨,它的特点是:推进效 率高,结构 简单,工作可靠。下面我 们就来看一看 一、螺旋桨的结构、 配置和螺旋桨水流 (一)螺旋桨的结构

螺旋桨由桨毂、桨叶和整 流罩等组成,并通过桨毂与尾轴相连。一般螺旋桨有3?5个桨叶,有的则多达6个。下面给大家介绍几个有关螺旋桨的几何名词。(结合幻灯片) 螺距一一螺旋桨绕轴旋转一圈,沿轴向前进的几何距离。(P) 螺旋桨按旋转方向可分为左旋螺旋桨和右旋螺旋桨两种,从艇尾向前看,进车时顺时针旋转的称右旋螺旋桨;反时针旋转 的 称左旋螺旋桨。我们怎样判断一个静止的螺旋桨是左旋还是右旋呢?将螺旋桨平放,从侧面看,桨叶向右上方倾斜的为右旋螺旋桨;桨叶向左上方倾斜的为左旋螺旋桨。

(二)螺旋桨的配置螺旋桨的配置一般有 单螺旋桨、双螺旋桨、三螺旋桨和四螺旋桨等。地 方商船一般采用单螺旋 桨,且多数为右旋螺旋桨; 公边船艇一般采用双螺旋 桨或四螺旋桨配置,且多采用外旋式(即右舷安装 右旋螺旋桨,左舷安装左旋螺旋桨;若右舷安装左旋螺旋桨,左舷安装右旋螺旋桨,则称为内旋式)三螺旋桨船相对较少。 (三)螺旋桨工作时的水流 排出流、吸入流、顶流、伴流 这四种水流只有排出流和吸入流与螺旋桨直接相关。而顶

精馏塔优化设计计算

一. 精馏塔优化设计计算 【设计要求】 375.71吨/溶度35wt%,产品溶 度84(wt%),易挥发组分回收率0.98,1476小时。 进料热状况自选 回流比自选 单板压降≤0.7 kPa 塔底温度100104℃ 本设计任务为分离二甲基亚砜- 升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔 物系属易分离物系,,2倍。塔釜采用间接蒸汽加热, 1 二甲基亚砜摩尔质量MA=78.13kg/kmol 水的摩尔质量MB=18 kg/kmol X F==0.7 X D==0.96 M F=0.3×78.13+0.7×18=36.04 kg/kmol M D=0.96×78.13+0.04×18=75.72 kg/kmol 3.物料衡算 原料处理量F==7.06 水回收率衡算;=0.98 D=5.04 总物料衡算7.06=D+W 水物料衡算7.06×0.3=0.04D+WX W

联立解得D=5.04kmol/h W=2.02kmol/h X w=0.05 气液平衡数据 6KPa下二甲基亚砜-水溶液平衡与温度的关系 根据上表,利用内插法求进料,塔顶,塔底温度,由=得;塔顶;=T D=40.8°C+ 塔釜;=T W=96.7°C 进料;=T F=48.1°C 原料液,溜出液与釜残液的含量与温度

相对挥发度的计算 根据上表,利用内插法急速那精馏段和提馏段对应的气液相摩尔分率,得;精馏段;t1==44.45°C ==X=0.75 y=0.98 提馏段;t2==72.4°C ==X=0.3 y=0.85 将X1 Y1 X2 Y2分别带入气液平衡方程,得a1=16.3 a2=13.2 a=(a1a2)0.5=14.67 最小回流比及操作回流比的确定 由泡点进料,可得X q=XF=0.7; Y q==o.97 R min===-0.03 一般回流比取最小回流比的2倍 即R=2R min=0.1×2=0.2

浅谈无人机及其应用

浅谈无人机飞行器及其应用 姓名:张一凡 学号:2013010908014 学院:通信与信息工程学院 指导教师:李玉霞 1

一、无人机飞行空气动力及飞行姿态参数 在无人机系统中主要是飞行控制计算机与各种机载设备之间进行数据交换,因此我们可以在机载设备与飞行控制计算机的通信链路中进行飞行参数采集。 机载设备与飞行控制计算机之间的数据通信是高度实时的,可以认为它们通信的数据都是连续的。对这些连续的飞行参数进行实时辨识并不能达到判读飞行参数的目的,因为无人机是一个非线性、时变的多通道深度铰链的系统,单纯的某个飞行参数的时间曲线并不具备太多的实际意义。 (一)飞行参数处理方法: 根据飞行参数数据特点,我们将飞行参数判读分成三个过程:预处理、基于专家规则的飞行参数自动判读和详细分析。其中研究用于知识发现实现对飞行参数自动判读的专家规则是研究的重点和难点。 (二)飞行参数数据预处理: 飞行参数数据采集设备故障以及数据传输的错误都会造成数据的不完整性、含噪声和不一致性。数据预处理采用滤波、平滑等数据处理方法能够提高数据质量和排除数据中的干扰。数据预处理的步骤是数据清理和数据变换。 (三)飞行参数数据清理: 飞行数据中经常会出现一些变化异常的数据,其主要特征为:单位时间内的信号变化量超出了该信号变化的正常范围、信号的幅值超出规定值、信号的变化规律不符合无人机及其系统的实际工作情况、飞行参数时许数据流中某个单帧数据的所有参数值在同一时刻出现突变。这些数据点往往属于虚假信号。在分析数据的过程中需要确认出现的数据异常点是否为徐价值。如果是,必须删除,并且根据无人机飞行手册的性能参数范围和飞行日报表进行平滑处理;如果不能确定,则需保留并作进一步分析。 (四)飞行参数数据变换: 飞行数据中还经常会出现时间参数变化异常的数据,这时就需要对其进行软件或人工校正。对同性质参数采用数据融合的方法进行对比分析,用正确的数据来修改错误的数据。如为了提高系统的可靠性,无人机航向姿态系统和捷联惯性导航系统都提供飞机的航向姿态信息,此时可以利用一个系统的正确值来修正另一个系统的奇异值。对单个飞行参数的时序曲线中出现连续多个奇异点

螺旋桨概述

螺旋桨概述 1.概念 1.1结构 图1 螺旋桨示意图 图2 螺旋桨结构 螺旋桨由桨叶、浆毂、、整流帽和尾轴组成,如上图所示。 滑失:如果螺旋桨旋转一周,同时前进的距离等于螺旋桨的螺距P,设螺旋桨转速为n,则理论前进速度为nP。也就是说将不产生水被螺旋桨前后拨动的现象,然而事实上,螺旋桨总是随船一起以低于nP的进速V s对水作前进运动。那么螺旋桨旋转一周在轴向上前进的实际距离为h p(=V s/n),称为进距。于是我们把P与h p之差(P-h p)称为滑失。 滑失与螺距P之比为滑失比: S r=(P-h p)/P=(nP-V s)/nP=1-V s/nP

式中V s/nP称为进距比。 从式中可以得出,当V s=nP时,S r=0。即P=h,也就是螺旋桨将不产生对水前后拨动的现象,螺旋桨给水的推力为零。 因此我们可以得出结论:滑失越大,滑失比越高,则螺旋桨推水的速度也就越高,所得到的推力就越大。 1.2工作原理 船用螺旋桨工作原理可以从两种不同的观点来解释,一种是动量的变化,另一种则是压力的变化。在动量变化的观点上,简单地说,就是螺旋桨通过加速通过的水,造成水动量增加,产生反作用力而推动船舶。由于动量是质量与速度的乘积,因此不同的质量配合上不同的速度变化,可以造成不同程度的动量变化。 另一方面,由压力变化的观点可以更清楚地说明螺旋桨作动的原理。螺旋桨是由一群翼面构建而成,因此它的作动原理与机翼相似。机翼是靠翼面的几何变化与入流的攻角,使流经翼面上下的流体有不同的速度,且由伯努利定律可知速度的不同会造成翼面上下表面压力的不同,因而产生升力。而构成螺旋桨叶片的翼面,它的运动是由螺旋桨的前进与旋转所合成的。若不考虑流体与表面间摩擦力的影响,翼面的升力在前进方向的分量就是螺旋桨的推力,而在旋转方向的分量就是船舶主机须克服的转矩力。 1.3推力和阻力 以一片桨叶的截面为例:当船艇静止时,螺旋桨开始工作,把螺旋桨看成不动,则水流以攻角α流向桨叶,其速度为2πnr(n为转速;r为该截面半径)。根据水翼原理,桨叶要受升力和阻力的作用,推动螺旋桨前进,即推动船艇前进。船艇运动会产生顶流和伴流。继续把船艇看成不动,则顶流以与艇速大小相等,方向相反的流速向螺旋桨流来,而伴流则以与艇速方向相同,流速为u r向螺旋桨流来。通过速度合成,我们可以得到与螺旋桨成攻角α,向桨叶流来的合水流。则桨叶受到合水流升力dL和阻力dD的作用,将升力和阻力分解,则得到平行和垂直艇首尾线的分力:

螺旋桨公式

螺旋桨公式 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

第四章 创新原理及其应用

第四章创新原理及其应用创新原理(也称“发明原理”),是建立在对上百万的专利分析的基础上, 蕴涵了人类发明创新所遵循的共性原理,是TRIZ中用于解决矛盾(问题)的基本方法。这40条创新原理是阿奇舒勒最早奠定的TRIZ理论的基础内容。实践证明,这40条创新原理,是行之有效的创新方法,比较容易学习和掌握,通常读 者练习和实际使用的频率也最高。 下面是对40条创新原理的逐条的具体介绍。在介绍每条创新原理时,我们 _不仅简要地介绍它们的基本内容,给出一些在工程技术领域的应用实例,同时也尽量给出了一些非工程领域(例如管理或商业)的应用实例,以便读者全面地 理解和记忆这些原理。 一、分割原理 如图4-1所示。 1.分割原理的具体描述 1)把一个物体分成相互间独立的几个部分; 2)把一个物体分成容易组装和拆卸的部分; 3)提高系统的可分性,以实现系统的改造。 2.应用案例

I案例4-11 废旧物资回收系统 _“、_A二、入,、二二抽六确JT不部介”的实例。为解决可回收 这是“把一个物体分成相互JaJ拄皿们2‘'I- of W- as 19T v.4 o }J M1jai IA.9-A9.’、厂丁二.- 与不哥C7收,不同材料,如玻璃、纸、铁罐等的综合利用,人们把一个大垃 圾箱,分成相互间独立的几个较小回收箱,如图4-2所示。 I案例4-21 图4-2废旧物资回收系统 这是“把一个物体分成容易组装和拆却的部分”的实例,如图4-3所示。 图4-3组合家具 [案例4-31 可调节百叶窗 这是一个“提高系统的可分性,以实现系统的改造”的实例。人们用可调节百叶窗代替幕布窗帘,只要改变百叶窗叶片的角度,就可以调节外界射 入的光线。 [案例4-41 军用飞机油箱 当军用飞机的油箱破损时,极易引起燃料大量外泄,继而引发爆炸的事

螺旋桨种类PDF.pdf

种类 船舶推进器种类很多,按照原理不同,有螺旋桨、喷水推进器、特种推进器。 螺旋桨 由桨毂和若干径向地固定于毂上的桨叶所组成的推进器,俗称车叶。螺旋桨安装于船尾水线以下,由主机(见船舶动力装置)获得动力而旋转,将水推向船后,利用水的反作用力推船前进。螺旋桨构造简单、重量轻、效率高,在水线以下而受到保护。 分类 螺旋桨是现代船舶的主要推进工具,现在大多数船舶是用螺旋桨来推进的。螺旋桨又有许多类型。 按照桨叶多少,螺旋桨有2、3或4个桨叶,甚至更多。一般桨叶数目越多吸收功率越大。 按照构造不同,螺旋桨分为定(桨)距和变距螺旋桨两大类。 定距螺旋桨,螺距是固定不变的其特点是构造简单,重量轻,所以才船舶上得到广泛应用。 变距螺旋桨,螺距是可以调节的,通过螺旋桨变距机构,有液压或电力驱动来调节螺距。最初使用的是双距螺旋桨。高速时用高距,低速时用低距,以后又逐步增加了桨距的数目。 应用 普通运输船舶有1~2个螺旋桨。推进功率大的船,可增加螺旋桨数目。大型快速客船有双桨至四桨。螺旋桨一般有3~4片桨叶,直径根据船的马力和吃水而定,以下端不触及水底,上端不超过满载水线为准。螺旋桨转速不宜太高,海洋货船为每分钟100转左右,小型快艇转速高达每分钟400~500转,但效率将受到影响。螺旋桨材料一般用锰青铜或耐腐蚀合金,也可用不锈钢、镍铝青铜或铸铁。 60年代以来,船舶趋于大型化,使用大功率的主机后,螺旋桨激振造成的船尾振动、结构损坏、噪声、剥蚀等问题引起各国的重视。螺旋桨激振的根本原因在于螺旋桨叶负荷加重,在船后不均匀尾流中工作时容易产生局部的不稳定空泡,从而导致螺旋桨作用于船体的压力、振幅和相位都不断变化。 在普通螺旋桨的基础上,为了改善性能,更好地适应各种航行条件和充分利用主机功率,发展了以下几种特种螺旋桨。①可调螺距螺旋桨:简称调距桨,可按需要调节螺距,充分发挥主机功率;提高推进效率,船倒退时可不改变主机旋转方向。螺距是通过机械或液力操纵桨毂中的机构转动各桨叶来调节的。调距桨对于桨叶负荷变化的适应性较好,在拖船和渔船上应用较多。对于一般运输船舶,可使船-机-桨处于良好的匹配状态。但调距桨的毂径比普通螺旋桨的大得多,叶根的截面厚而窄,在正常操作条件下,其效率要比普通螺旋桨低,而且价格昂贵,维修保养复杂。②导管螺旋桨:在普通螺旋桨外缘加装一机翼形截面的圆形导管而成。此导管又称柯氏导管。导管与船体固接的称固定导管,导管被连接在转动的舵杆

航速及螺旋桨计算书设绘通则

航速及螺旋桨计算书设绘通则

1 主题内容与适用范围 1.1主题内容 航速及螺旋桨计算书是计算船舶在要求吃水状态下的阻力、航速、螺旋桨几何要素、螺旋桨的强度校核、空泡校核、系柱推力和转速、重量、惯量及螺旋桨特性等。为绘制螺旋桨图和进行轴系扭振计算提供依据。 1.2适用范围 应用MAU型或楚思德B型螺旋桨设计图谱设计常规螺旋桨并计算航速。 2 引用标准及设绘依据图纸 2.1引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 a) GB4954-84 船舶设计常用文字符号 2.2 编制依据图纸 a)技术规格书或设计任务书; b)总布置图; c)静水力曲线图或表; d)阻力估算方法或船模试验报告; e)螺旋桨设计图谱; f)主机主要参数及特性曲线; g)减速齿轮箱主要参数。 3 基本要求 提供完整的航速及螺旋桨计算书。 4 内容要点 4.1 计算说明 说明应用上海船舶研究设计院电子计算机程序SC88-CR158计算或应用何种螺旋桨设计图谱直接计算。 4.2 主要参数 4.2.1 船舶数据:主尺度(见表1)、船型系数(见表2)。

船舶主尺度表1 船型系数表2 4.2.2 主机参数:型号X台数、额定功率、额定转速、转向(见表3)。 主机参数表3 4.2.3 减速齿轮箱参数:型号、台数、减速比(见表4)。

减速齿轮箱参数表4 4.2.4 螺旋桨设计要求:主机功率、螺旋桨设计转速、螺旋桨只数、螺旋桨浸深、螺旋桨旋向、桨叶形式和叶片数、桨毂形状和尺度(见表5)。 螺旋桨设计要求表5 4.3 计算阻力、有效功率曲线 根据阻力计算公式及图谱计算实船阻力或按船模试验报告换算实船阻力,绘制有效功率曲线。 4.4 推进因子及螺旋桨收到功率 根据船型特点、主机和齿轮箱参数、船模试验或应用经验公式确定轴系传递效率、螺旋桨收到功率、伴流分数、推力减额分数、相对旋转效率、船身效率。 4.5 航速计算 应用螺旋桨设计图谱计算。 4.6 螺旋桨空泡校核 应用伯努利及各种定理推导出校验空泡的衡准数,若不产生空泡的条件可直接应用勃力尔空泡图。 上述计算中应用的符号及单位,见表6。

苯氯苯板式精馏塔的工艺设计工艺计算书

苯氯苯板式精馏塔的工艺设计工艺计 算书 1

2

苯-氯苯板式精馏塔的工艺设计工艺计算书(精馏段部分) 化学与环境工程学院 化工与材料系 5月27日

课程设计题目一——苯-氯苯板式精馏塔的工艺设计 一、设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。原料液中含氯苯为35%(以上均为质量%)。 二、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力506kPa; 5.单板压降不大于0.7kPa; 6.年工作日330天,每天24小时连续运行。 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.塔的工艺计算; 3.塔和塔板主要工艺结构的设计计算; 4.塔内流体力学性能的设计计算; 5.塔板负荷性能图的绘制; 1 2020年5月29日

2 2020年5月29日 6.塔的工艺计算结果汇总一览表; 7.辅助设备的选型与计算; 8.生产工艺流程图及精馏塔工艺条件图的绘制; 9.对本设计的评述或对有关问题的分析与讨论。 四、基础数据 1.组分的饱和蒸汽压οi p (mmHg) 2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14. 1124-=ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m)

3 2020年5月29日 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。纯组分的汽化潜热与温度的关系可用下式表示: 38 .01 238 .012??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其它物性数据可查化工原理附录。 附参考答案:苯-氯苯板式精馏塔的工艺计算书(精馏段部分) 苯-氯苯板式精馏塔的工艺计算书(精馏段部分) 一、设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。流程图略。

隐身技术的物理原理及其应用

隐身技术的物理原理及其应用 段改丽 李爱玲 李 军 (西安陆军学院 陕西 710108) 隐身技术又称隐形技术,是物理学中流体动力学、材料科学、电子学、光学、声学等学科技术的交叉应用技术,是传统伪装技术走向高技术化的发展和延伸。利用隐身技术可以大大降低武器等目标的信号特征,使其难以被发现、识别、跟踪和攻击。在现代军事侦察中,往往是多种技术侦察手段并用,因此在反侦察的隐身技术中也要针锋相对地同时采用多种隐身方法。 一、隐身技术的分类 隐身技术按其物理学基础可分为无源隐身技术和有源隐身技术两类。 所谓无源隐身技术,从物理学的观点来看,就是根据波的反射和吸收规律,在目标上采用吸波材料和透波材料,以吸收或减弱对方侦察系统的回波能量;根据波的反射规律,改变武器装备的外形与结构,使目标的反射波偏离对方探测系统的作用范围,从而使对方的各种探测系统不能发现或发现概率降低。 有源隐身技术就是设置新的波源,发射各种波束(如电磁波、声波等)来迷惑、干扰或抵消对方探测系统的工作波束,以达到隐蔽己方的目标。例如施放光弹或电子干扰波使对方的光电探测系统迷盲,施放电子诱饵使对方的探测系统跟踪假目标等。这类技术靠加强而不是减弱目标的可探测信息特征来达到目标隐身的目标。 二、隐身技术的物理原理 由于波的共同特点,有时采用一种技术措施,可对几种侦察波同时起到隐身效果。然而,由于各种波有其自身的物理特性,因此也要根据具体情况相应采取一些不同的隐身技术措施。常用的隐身技术主要有以下几种: (一)雷达波隐身技术的物理原理 “雷达”这个术语大家都很熟悉,它是由“无线电探测和测距”这一短语派生出来的。雷达波实际上是天线发射的波长在微波波段的电磁波。发动机将雷达波束朝某个方向定向发射,目标就会把雷达波反射到雷达接收器上。由于目标的性质不同,所以会产生强弱不同的反射信号,雷达就是靠接收被目标反射的电磁波信号发现目标的。波的反射定律指出,反射角等于入射角,若入射角等于零,则反射角也等于零。因此,只有当雷达电磁波的方向垂直于目标表面时,被反射的电磁波才能按原方向返回,这时雷达才能接收到较强的回波;而以其他角度射向目标表面的雷达电磁波都会被反射到别处,即发生散射效应。如果目标的表面能使雷达发射来的电磁波被散射或被吸收,就可大大减小被对方雷达发现的概率,从而达到“隐身”的目的。雷达隐身技术就是依照这而发展起来的。一般飞机的整体布局为圆形机身、平面机翼和垂直机翼,三者之间有明显的分界。根据电磁波所遵循的传播规律,当电磁波入射到物体的直角表面处,容易形成多次反射,而产生角反射器效应,反射雷达波很强。而隐身飞机在总体外形上采用多面、多锥体和飞翼式布置及燕尾形尾翼的设计,把机身与机翼融为一体,从而达到了隐身的目的。例如,美国的F2117A隐身战斗机外表光滑且无外挂装置,武器都装在弹舱内。 (二)可见光隐身技术的物理原理 根据物理学原理可知,在可见光范围内,探测系统的探测效果决定于目标与背景之间的亮度、色度、运动这三个视觉信息参数的对比特征,其中目标与背景之间的亮度比是最重要的。如果目标的结构体和表面的反射光,发动机喷口的喷焰和烟迹,灯光及照明光等,与背景亮度的对比度较大,容易被发现。因此,可见光隐身技术就是通过改变目标与背景之间的亮度、色度等的对比特征,来降低对方可见光探测系统的探测概率,从而达到隐身的目的。比如将飞机曲面外形的座舱罩改变为平板或近似平板外形的座舱罩,以减小太阳光反射的角度范围和光学探测器瞄准、跟踪的时间;在目标表面涂敷与周围色彩类同的颜色或加伪装网,以使目标与背景的亮度和色度相当。比如战士的“迷彩装”,炮车外面的“伪装网”等,都是可见光隐身技术中的一种。 (三)红外隐身技术的物理原理 随着红外侦察、探测、制导和热成像处理技术的 · 7 3 · 16卷1期(总91期)

相关文档