文档库 最新最全的文档下载
当前位置:文档库 › 有关铸钢件热处理过程中回火的几个问题

有关铸钢件热处理过程中回火的几个问题

有关铸钢件热处理过程中回火的几个问题
有关铸钢件热处理过程中回火的几个问题

有关铸钢件热处理过程中回火的几个问题

中国铸造协会李传栻

除少量耐热钢铸件可以铸态交付使用外,绝大部分铸钢件都需要热处理。碳钢铸件,大都经退火或正火处理。各种低合金钢铸件,为了充分利用合金元素的功能,大都经淬火、回火处理。

结构用低合金钢铸件,经淬火、高温回火后,材质可以获得强度与塑性、韧性最佳的配合。这种热处理方式通常称之为调质处理。

耐磨用铸钢件,经淬火和低温回火后,材质具有相当高的硬度和耐磨性,并保持一定的韧性。

随着工业的进步和科学技术的发展,各种低合金钢的应用增长很快。在铸钢生产中,目前,各种低合金钢铸件的产量已在总产量中占有绝大多数的份额。

各种低合金钢铸件的热处理过程中,回火通常被视为一项辅助工序,大家在工作繁忙之际往往未能给予应有的重视。回火,看似简单,其中却蕴含着很多问题,而且对铸钢件的使用性能有非常重要的影响。就我所知,生产中由此而致材质力学性能不太好的情况时有发生。

钢经淬火处理后,可以具有高硬度和高强度,但是,经淬火的钢,组织为马氏体,存在位错、层错、孪晶等晶体缺陷。在碳及合金元素含量较高的情况下,淬火后还存在较多的残留奥氏体。这种亚稳定的组织,导致钢的塑性、韧性低,铸件的内应力大,产生脆性断裂的倾向较大。因此,铸钢件淬火后必须及时予以妥善的回火处理,以消除内应力,从而获得稳定的组织、保证材质具有要求的力学性能。

热处理属于另一个专业,不少中、小型铸钢企业往往缺少热处理专业的技术人员,回火又是一项简单的辅助工序,因而,企业往往对此缺乏应有的了解。有鉴于此,我想在这里谈谈低合金钢铸件淬火后回火的问题。在这里,只讨论低合金钢的回火问题,不涉及各种高合金钢的热处理。

为了了解回火过程中的组织转变,还要简单地提到马氏体组织的一些特点。

一、淬火钢中马氏体组织的一些特点

钢经淬火后组织转变为马氏体,可以使其具有很高的硬度和强度。淬火是使钢强化的重要措施。

钢经奥氏体化后,使其转变为马氏体需要两个条件:一是冷却速率高,抑制其发生扩散性的转变;再就是快速冷却到马氏体开始转变温度Ms以下。

因此,马氏体转变是在较低的温度下、在很短的时间内发生的。在这样的条件下,铁原子、碳原子都来不及扩散。

马氏体转变时,晶格为面心正立方的奥氏体转变为体心正立方的α-Fe,这种晶格改组不是由铁原子扩散、移动完成的,而是通过切变方式完成的。

碳在奥氏体中的溶解度可达2.11%,而在α-Fe中的溶解度很小,只不过0.006%。发生马氏体转变时,碳原子不可能通过扩散迁移,只能以过饱和的状态存在于α-Fe中,这样就形成了一种新相——马氏体。

马氏体是碳在α-Fe中的过饱和固溶体。转变过程中,铁的晶格改组、碳原子不扩散、也无成分变化,是典型的非扩散型相变。

马氏体虽然还保持体心正立方晶格,具有α-Fe的特征,但是,由于晶格转变是经由切变完成的,又因碳过饱和而使晶格发生畸变,其硬度、强度都大幅度提高了,性能与铁素体截然不同。就晶格特征而言,有α-Fe的特征、却又不是α-Fe,我们只能称之为α'相。

马氏体可以呈现多种形态,如板条状、片状(也称为针状)、蝴蝶状、薄片状和ε-马氏

体。结构用低合金钢中,常见的是板条状马氏体和片状马氏体。

碳含量低于0.2%的钢,淬火后得到板条状马氏体,在200℃以上形成。

碳含量高于1.0%的钢,淬火后得到片状马氏体,在200℃以下形成。

常用的低合金钢,淬火后都是板条状马氏体和片状马氏体的混合组织。

马氏体中,过饱和的碳原子和以切变方式完成的晶格改组,造成了很多晶格缺陷,如位错、孪晶、层从等。从热力学的观点看来,淬火钢具有自行向稳定态转变的倾向,但是,在常温下这种转变十分缓慢,一般是察觉不到的。回火,就是将铸钢件加热到临界温度A1以下某一温度,以加速这种转变,但又不至于使钢再次奥氏体化。

二、淬火钢回火时的组织转变

由于钢中含有的各种合金元素对淬火钢的回火转变都有不可忽视的影响,而且各种元素都有其各自的特点。虽然碳钢铸件一般都不进行调质处理,但是,为了对淬火钢的回火转变有基础性的了解,还是先讨论碳钢淬火后的回火转变,以后再讨论合金元素的影响。

经淬火后组织为马氏体的碳钢,回火过程发生以下的组织转变。

1、碳原子的偏聚

在固态钢中,碳原子的扩散能力比铁原子和各种合金元素的原子大几个数量级。

在常温下,钢中的碳原子的扩散是可以测定的,迁移0.2nm的距离大约需要20s。随着温度的升高,扩散能力显著增强,在100℃下,迁移0.2nm的距离就只需0.01s左右。

经淬火的钢,在常温下放置,马氏体中过饱和的碳原子也会通过扩散而向一定的部位集聚,这一过程称之为碳原子的偏聚。

在回火早期的加热过程中,虽然温度还不很高,但碳的偏聚却逐渐增强。

低碳板条状马氏体中,碳原子偏聚在位错线附近;高碳片状马氏体中,碳原子偏聚在一定的晶面上、形成薄片状偏聚区。偏聚区的碳含量逐渐增高,为碳化物的析出准备了条件。

2、马氏体分解、碳化物析出和渗碳体形成

随着回火温度逐渐升高,高碳片状马氏体、低碳板条状马氏体都要析出碳化物,但析出的情况有所不同。

1)高碳片状马氏体

在80℃以上,高碳片状马氏体中过饱和的碳就逐步脱溶析出,在偏聚区形成亚稳定的ε-碳化物,ε-碳化物的成分介于Fe2C与Fe3C之间,一般以针状或薄片状析出。

回火温度在150~250℃之间,碳原子的扩散能力逐步增强,能作较长距离的扩散。随着保温时间的延长,α-Fe基体中的碳含量不断下降,ε-碳化物不断长大。

这样,高碳马氏体就逐渐转变为碳含量过饱和程度较低(0.2~0.3%)的α'相和ε-碳化物的混合组织,这也就是回火马氏体组织。

温度在250℃以上,ε-碳化物逐渐又回溶于基体,并在孪晶界面处析出新的亚稳定χ-碳化物,组成为Fe5C2,呈薄片状。

温度进一步升高后,ε-碳化物和χ-碳化物就转变为稳定的θ-碳化物,也就是渗碳体(Fe3C)。

2)低碳板条状马氏体

在200℃以下回火,低碳板条状马氏体中,碳原子仍然向位错线附近偏聚,但不析出ε-碳化物。回火温度高于200℃以后,在偏聚区直接析出渗碳体。

无论是片状渗碳体、还是板条状马氏体,从析出渗碳体起,就开始了一个新的过程。

温度升高到300℃以后,渗碳体就开始聚合、逐渐变粗、逐渐成为粒状。随着温度继续升高,渗碳体粒度越来越大,α'相基体中的碳含量越来越低。

回火温度升高到350~450℃,α'相中的碳含量逐渐回复到接近α-Fe的水平,回复为铁素体,但晶格的畸变仍然保持。在钢的显微组织中,仍保持原板条状、或片状马氏体的形

貌。这种铁素体与弥散分布的细小粒状渗碳体组成的复相组织,称为回火托氏体。

3、α-Fe的回复、再结晶

回火温度升高到500℃以后,α'相中的碳含量已完全回复到平衡状态,由于温度升高后铁原子的扩散能力显著提高,晶格的畸变也开始逐渐回复,这也就是α-Fe(铁素体)的再结晶。由细小的板条状或片状晶体,逐渐转变为细小的等轴晶。其在显微组织中的形貌,是细小的粒状渗碳体弥散于团块状铁素体中的复相组织,通常称之为回火索氏体。

低合金钢,淬火、高温回火后的组织主要是回火索氏体。

4、残留奥氏体转变

碳含量低于0.5%的碳钢,淬火后残留的奥氏体很少,组织和性能方面都反映不出来,一般不考虑残留奥氏体转变的问题。

碳含量较高、或含有合金元素的钢,马氏体转变终了的温度(M f点)一般都低于室温。通常铸件淬火后都只将其冷却到室温,就会有未转变的奥氏体残留下来。这是存在残留奥氏体的主要原因。

再则,淬火过程中,形成大量马氏体后,留下的奥氏体存在于马氏体板条之间,在各方向都受到很大的压力,也会抑制其继续向马氏体转变。

钢中碳含量越高,马氏体开始转变的温度(Ms)越高,淬火后残留的奥氏体量(A R)也就越多。这种情况也适用于合金元素及其他因素对残留奥氏体量(A R)的影响,即:所有使Ms温度降低的因素,都导致A R增加。

低合金钢中常用的几种合金元素,都会使Ms 降低、A R增多,参见表1。

高碳钢中的残留奥氏体,一般在180~300℃之间分解。

在此温度范围内,如果仍处于马氏体转变温度Ms以上,残留奥氏体转变为由铁素体和渗碳体组成的贝氏体;处于Ms以下,则转变为马氏体。

合金元素对残留奥氏体的转变有较大的影响,低合金钢中,残留奥氏体大约在250~450℃才转变为贝氏体。

三、合金元素对回火转变的影响

合金元素对低温(250℃以下)回火没有显著的影响,合金钢中,马氏体分解的速度大体上与碳钢相同,因为在低温下合金元素在钢的扩散能力很小,回火组织中的ε-碳化物中就未发现过合金元素的存在。

在300℃以上进行中温、或高温回火时,合金元素能抑制ε-碳化物向渗碳体的转变,抑制渗碳体的析出和渗碳体微粒的聚集。合金元素这种作用的强弱,因其与碳的结合能力而有所不同。在这方面,Ni镍和少量锰的影响较小;铬、钼、钨、钒、钛、锆等碳化物形成元素,硅、钴等非碳化物形成元素,都有抑制碳化物聚集的作用,从而减缓马氏体中碳浓度的下降,减缓马氏体的分解。

镍不是碳化物形成元素,在钢中起固溶强化的作用,无论是在高温或低温下,对回火硬

度的影响都不大。

锰在低温下的影响小,但在较高的温度下,含量0.5%以上的锰却有很强的影响,这可能是因为高温下锰进入碳化物,锰扩散的过程阻碍了碳化物的聚集。

硅是不溶于碳化物的元素,碳化物析出时,硅富集在碳化物周围,阻碍碳化物聚集、长大。

因此,低合金钢铸件的回火温度应略高于碳含量相同的碳钢铸件,提高的幅度决定于合金元素的品种和其在钢中的含量。实际生产中,请参照相关的资料,并经试验核定。

高碳、高合金钢,如高速工具钢、模具钢之类,在回火过程中还可能出现‘二次淬火’、‘二次硬化’这类问题。

‘二次淬火’——钢中碳和合金元素的含量很高,淬火后组织中存在大量残留奥氏体(可达20~30%),回火过程中不能完全分解,在随后的冷却过程中转变为淬火马氏体。在这种情况下,不得不再次回火,使马氏体分解。高速钢工件,往往要经4、5次高温回火才能解决问题。

‘二次硬化’——因为钢中含有大量形成M2C型、MC型碳化物的合金元素,如钼、钨、钒、钛和铌等,在高温回火过程中,由于碳和合金元素在马氏体中的固溶度降低,析出大量弥散分布的碳化物导致钢的硬度提高。

由于我们比较关心的是铸造低合金钢铸件,这些方面就不多说了。

四、回火脆性

钢淬火后要进行回火,主要是为了消除脆性,但有时候却事与愿违,回火反而导致脆性。钢件淬火后在一定的温度下回火时发生脆化的现象,称为回火脆性。

最早发现回火脆性是在19世纪后期,见于铬镍钢。后来,发现碳钢、低合金钢也有在回火过程中发生脆化的情况,从而引起了人们的关注,相继开展了很多研究工作。

实际生产中,因回火处理不当而致材质冲击韧性不符合要求的情况并不鲜见。

据美国铸钢工作者学会(SFSA)的研究报告,他们曾发现过铸钢件因回火脆性而破断、且有石状断口特征的事例。

回火脆性,按其产生的温度范围,分为低温回火脆性和高温回火脆性两类。这两类回火脆性的影响有许多相似之处,但却是两种不同的现象,因为它们不仅产生的温度不同,而且低温回火脆性产生的过程要比高温回火脆性快得多。低温回火脆性的产生,通常在1小时的回火期间即可完成;高温回火脆性的产生,虽然温度较高,但也还需要较长的时间。

迄今为止,对这两类回火脆性产生的机制,都仍未能建立一致的认识,仍有待进一步的研究、探讨。

1、低温回火脆性

低温回火脆性是经淬火的钢在250~370℃回火时产生的脆性,也称为第一类回火脆性,美国还称之为回火马氏体脆性。为避免这种脆性,应尽可能地不在此温度范围内回火。

淬火后采用低温回火的,一般都是碳含量都比较高的钢,在铸钢件生产中,所占的份额不大,主要是一些低合金钢耐磨件。

1)低温回火脆性的主要特点

无论是碳钢或合金钢,在此温度范围内回火,都会不同程度地产生这种脆性。其特点是钢的冲击韧性降低,而伸长率、强度并不降低,硬度也不明显升高。

出现这种回火脆性后,再次将钢加热到较高的温度,脆性可以消除。此后,再将其在此温度范围内回火,不会再产生这种脆性。由此可见,低温回火脆性是不会反复出现的,是不可逆的,所以也称之为不可逆的回火脆性。

因低温回火脆性断裂的钢件,大多为沿晶断裂,表明这种脆性与原奥氏体晶界处存在杂质元素有关。偶而也见到有穿晶解理断裂的特征。

2)一些对低温回火脆性有影响的因素

钢中含有硫、磷、砷、锡、氮、氢、氧等杂质元素,易出现低温回火脆性。杂质元素含量很低的清洁钢对低温回火脆性不敏感。

钢中含有锰、硅、铬、镍、钒等合金元素,对低温回火脆性的敏感性增强。

钢中含有钼、钨、钛等合金元素,能减轻对低温回火脆性的敏感性。

除化学成分外,原奥氏体晶粒度和淬火后钢中残留奥氏体含量,对钢的低温回火脆性也有影响。原奥氏体晶粒越细,脆化的程度越轻。钢淬火后残留奥氏体的量越多,脆化的程度越重。

3)产生低温回火脆性的机制

对于低温回火脆性形成的机制,目前我们的认识还很不全面,经试验、检测确认的,有3种不同的脆化模式。在我看来,这3种观点之间并不矛盾,实际上是互补增益的。

a、得到普遍认同的致脆因素是析出碳化物薄膜

低温回火的淬火钢,组织中大都以板条状马氏体为主。回火过程中,马氏体分解,析出的χ-碳化物和θ-碳化物以薄膜状沉积在板条状马氏体的条界处,如组织中有少量片状马氏体,也可沉积在片状马氏体的孪晶带和原奥氏体的晶界处。这种薄膜状碳化物当然会使钢具有脆性特征。

如果将具有回火脆性的钢加热到较高的温度,薄膜状碳化物就会聚集、长大、球状化。此后,再次将钢加热到200~350℃重复回火,已聚集、长大、球状化的碳化物不可能再次形成薄膜,回火脆性也就不会回复。所以,此种回火脆性是不可逆性的。

b、1978年,美国G. Thomas用透射电镜研究发现,马氏体板条间存在残留的奥氏体薄膜也是致脆因素

淬火过程中,钢中残留的奥氏体存在于马氏体板条之间。在180~300℃之间,残留奥氏转变为马氏体,并由马氏体析出碳化物,沉积在板条之间,是致脆的因素。如果新形成的马氏体稳定而不分解,存在于原板条结构之间,当然也是致脆因素。

c、析出于原奥氏体晶界的杂质元素使回火脆性增强

偏聚于晶界的杂质元素使晶界弱化,从而能促进低温回火脆性的发展。其中,最有害的是锑、磷、锡和砷。

考虑杂质元素的影响时,还要注意钢中所含的合金元素与杂质元素的协同作用。例如,P含量较高的钢冲击韧性很低,加入0.5%左右的钼,可使磷的负面作用大为减轻。

3)低温回火脆性的应对措施

目前还不可能完全避免低温回火脆性,只能根据对其形成机制的认识,提出一些减轻这种回火脆性的的措施,如:

改进钢的熔炼工艺,降低杂质元素的含量,炼清洁钢;

钢中原奥氏体晶粒细小可减轻低温回火脆性,炼钢过程中做好用铝终脱氧的作业;

必要时,钢中加入少量的钼,减轻杂质元素的负面影响;

硅、铬、锰等元素都具有抑制碳化物聚集、长大的作用,可以使脆化产生于较高的温度。采用低温回火工艺时,适当调整硅、铬、锰的含量,可使之避开要求的回火温度;

如果铸钢件热处理后具有低温回火脆性,挽救的措施是再次淬火、回火。

2、高温回火脆性

高温回火脆性,是经淬火的低合金钢在450~650℃回火后、缓慢冷却过程中产生的脆性,也称为第二类回火脆性,美国称之为回火脆性。

在更高的温度下回火后缓慢冷却,在650℃以下也会产生回火脆性。

1)高温回火脆性的主要特点

钢件的高温回火脆性,是在此温度范围内回火后缓慢冷却(空冷或炉冷)过程中产生的,

如快速冷却(水淬或油淬),就不会产生回火脆性。

已经出现高温回火脆性的钢,再次加热回火,然后快速冷却到室温,就不再出现回火脆性,钢的冲击韧性提高。

已经消除回火脆性、处于韧性状态的钢,再次加热回火并缓慢冷却,仍然会再次脆化。

由此可见,高温回火脆性是可以反复出现的,是可逆的,所以也称之为可逆的回火脆性。

产生高温回火脆性时,脆化的速度和脆化程度都与回火温度和保温时间有关。

因高温回火脆性断裂的钢件,断口为沿晶断裂,表明高温回火脆性与原奥氏体晶界处存在杂质元素有关。

2)一些对高温回火脆性有影响的因素

虽然对形成高温回火脆性的确切机制尚有待进一步的探讨,但是,基于长期的生产实践中的经验总结和近年来的大量研究工作,目前,对导致高温回火脆性的成分因素和回火条件却已经知之甚详。

a、成分因素

钢的化学成分是影响其是否出现高温回火脆性最重要的因素。

钢中含有磷、锡、锑、砷、硼、硫等杂质元素,易于偏聚与晶界,导致高温回火脆性,其中磷、锡、锑和砷的有害作用最为明显。

钢中常用的合金元素硅、锰、铬、镍等,有促进高温回火脆性形成的作用。尤其值得注意的是合金元素与杂质元素之间的相互作用。

含合金元素的钢,如杂质元素的含量较高,对高温回火脆性非常敏感;如杂质元素的含量很低,则不会出现高温回火脆性。

不含合金元素的碳钢,对高温回火脆性是不敏感的,即使钢中含有少量杂质元素,也不会出现高温回火脆性。

钼和钨在钢中有抑制高温回火脆性的作用,加入0.5%甚至更少一点的钼,就能降低对高温回火脆性的敏感性,所以,在这方面,钼是最重要的合金元素。

钢中加入使原奥氏体晶粒细化的合金元素,增大晶界面积,降低杂质元素偏聚的浓度,可使脆化程度减轻。

b、回火条件

回火时的工艺参数对高温回火脆性的影响也是很重要的。

在550℃以下,回火温度越低,脆化越慢,而能达到的脆化程度越高;在550℃以上,回火温度越高,脆化越慢,能达到的脆化程度越低。

回火后的冷却速度越低,脆化程度越高。。

3)产生高温回火脆性的机制

高温回火脆性是很长时间以来一直存在的冶金问题。近年来,由于理论研究的进展,以及俄歇电子光谱分析仪(Auger electron spectrometer )、电子探针微区分析等检测手段的应用,对其产生的原因已逐步有所认知。

杂质元素偏聚在原奥氏体晶界处,是导致高温回火脆性的主要原因。原奥氏体晶界处存在极少量这类元素(0.01%数量级,甚至更少),就足以引起高温回火脆性。

俄歇电子光谱分析不仅确认脆断面杂质元素的浓度高,而且还确认了合金元素的浓度梯度可能促使杂质元素偏聚于原奥氏体晶界处。

当前的认识是:导致高温回火脆性的主要因素是晶界弱化,造成晶界弱化的不仅是杂质元素的偏聚,合金元素与杂质元素之间的相互作用也是至关重要的。

4)高温回火脆性的应对措施

改进钢的熔炼工艺、尽量降低各种杂质元素的含量,是防止高温回火脆性的有效措施。

熔炼过程中认真做好铝脱氧作业,或在钢中加入铌、钒、钛等合金元素,细化晶粒。

钢中加入钼、钨等抑制高温回火脆性的合金元素。

铸钢件回火后快速冷却。可采用喷雾冷却、水冷或油冷。

热处理工序完成后发现铸件有回火脆性现象时,可由双相区热处理予以挽救,作法是:将铸件加热到双相区(Ac1以上、Ac3以下)使偏聚于晶界处的杂质元素回溶,然后自此温度淬火,淬火后回火,回火后快速冷却。

铸钢件产品热处理艺规范

铸钢件产品热处理艺规范 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。 2范围 本规范适用于本公司生产的各种精铸、砂铸产品的热处理,材质为各种低碳钢、中碳钢、低合金钢、中合金钢、高合金钢、铸铁及有色合金。 3术语 3.1退火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 降温出炉的操作工艺。 3.2正火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 从炉中取出,在空气中冷却下来的操作工艺。 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责 4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到

热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1每次装炉前应对设备进行检查,把炉底板上的氧化渣清除干净, 错位炉底板应将其复位后再装,四周应留有足够的间隙,轻拿轻放,装炉应结实,摆放合理。 5.2装炉时大铸件产品放在下面,对易产生热处理变形的铸件,必须 作好防变形或反变形处理,力学性能试样应装在高温区,对特别小的铸件采用铁桶或其它框类工装集中盛放。 5.3炉车上的铸钢件入炉时,应缓慢推进,仔细观察铸钢件是否与炉 壁碰撞,关闭炉门,通电后应经常观察炉内工作状况。 5.4作好铸件产品后续热处理的准备工作,严格控制出炉温度,对水 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。 6.2技术部门负责对不合格品的处置。 7 附表 7.1碳钢及低合金钢铸件正火、退火加热温度表

回火热处理优缺点及常见问题解决方法

回火热处理优缺点及常见问题解决方法 100℃热水回火之优点 低温回火常使用180℃至200℃左右来回火,使用油煮回火。其实若使用100℃的热水来进行回火,会有许多优点,包括:(1)100℃的回火可以减少磨裂的发生;(2)100℃回火可使工件硬度稍增,改善耐磨性;(3)100℃的热水回火可降低急速加热所產生裂痕的机会;(4)进行深冷处理时,降低工件发生深冷裂痕的机率,对残留沃斯田体有缓衝作用,增加材料强韧性;(5)工件表面不会產生油焦,表面硬度稍低,适合磨床研磨加工,亦不会產生油煮过热乾烧之现象。二次硬化之高温回火处理 对於工具钢而言,残留应力与残留沃斯田体均对钢材有著不良的影响,浴消除之就要进行高温回火处理或低温回火。高温回火处理会有二次硬化现象,以SKD11而言,530℃回火所得钢材硬度较200℃低温回火稍低,但耐热性佳,不会產生时效变形,且能改善钢材耐热性,更可防止放电加工之加工变形,益处甚多。 在300℃左右进行回火处理,為何会產生脆化现象? 部分钢材在约270℃至300℃左右进行回火处理时,会因残留沃斯田体的分解,而在结晶粒边界上析出碳化物,导致回火脆性。二次硬化工具钢当加热至500℃~600℃之间时才会引起分解,在300℃并不会引起残留沃斯田体的分解,故无300℃脆化的现象產生。 回火產生之回火裂痕 以淬火之钢铁材料经回火处理时,因急冷、急热或组织变化之故而產生之裂痕,称之為回火裂痕。常见之高速钢、SKD11模具钢等回火硬化钢在高温回火后急冷也会產生。此类钢材在第一次淬火时產生第一次麻田散体变态,回火时因淬火產生第二次麻田散体变态(残留沃斯田体变态成麻田散体),而產生裂痕。因此要防止回火裂痕,最好是自回火温度作徐徐冷却,同时淬火再回火的作业中,亦应避免提

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。 2范围 3术语 经保温一段时间后, 经保温一段时间后, 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1 错位炉底板应将其复位后再装, 5.2 对特别 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

6.2技术部门负责对不合格品的处置。 7 附表 7.1碳钢及低合金钢铸件正火、退火加热温度表7.2碳钢及低合金钢铸件退火工艺 7.3铸钢件直接调质工艺 7.4铸钢件经预备热处理后的调质工艺 7.5低合金铸钢件正火、回火工艺

什么是退火、正火、淬火及回火

什么是退火、正火、淬火及回火,它们的用途各是什么? 最佳答案 退火是将钢件加热到适当温度,保持一定时间,然后缓慢冷却的热处 理工艺。正火是将钢件加热到Ac3(对于亚共析钢)或者Accm(对于 过共析钢)以上50~70摄氏度完全奥氏体化,保温后再在空气中冷 却以得到以较细珠光体为主的组织的热处理工艺。 退火或者正火的主要目的大致如下: 调整钢件的硬度,以利于后来的切削加工。消除残余应力,以稳定钢 件尺寸。使化学成分均匀。为最终热处理做准备。 退火主要是消除内部应力; 正火主要是加工前降低硬度,提高切削加工能力; 淬火主要是增强表面硬度,从而提高综合机械性能. 回火一般在淬火或正火后进行,淬火加低温回火的工艺手段还叫淬火,低温回 火是必须进行的工序。正火加回火还叫正火处理,这两项处理手段目的是消除 淬火和正火后的材料的组织应力。 退火能够改变钢的组织结构,从而获得我们所要求的性能.(1).加热时的组织转 变:其转变过程是在铁素体与渗碳体分界面处优先形成奥氏体晶核,并不断长大, 直到珠光体全部消失,奥氏体也就转变完毕.(2).冷却时的组织转变:由于退火的 冷却速度很缓慢,奥氏体转变产物与Fe-Fe3C的组织相同,因而共析钢为珠光 体;亚共析钢为珠光体加铁素体;过共析钢为珠光体加渗碳体. 2.淬火是将钢加热到临界温度以上,保温一段时间,然后快速冷却下来,进行淬 硬工件的热处理方法.其实质是通过加热使钢组织结构中的铁素体和珠光体充 分转变为成分均匀的奥氏体,然后急冷下来得到硬度很高的马氏体. 3.回火是紧接于淬火之后的热处理工序,淬火钢在不同的温度下回火,所得的组 织不同,因而其机械性能差别很大,总的趋势是:随着回火温度升高,其强度、硬度 降低,而塑性、韧性提高。淬火钢中的马氏体和残余奥氏体都是不稳定的组织, 加热就会发生转变。随着温度升高,碳原子逐渐以渗碳体的形式析出,引起组 织转变。最后渗碳体聚合而分散在铁素体基体上,形成各种回火组织。 加热温度:淬火加热必须超过Ac1(碳钢727C°)线。任何一种淬火工艺, 加热温度必然超过Ac1线,获得奥氏体。高温回火加热不能超过Ac1线,不能 获得奥氏体。 加热目的:淬火加热是为了获得奥氏体(无论是完全的还是不完全的奥氏体化)。 高温回火加热是获得回火索氏体。 冷却目的:淬火冷却目的是使冷速大于临界冷却速度,并尽量的缓冷。 高温回火冷却目的是防止第二类回火脆性,不产生新的应力,兼顾生产率。

铸钢件热处理作业指导书

热处理作业指导书 1.目的 保证热处理质量。 2.热处理方式 按加热和冷却条件不同,铸钢件的主要热处理方式有:退火、正火、均匀化处理、淬火、回火、固溶处理、沉淀硬化、消除应力处理及除氢处理。 3.热处理操作要求 .退火 退火是将铸钢件加热到Acs 以上20~30℃,保温一定时间,冷却的热处理工艺。退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。适用于所有牌号的铸钢件。图1—1为几种退火处理工艺的加热规范示意图。表l—1为铸钢件常用退火工艺类型及其应用。表1-2铸钢件退火工艺及退火后的硬度。 图1—1为几种退火处理工艺的加热规范示意图

表l—1为铸钢件常用退火工艺类型及其应用

表1-2铸钢件退火工艺及退火后的硬度 .正火 正火是将铸钢件目口热到Ac。温度以上30~50o C 保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。图1—2为碳钢的正火温度范围示意图。表1-3铸钢件正火工艺及退火后的硬度,表1-4常用低合金铸件正火或正火+回火工艺及硬度。正火的目的是细化钢的组织,使其具有所需的力学性能,也司作为以后热处理的预备处理。正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。 图1—2为碳钢的正火温度范围示意图 正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。

热处理名词解释

(1)退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 (2)正火:指将钢材或钢件加热到Ac3 或Acm(钢的上临界点温度)以上30~50℃,保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 (3)淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 (4)回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 (5)调质:指将钢材或钢件进行淬火及回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 (6)化学热处理:指金属或合金工件置于一定温度的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分,组织和性能的热处理工艺。常见的化学热处理工艺有:渗碳,渗氮,碳氮共渗,渗铝,渗硼等。化学热处理的目的:主要是提高钢件表面的硬度,耐磨性,抗蚀性,抗疲劳强度和抗氧化性等。 (7)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。固溶处理的目的:主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 (8)沉淀硬化(析出强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由之脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。如奥氏体沉淀不锈钢在固溶处理后或经冷加工后,在400~500℃或700~800℃进行沉淀硬化处理,可获得很高的强度。 (9)时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持,其性能,形状,尺寸随时间而变化的热处理工艺。若采用将工件加热到较高温度,并较长时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等。 (10)淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性

(完整word版)2017热处理工艺复习题

2017热处理工艺复习题 一、 填空题 1.钢的热处理工艺由 加热 、 保温 、 冷却 三个阶段所组成。 2.热处理工艺基本参数: 加热温度、气氛、冷却方法、热源 。 3.钢完全退火的正常温度范围是 Ac3以上20~30℃ ,它只适应于亚共析 钢。 4.球化退火的主要目的是 ,它主要适用于 钢。 5.钢的正常淬火温度范围,对亚共析钢是 ,对过共析钢 是 。 6.当钢中发生奥氏体向马氏体的转变时,原奥氏体中碳含量越高,则M S 点越 ,转变 后的残余奥氏体量就越 。 7.改变钢整体组织的热处理工艺有 、 、 、 四种。 8.淬火钢进行回火的目的是 ,回火温度越高,钢 的强度与硬度越 。 9.化学热处理的基本过程包括 、 、 等三个阶段。 10.欲消除过共析钢中大量的网状渗碳体应采用 ,欲消除铸件中枝晶 偏析应采用 。 11.低碳钢为了便于切削,常预先进行 处理;高碳钢为了便于 切削,常预先进行 处理; 12.感应加热表面淬火,按电流频率的不同,可分为 、 、和 三种。而且感应加热电流频率越高,淬硬层越 。 13.钢的淬透性主要取决于————————————,马氏体的硬度主要取决于————————————,钢的 表层淬火,只能改变表层的————————————,而化学热处理既能改变表层的————————————,又能 改变表层的————————————。 14.钢在一定条件下淬火后,获得一定深度的淬透层的能力,称为钢的淬透性。淬透层通 常以 的深度来表示。 15. 中温回火主要用于处理__ ____零件,回火后得到 组织。

16.45钢正火后渗碳体呈状,调质处理后渗碳体 呈状。 17.形变热处理是将塑性变形的强化与热处理时 的强化结合,使成型工艺与获得最终性能统一起来的一种综合工艺。 二、单选题 1.电阻炉空载功率小,说明炉子热损失: A)小;B)大;C)厉害;D)可忽略不计。 2.检测氮碳共渗零件的硬度时应选用:A)洛式硬度计;B)维氏硬度计;C)布氏硬度计; D)肖氏硬度计。 3.可控气氛炉渗碳时排出的废气:A)必须燃烧后排放;B)不燃烧直接排放;C)通入水中排 放; D)通入碱水中排放。 4.在生产中,用来消除过共析钢中的网状渗碳体最常用的热处理工艺是:A)完全退火; B)正火;C)不完全退火;D)回火。 5.气体渗氮的主要缺点是:A)周期太长;B)劳动强度大;C)硬度低;D)渗层浅。 6.镗床主轴通常采用38CrMoA1钢进行:A)氮碳共渗;B)渗碳;C)渗氮;D)渗硫。 7.确定碳钢淬火加热温度的基本依据是:A)Fe-Fe C相图;B)“C”曲线;C)“CCT”曲线; 3 D)淬透性曲线图。 8.为获得良好的综合力学性能,38CrMoAl钢制造的氮化件预先热处理应采用:A)退火;B) 正火;C)调质;D)渗碳。 9.高速钢淬火冷却时,常常在580~600℃停留10~15分钟,然后在空气中冷却,这种操作 方法叫做:A)双介质淬火;B)等温淬火;C)分级淬火;D)亚温淬火。 10.某零件调质处理以后其硬度偏低,补救的措施是:A)重新淬火后,选用低一点的温度回火; B)再一次回火,回火温度降低一点;C)重新淬火后,选用高一点的温度回火;D)再一次回火,回火温度提高一点。 11.钢感应加热表面淬火的淬硬层深度,主要取决于:A)钢的含碳量;B)冷却介质的冷却能 力;C)感应电流频率;D)感应电流电压。 12.为增加T12钢的强韧性,希望控制淬火马氏体的含碳量,减少孪晶马氏体的相对量及获得

热处理名词解释

热处理名词解释 (1)退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 (2)正火:指将钢材或钢件加热到Ac3 或Acm(钢的上临界点温度)以上30~50℃,保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 (3)淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 (4)回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 (5)调质:指将钢材或钢件进行淬火及回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 (6)化学热处理:指金属或合金工件置于一定温度的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分,组织和性能的热处理工艺。常见的化学热处理工艺有:渗碳,渗氮,碳氮共渗,渗铝,渗硼等。化学热处理的目的:主要是提高钢件表面的硬度,耐磨性,抗蚀性,抗疲劳强度和抗氧化性等。 (7)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。固溶处理的目的:主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 (8)沉淀硬化(析出强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由之脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。如奥氏体沉淀不锈钢在固溶处理后或经冷加工后,在400~500℃或700~800℃进行沉淀硬化处理,可获得很高的强度。 (9)时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持,其性能,形状,尺寸随时间而变化的热处理工艺。若采用将工件加热到较高温度,并较长时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等。 (10)淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性好的钢材,可使钢件整个截面获得均匀一致的力学性能以及可选用钢件淬火应力小的淬火剂,以减少变形和开裂。 (11)临界直径(临界淬透直径):临界直径是指钢材在某种介质中淬冷后,心部得到全部马氏体或50%马氏体组织时的最大直径,一些钢的临界直径一般可以通过油中或水中的淬透性试验来获得。 (12)二次硬化:某些铁碳合金(如高速钢)须经多次回火后,才进一步提高其硬度。这种硬化现象,称为二次硬化,它是由于特殊碳化物析出和(或)由于参与奥氏体转变为马氏体或贝氏体所致。 (13)回火脆性:指淬火钢在某些温度区间回火或从回火温度缓慢冷却通过该温度区间的脆化现象。回火脆性可分为第一类回火脆性和第二类回火脆性。第一类回火脆性又称不可逆回火脆性,主要发生在回火温度为250~400℃时,在重新加热脆性消失后,重复在此区间回火,不再发生脆性,第二类回火脆性又称可逆回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。回火脆性的发生与钢中所含合金元素有关,如锰,铬,硅,镍会产生回火脆性倾向,而钼,钨有减弱回火脆性倾向。

正火退火淬火回火的区别与联系

退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度。) 回火:高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。 退火:退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度A1,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生形,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底. 什么叫回火? -------------------------------------------------------------------------------- 回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是: 1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。 2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不 同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。 3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。 4)改善某些合金钢的切削性能。 在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。 淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。 什么叫淬火? -------------------------------------------------------------------------------- 淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是: 1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。 2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。

铸钢件常见热管理方案计划工艺标准

铸钢件常见热处理 按加热和冷却条件不同,铸钢件的主要热处理方式有:退火(工艺代号:5111)、正火(工艺代号:5121)、均匀化处理、淬火(工艺代号:5131)、回火(工艺代号:5141)、固溶处理(工艺代号:5171)、沉淀硬化、消除应力处理及除氢处理。 1.退火(工艺代号:5111) 退火是将铸钢件加热到Ac3以上20~30℃,保温一定时间,冷却的热处理工艺。退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。适用于所有牌号的铸钢件。图11—4为几种退火处理工艺的加热规范示意图。表ll—1为铸钢件常用退火工艺类型及其应用。 2.正火(工艺代号:5121) 正火是将铸钢件目口热到Ac3温度以上30~50℃保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。图11—5为碳钢的正火温度范围示意图。正火的目的是细化钢的组织,使其具有所需的力学性能,也司作为以后热处理的预备处理。正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。经正火的铸钢强度稍高于退火铸

钢,其珠光体组织较细。一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。 正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。 3.淬火(工艺代号:5131) 淬火是将铸钢件加热到奥氏体化后(Ac。或Ac•以上),保持一定时间后以适当方式冷却,获得马氏体或贝氏体组织的热处理工艺。常见的有水冷淬火、油冷淬火和空冷淬火等。铸钢件淬火后应及时进行回火处理,以消除淬火应力及获得所需综合力学性能。图11—6为淬火回火工艺示意图。 铸钢件淬火工艺的主要参数: (1)淬火温度:淬火温度取决于铸钢的化学成分和相应的临界温度点。图11—7为铸钢件淬火工艺温度范围示意图。原则上,亚共析铸钢淬火温度为Ac。以上20~30℃,常称之为完全淬火。共析及过共析铸钢在Ac。以上30~50℃淬火,即所谓亚临界淬火或两相区淬火。这种淬火也可用于亚共析钢,所获得的组织较一般淬火的细,适用于低合金铸钢件韧化处理。 (2)淬火介质:淬火的目的是得到完全的马氏体组织。为此,铸件淬火时的冷却速率必须大于铸钢的临界冷却速率。否则不能获得马氏体组织及其相应的性能。但冷却速率过高易于导致铸件变形或开裂。为了同时满足上述要求,应根据铸件的材质选用适当的淬火

正火,回火,退火,淬火处理

正火,回火,退火,淬火的区别 1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温. 退火有完全退火、球化退火、去应力退火等几种。 a将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降低钢的硬度,消除钢中不均匀组织和内应力. b,把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球化退火.目的是降低钢的硬度,改善切削性能,主要用于高碳钢. c,去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力. 2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 3.淬火

将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。 4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性. B 中温回火350~500;提高弹性,强度. C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。

铸钢件的热处理方式

铸钢件的热处理方式 按加热和冷却条件不同,铸钢件的主要热处理方式有:退火(工艺代号:5111)、正火(工艺代号:5121)、均匀化处理、淬火(工艺代号:5131)、回火(工艺代号:5141)、固溶处理(工艺代号:5171)、沉淀硬化、消除应力处理及除氢处理。 1.退火(工艺代号:5111) 退火是将铸钢件加热到Acs以上20~30℃,保温一定时间,冷却的热处理工艺。退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。适用于所有牌号的铸钢件。图11—4为几种退火处理工艺的加热规范示意图。表ll—1为铸钢件常用退火工艺类型及其应用。 2.正火(工艺代号:5121) 正火是将铸钢件目口热到Ac。温度以上30~50℃保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。图11—5为碳钢的正火温度范围示意图。正火的目的是细化钢的组织,使其具有所需的力学性能,也可作为以后热处理的预备处理。正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺

陷。 3.淬火(工艺代号:5131) 淬火是将铸钢件加热到奥氏体化后(Ac。或Ac•以上),保持一定时间后以适当方式冷却,获得马氏体或贝氏体组织的热处理工艺。常见的有水冷淬火、油冷淬火和空冷淬火等。铸钢件淬火后应及时进行回火处理,以消除淬火应力及获得所需综合力学性能。图11—6为淬火回火工艺示意图。铸钢件淬火工艺的主要参数:(1)淬火温度:淬火温度取决于铸钢的化学成分和相应的临界温度点。图11—7为铸钢件淬火工艺温度范围示意图。原则上,亚共析铸钢淬火温度为Ac。以上20~30℃,常称之为完全淬火。共析及过共析铸钢在Ac。以上30~50℃淬火,即所谓亚临界淬火或两相区淬火。这种淬火也可用于亚共析钢,所获得的组织较一般淬火的细,适用于低合金铸钢件韧化处理。(2)淬火介质:淬火的目的是得到完全的马氏体组织。为此,铸件淬火时的冷却速率必须大于铸钢的临界冷却速率。否则不能获得马氏体组织及其相应的性能。但冷却速率过高易于导致铸件变形或开裂。为了同时满足上述要求,应根据铸件的材质选用适当的淬火介质,或采用其他冷却方法(如分级冷却等)。在650~400℃区间钢的过冷奥氏体等温转变速率最快,因此铸件淬火时应保证在此温度内快冷。在Ms点以下希望冷却缓慢一些,以防止淬火变形或开裂。淬火介质通常采用火、水溶液、油和空气。在分级淬火或等温淬火时,采用热油、熔融金属、熔盐或熔碱等。 4.回火(工艺代号:5141) 回火是将淬火或正火后的铸钢件加

大型铸钢件工艺

大型铸钢件工艺设计的关键技术 武汉钢铁重工集团铸钢车间孙凡 摘要:简要介绍大型铸钢件的铸造工艺设计的铸件的工艺性分析、铸造工艺方案选择、铸造工艺参数的选定、铸件成形的控制、铸件的热处理技术、铸造工艺装备的设计、铸件的后处理技术及计算机数值模拟技术等关键技术。 1 零件的工艺性研究 铸造工艺设计时,首先要仔细地阅读和研究铸件的制造或采购技术条件、质量要求。如探伤要求,表面质量要求,机械性能要求,特殊热处理要求等,其次,要研究零件的结构特点,如质量要求高的表面或主要的加工面,主要的尺寸公差要求等,再次,研究材料化学成分,特别是铸造合金中含碳量,合金元素含量作用和机理。这些对下一步的工艺设计有直接影响。需格外重视,做好零件的工艺性研究,能为工艺设计奠定良好的开端。 1.1 材料的工艺性分析 在大型铸件的制造中,材料的物理性能和机械性能,对工艺参数的选定、浇冒口和冷铁设置、热处理技术、铸件的后处理技术等都有重大影响。深入了解铸造合金中含碳量,合金元素含量对铸态组织形态的影响,对力学性能的影响,了解材料的凝固方式,收缩倾向,冒口补缩效果,了解材料的热导率,热应力倾向等,对工艺设计有重要意义。 在砂型条件下,随着合金中碳的质量分数量增加,结晶温度范围扩大。低碳钢为逐层凝固方式,中碳钢为中间凝固方式,高碳钢为体积凝固方式凝固,但改变冷却条件,可以改变结晶温度范围,从而改变合金的凝固方式。由于凝固方式的不同,窄结晶温度范围的合金,容易形成细小的晶粒组织,补缩性好,热烈倾向小;反之,宽结晶温度范围的合金,容易形成粗大的晶粒组织,补缩性差,热烈倾向大。因此,高碳钢的厚大部位,要采取强制冷却工艺缩小结晶温度范围,改善晶粒组织。合金中的碳、锰、铬等元素的含量增加,可以提高强度,提高淬透性,却降低导热性,直接影响铸件各部位冷却、加热的温度差,因此,合金钢较容易造成高的残余应力。工艺上要减少各部位浇注后冷却、热处理加热的温度差。合金在相变时,各种组织组成相的比体积不同,会产生相变应力,其中,马氏体的比体积最大,马氏体相变最容易产生较大的相变应力。碳、锰、铬等淬透性元素含量高的合金钢,冷割冒口时极易产生裂纹,原因就是导热性差热应力大,产生马氏体转变导致相变应力大,必须热割冒口, 1.2 铸件结构的工艺性分析 对于需要铸造的零件,必须检查它的结构是否符合铸造工艺的基本要求。因为有时对铸件的结构,作很小的改动,并不影响铸件的使用性能, 但却大大地简化了铸造工艺,有利于提高铸件质量。在铸造生产中, 对铸件结构的基本要求有以下几点:铸件的壁厚应大于铸件允许的最小壁厚,以免产生浇不足等缺陷。

正火、退火、淬火与回火的区别

退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 (1)淬火(quenching):将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性下降及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。淬火工艺主要用于钢件。淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。 (2)回火(tempering):为了降低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。回火一般紧接着淬火进行,其目的是: (a)消除工件淬火时产生的残留应力,防止变形和开裂; (b)调整工件的硬度、强度、塑性和韧性,达到使用性能要求; (c)稳定组织与尺寸,保证精度; (d)改善和提高加工性能。 因此,回火是工件获得所需性能的最后一道重要工序。通过淬火和回火的相配合,才可以获得所需的力学性能。 (3)正火(normalizing):将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。其目的是: (a)去除材料的内应力; (b)降低材料的硬度,提高塑性。 (4)退火(annealing):退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。准确的说,退火是一种对材料的热处理工艺,包括金属材料、非

常见零件的热处理方式

一、齿轮 1.渗碳及碳氮共渗齿轮的工艺流程 毛坯成型→预备热处理→切削加工→渗碳(碳、氮共渗)、淬火及回火→(喷丸)→精加工2.感应加热和火焰加热淬火齿轮用钢及制造工艺流程 配料→锻造→正火→粗加工→精加工→感应或火焰加热淬火→回火→珩磨或直接使用调质 3.高频预热和随后的高频淬火工艺流程 锻坯→正火→粗车→高频预热→精车(内孔、端面、外圆)滚齿、剃齿→高频淬火→回火→珩齿 二、滚动轴承 1.套圈工艺流程 棒料→锻制→正火→球化退火 棒料→钢管退火磨→补加回火→精磨→成品 2.滚动体工艺流程 (1)冷冲及半热冲钢球 钢丝或条钢退火→冷冲或半热冲→低温退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (2)热冲及模锻钢球 棒料→热冲或模锻→球化退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (3)滚子滚针 钢丝或条钢(退火)→冷冲、冷轧或车削→淬火→冷处理→低温回火→粗磨→附加回火→精磨→成品 三、弹簧 1.板簧的工艺流程

切割→弯制主片卷耳→加热→弯曲→余热淬火→回火→喷丸→检查→装配→试验验收 2.热卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→淬火→回火→喷丸→磨端面→试验验收 3.冷卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→去应力回火→淬火→回火→喷丸→磨端面→试验验收 四、汽车、拖拉机零件的热处理 1.铸铁活塞环的工艺流程 (1)单体铸造→机加工→消除应力退火→半精加工→表面处理→精加工→成品 (2)简体铸造→机加工→热定型→内外圆加工→表面处理→精加工→成品 2.活塞销的工艺流程 棒料→粗车外圆→渗碳→钻内孔→淬火、回火→精加工→成品 棒料→退火→冷挤压→渗碳→淬火、回火→精加工→成品 热轧管→粗车外圆→渗碳→淬火、回火→精加工→成品 冷拔管→下料→渗碳→淬火、回火→精加工→成品 3.连杆的工艺流程 锻造→调质→酸洗→硬度和表面检验→探伤→校正→精压→机加工→成品 4.渗碳钢气门挺杆的工艺流程 棒料→热镦→机加工成型→渗碳→淬火、回火→精加工→磷化→成品 5.合金铸铁气门挺杆的工艺流程 合金铸铁整体铸造(间接端部冷激)→机械加工→淬火、回火→精加工→表面处理→成品合金铸铁整体铸造(端部冷激)→机械加工→消除应力退火→精加工→表面处理→成品钢制杆体→堆焊端部(冷激)→回火→精加工→成品 钢制杆体→对焊→热处理→精加工→表面处理→成品 6.马氏体型耐热钢排气阀的工艺流程 马氏体耐热钢棒料→锻造成型→调质→校直→机加工→尾部淬火→抛光→成品 7.半马氏体半奥氏体型耐热钢(Gr13Ni7Si2)排气阀的工艺流程

正火后回火的定义及作用

正火后回火的目的一般是主要针对于大截面零件而言的:有以下作用——且非常重要 1.对于像电机轴、压机容器等零件(材质一般为碳钢或低合金结构钢)而言,正火+高温回火就是其最终热处理因此正火后及时回火处理能有效的稳定组织及尺寸,进一步消除工件内应力,对提高综合力学性能有明显作用; 2.对于大型锻件而言,正火后及时高温回火(一般还在中间加一次过冷)除了能达到前面所述之目的外,还有扩氢的重要作用,特别是高淬透性钢,(氢是产生白点的因素)而大锻件若内部产生了白点的话一般都要报废。所以重要零件(或特殊材料)正火+高温回火是十分必要的。 一般正火不进行回火,当淬透性比较好的材料或者采用雾冷正火时,要进行高温回火,因为淬透性好的材料正火时,易出现混晶组织,雾冷造成一定的应力,所以,要进行回火,这样不但消除应力,还能提高材料综合性能. 正火主要是为了细化晶粒消除网状碳化物,回火是消除应力. 正火是将材料加热到Ac3以下某一温度经保温后空气中冷却的金属热处理工艺。正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火 回火的作用在于:①提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。②消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。③调整钢铁的力学性能以满足使用要求。分为高温、低温、中温回火,其中高温回火又称为调质处理 正火后回火的目的就是去应力回火,原因很简单:正火工艺的冷却并非平衡冷却,所获得的组织并非平衡组织,非平衡组织内部自然存在一定的内应力。 这一点,可以追溯到回火的最初定义: 回火过去的文献把回火定义为:把淬过火或正火的钢件加热到设定的某一温度(低于下临界点温度),保持充分的时间,以消除其因淬火或正火等所产生的残余应力,并获得较稳定的显微组织和设计需要的综合力学性能的热处理工艺。现在的文献大多把回火定义为:采用加热手段,将不稳定的淬火组织转变为相对稳定的回火组织,并降低淬火应力,从而在保持较高强度和硬度的条件下,尽量提高钢的韧性和塑性,得到良好的机械性能,使工件在使用过程中,不发生形状和尺寸超差。

铸钢件热处理作业指导书

热处理作业指导书 1. 目的 保证热处理质量。 2. 热处理方式 按加热和冷却条件不同,铸钢件的主要热处理方式有:退火、正火、均匀化处理、淬火、回火、固溶处理、沉淀硬化、消除应力处理及除氢处理。 3. 热处理操作要求 3.1 .退火 退火是将铸钢件加热到Acs以上20?30C,保温一定时间,冷却的热处理工艺。退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。适用于所有牌号的铸钢件。图1 —1为几种退火处理工艺的加热规范示意图。表I —1为铸钢件常用退火工艺类型及其应用。表1-2铸钢件退火工艺及退火后的硬度。 图1—1为几种退火处理工艺的加热规范示意图

表I—1为铸钢件常用退火工艺类型及其应用

表1-2铸钢件退火工艺及退火后的硬度 3.2 .正火 正火是将铸钢件目口热到Ac。温度以上30?50°C保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。图1—2为碳钢的正火温度范围示意图。表1-3铸钢件正火工艺及退火后的硬度,表1-4常用低合金铸件正火或正火+回火工艺及硬度。正火的目的是细化钢的组织,使其具有所需的力学性能,也司作为以后热处理的预备处理。正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。

图1—2为碳钢的正火温度范围示意图 正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火; 可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组 织,从而减少铸件在淬火时产生的缺陷。 表1-3铸钢件正火工艺及退火后的硬度 表1-4常用低合金铸件正火或正火+回火工艺及硬度 3.3 .淬火

相关文档
相关文档 最新文档