文档库 最新最全的文档下载
当前位置:文档库 › 第十讲 几种常用的随机过程

第十讲 几种常用的随机过程

第十讲 几种常用的随机过程
第十讲 几种常用的随机过程

第十讲 几种常用的随机过程

10.1 马尔可夫过程 10.1.1马尔可夫序列

马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。

一个随机变量序列x n (n=1,2,…),若对于任意的n 有

)|(),...,,|(112

1

x x F x x

x x F n n X n n n

X

---= (10.1)

)|(),...,,|(112

1

x

x f x x

x x f n n

X

n n n

X

---=

(10.2)

则称x n 为马尔可夫序列。x n 的联合概率密度为

)

()|( )

|()|(),...,,(1

1

2

2

11

2

1

x f x x f x

x f x x f x x x f X

X

n n X

n n

X

n

X

??---=

(10.3)

马尔可夫序列有如下性质:

(1) 一个马尔可夫序列的子序列仍为马尔

可夫序列。

(2) )

|(),...,,|(1

21x

x f x x x x f n n

X

k n n n n X -+++=

(10.4)

(3) )|(),...,|(111x X x x X n n n n E E --=

(10.5)

(4) 在一个马尔可夫序列中,若已知现在,

则未来与过去相互独立。即

)

|()

|()|,(1

x x f x

x f x x x f r

s

X

n n

X

r

s

n

X

-=

,n>r>s (10.6)

(5) 若条件概率密度)|(1

x x f n n

X

-与n 无关,

则称马尔可夫序列是齐次的。

(6) 若一个马尔可夫序列是齐次的,且所

有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。

(7) 马尔可夫序列的转移概率满足切普曼

—柯尔莫哥洛夫方程,即

)

|()|

()|(x x f

x x f

x x f

s

r X

r

n X

s

n X

?

-=

n>r>s (10.7)

10.1.2马尔可夫链

马尔可夫链是指时间参数,状态方程皆

为离散的马尔可夫过程。

1 马尔可夫链的定义 设

),2,1( =n X n 为离散时间随机过程,

其状态空间},,,{21a a a N I =。如果过程在k m t +时刻为任一状态),,2,1(N i a i k m =+的概率,只与过程在m t 时刻的状态有关,而与过程在m t 时刻以前的状态无关,即

1

1m k {|,,}

P{|} (10.8)X m k m m k m m k m m P i i i i i a

a a X X X a a X ++++====== 则称该过程为马尔可夫链,或简称马氏链。

2 马氏链的转移概率及有限维分布

马氏链的转移概率定义为

(,){|},

i,j 1,2,N;m,k

.9m k

m j i ij

m m k p p a a X

X ++====皆为正整数(10)

如果

)

,(k m m p ij

+与m 无关,则称该马氏

链为齐次的。下面我们仅研讨齐次马氏链,

并习惯上省去“齐次”二字。

马氏链的一步转移概率及其矩阵分别定义为

m 1

(1)(,1)P{|} (10.10)

X

m ij ij ij m m j i

p p p a

a X +=+====

??????????

????==p p

p p

p p p p

p NN N N N N P P

2

1

222

21

11211)1(

(10.11) 一步转移概率矩阵P 有以下两个性质

1

0≤≤

p

ij

(10.12)

∑==N

i ij

p

1

1

(10.13)

马氏链的高阶转移概率及其矩阵分别定义为

m n

()(,)P{|}

( 10.14 )

X

m ij ij n m m n j

i

p p a

a X +=+===11

12

121

22

212

()()()()

()()() (10.15)

()()

()N

N N N NN n n n n n n P n n n n p p

p p p p

p p

p ??????=?????

?

???

?

n 步转移概率矩阵P(n)具有如下的性质:

0() 1 (10.16)

ij

n p ≤

1

() 1 (10.17)

N

ij

i n p ==∑

此外,还规定

???≠====j

i j

i m m ij ij ij p p ,0,1),()0(δ

马氏链的n 步转移概率及其矩阵具有如下的切普慢—柯尔摩哥洛夫方程的离散形式,即

N

ir

r 1

()()() (10.18)

p ij

ij

rj

n l k k p p p

==+=∑()()()() (10.19)

p n p l k p l p k =+=当n 为任意正整数时,则有

()(1) (10.20)

n

p n p p n p =?-==

式(7.18),若n=k+1,则有

(1)()() (10.21)

ij

ir

rj

ir

rj

r

r

k k k p p p

p p +==∑∑ 由上可知,以一步转移概率

p ij

为元素的一步转移概率矩阵P 决定了马氏链状态转移过程的概率法则。但是,P 决定不了初始概率分布,必须引入初始概率

0{},0,1,2,

(10.22)i i

p i p

x a ===

并称{p i

}=( ,,,2

1

p p p )为初始分布,显然

10, 1 (10.23)i

i

i

p

p ≥≥=∑

若绝对概率}{)(a X p j

k

j

p k ==,则有

(1)(1)() (10.24)j

i

ij

i

ij

i

i

k k k p p p p p +=+=∑∑

马氏链的有限维分布可表示为

01010

10

01

1010101{,,,}

p{}{|}

{|}

(10.25)

i X X p

n

n n n n

n n n p i i i P i i i P i i i i i

i

a a a X X X a a a X a a X X p p ---==========

3.遍历性及平稳分布

(1)遍历性 设)(n X 为齐次马氏链,若

对于一切状态i 与j ,存在不依赖于i 的极限

lim () (10.36)ij j n p n p →∞

= 则称马氏链X (n )具有遍历性。

定理 (有限马氏链具有遍历性的充分条件)对有限状态的齐次马氏链X (n ),若存在正整数m ,使

()0,,1,2,..., (10.37)ij p m i j N >=

则此链是遍历的。而且,式(10.36)中的

}

,...,{}{21N j p p p p =是方程组

1

,1,2,..., (10.38)N

j i ij i p p p j N ===∑

在满足条件

11, 1 (10.39)

N

j j i o p p =<<=∑

下的惟一解。

(2)平稳分布 马氏链的一个概率分布

,如有

和即:10},{0=≥∑∞

=j j j j v v v

.40j i i ij

v v p ∞

==∑(10)

则称它为该链的平稳分布。并有

() (10.41)i i ij i v v p n ∞

==∑

10.1.3马尔可夫过程

这里论及的马尔可夫过程是指时间,

状态皆连续的马尔可夫过程。扩散过程就是 这类马尔可夫过程的一个特例。

设有一随机过程:

满足

,,相应的观测值)观测得到

(对,,若在n n n n n n x x x x t X t t t t T t t t t T t t X ,...,...,...,),(121121121---∈<<<<∈

1221122111(;/,,...,,;,...,,)

(;/;),3 .42X n n n n n n X n n n n F x t x x x x t t t t F x t x t n ------=≥的整数(10)

则称此类过程为马尔可夫过程,简称马氏过程。

马氏过程的转移概率分布定义为:

111100000(;|;){()()} (10.43 )(;|;){()|()}, (10.44 )

X n n n n n n n X F x t x t P X t X t x F x t x t P X t x X t x t t ----=≤==≤=>或 转移概率分布是关于x 的分布函数,故有:

00000001|0 .452| 1 .463|0 (10.47 4|X X X X F x t x t F t x t F t x t F x t x ≥∞=-∞=()(;;)(10)()(;;)(10)()(;;))()(;;1000111100 5||| X X X X t x F x t x t F x t x t d F x t x t ∞-∞

=?)是关于单调不减,右连续的函数。

()满足切普曼—柯尔莫哥洛夫方程

(;;)(;;)(;;) .48(10)

马氏过程的转移概率密度定义为

0000(;|;)(;|;) .49 X X f x t x t F x t x t x

?

=

?(10)故有 0000001221122111(;/;) 1 .50(;/;)(), .51(;/,,...,,;,...,,)

(;/;),3 X X X n n n n n n X n n n n f x t x t dx f x t x t x x t t f x t x x x x t t t t f x t x t n δ∞

-∞

------=→-→=≥?

(10)

当时(10)的整数 .52(10)

它也满足切普曼——柯尔莫哥洛夫方程

(;/;)(;/;)(;/;),

.53X n n k k X n n r r X r r k k k r n f x t x t f x n x t f x t x t dx t t t ∞-∞

=<

(10)

如果马氏过程X (t )有

00000000 (;/;)(/;),t ( 10.54 ) (;/;)(/;), .55 X X X X F x t x t F x x t f x t x t f x x t t ττττ==-==-或(10)

则称它为为齐次马尔可夫过程。

马氏过程X (t )的n 维概率密度可写成

12121

111112n 1

(,,...;,,...,)

(;)(;/;),...t (10.56 )

X n n X X i i i i i f x x x t t t f x t f x t x t t t τ-++=<<<∏

10.2 独立增量过程 10.2.1独立增量过程

设有一个随机过程))((T t t X ∈,若对任意的时刻b t t t t n <<<<<≤ 2100,过程的增量

)()()()( )()(11201----n n t X t X t X t X t X t X 、、、 是

相互独立的随机变量,则称)(t X 为独立增量过程或可加过程。

若参数集[] ,0b t T =,则像马尔可夫过程一样,独立增量过程的有限维分布可由它的初始概率分布{}x t X <)(P 0及一切增量的概率分布唯一地确定。

如果独立增量过程)(t X 的增量

)()(1--i i t X t X 的分布仅与)(1--i i t t 有关,而与

1-i i t t 、本身无关,则称)(t X 为齐次的。

10.2.2泊松过程

实际上,泊松过程就是一个纯不连续的马尔可夫过程,而且也是一个独立增量过程。

1. 泊松过程

(1) 定义 设随机过程))

,0[)((0∞≥∈t t t X 的状态只取非负整数值,若满足下列三个条件:

① 1;}0)(P{0==τX

② X(t)为均匀独立增量过程; ③ 对任意时刻,21021),,(,t t t t t <∞∈对

应的随机变量的增量)()(),(1221t X t X t t X -=服从数学期望为)(12t t -λ的泊松分布,即对于k=0,1,2···有

21k 121221()21P (,){(,)()()}[()] (10.57)

!

k t t t t P X t t X t X t k t t e k λλ--==-=-=

则称X(t)为泊松过程。

对于式(10.57),若t t t ==21,0 时,则

k 2()P (0,),0,0,1,2,

(10.58)!

k t

t t e t k k λλ-=>=

(2)数字特征 泊松过程X(t)的均值、均方差、方差、自相关函数分别为:

222[()]

(10.59)[()] (10.60)D[()] E X t t

E X t t t X t t λλλλ==+=22

1212X 12122

11212

(10.61)

,R ( ,)[ ()()] (7.26),t t t t t t t E X t X t t t t t t λλλλ?+≤?==?+≥?? 2. 泊松增量

(1) 定义 由泊松过程X(t)在给定的

时间间隔0t >?内的增量与t ?之比,我们构成一新过程: X(t t)-X(t)Y(t) (10.63)t

+?=?

称它为泊松增量。显然,若k 是间隔t),(?+t t 内的随机点数,则Y(t)=k/△t 。故

k

t

k (t)P Y(t) (10.64)t k!e λλ-????==??

??

? (2) Y(t)的均值、自相关函数分别为:

21212212

1211

E[Y(t)][(t)]-[()] (10.65)

t t

, t (,) (10.66), t t t Y E X t E X t t t R t t t t t t λλλλλ=+?=???->??

=?-+--

???

3.过滤的泊松过程与散粒噪声

泊松过程X(t)对t 求导,就能得到与时间轴上随机点i t 相对应的冲激序列)(t Z ,称此离散随机过程为泊松冲激序列。即

∑-==i

i t t dt t dX t Z )()()(δ

(10.67)

(1) 过滤的泊松过程 设有一泊松冲激脉冲序列 )()(∑-=i

i t t t Z δ经过一线性时不

变滤波器,则此滤波器输出是一随机过程X(t),如图:

()

1

X(t)()()(),0 (10.72)

N T i

i Z t h t h t t t ==*=

-≤<∞∑

式中,h(t)为滤波器的冲激响应;i t 为第

i 个冲激脉冲出现的时间;N(t)为在T ][0,内输入到滤波器的冲激脉冲的个数,它服从泊

松分布。我们称此为过滤的泊松过程。

(2) 散粒噪声 在电子管、晶体管中, 由散粒效应引起的散粒噪声电流皆为过滤的泊松过程。因此,散粒噪声X(t)可表示成类似式(10.72)的形式。

X(t)Z(t)()(), (10.73)

i i

h t h t t t =*=--∞<<+∞∑

而且,不难证明此X(t)也是平稳的。

10.2.3 维纳过程

维纳过程)(t W 是另一个最重要的独立增

量过程,有时也称它为布朗运动过程,还可以将它看成是随机游动X(t)的极限形式。

1.定义 设随机过程 ) ),0[)((∞∈t t W 满足下列条件:

(1)1;0}P{W(0)== (2) )(t W 为均匀独立增量过程,且对任意时刻 ,t t ),0[t t 2121<∞∈,、及 )]W(t )[W(t , 012εεε+-+>具有与)]W(t )[W(t 12-相同的正态分布函数,其概率密度为

21212

2121(;t ,t )1()

exp[]

2(t t ) (10.79)

W f w w w w α-=

---

式中,α为正常数。

(3) 对任意时刻),0[∞∈t ,

)(t W 具有均值E[W(t)]=0的正态分布函数,

其概率密度为

2/2t

1

(,) (10.80)

w

W

f w t eα

-

=

2.W(t)的均值与自相关函数分别为

T0

n

E[W(t)]E[lim()]0 (10.81)

X t nT

→∞

===

121212

112

212

(t,t)E[W(t)W(t)]min(t,t)

t,t t

(10.82)

t,t t

W

α

α

==

?

=?

?

3. W(t)与正态白噪声N(t)

维纳过程W(t)的形式导数W(t)?就是正态白噪声N(t),N(t)的自相关函数为

121212

2

1212

12

(t,t)E[N(t)N(t)][W(t)W(t)]

(t,t)(t t) (10.83)

t t

N

W

R E

Rαδ

==

?

==-

??

令τ=

-

1

2

t

t,则有

()() (10.84)

N

Rταδτ

=

换言之,W(t)可表示为N(t)的积分,即

t

W(t)N(u)du (10.85)

=?

4. 扩散方程

维纳方程W(t)满足下列扩散方程

2

211

2

22

22 (10.86)02p p t w p p t w αα???=????????+=???? 式中,))()(;(),;,(2122111122t t w t W t w f t w t w p p W >=== 为在22)(w t W =之下随机变量)(1t W 的条件概率密度。实际上,此式是柯尔莫格洛夫方

程的特例。

可以证明,下列条件概率密度式

221111222

121212(,;,)(;;)

1()

exp[]

2() , (10.88)

W p w t w t f w t w t w w t t t t α=-=-->

是式(10.85)具有初始条件为

11221212(;;)(), (10.89)

W f w t w t w w t t δ→-→

的惟一解。

随机过程复习题

第一章 1. 填空 若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 2.设P(S)是X 的母函数,试证: (1)若E(X)存在,则()1EX P '= (2)若D(X)存在,则 DX = P"(1)+ P ′ (1)-[ P ′ (1)]2 证明:(1)因为()0 k k k P s p s ∞ == ∑,则()1 1 k k k P s kp s ∞ -='= ∑,令1s →,得 ()1 1k k E X P kp ∞ ='==∑ 。 (2)()1 1 k k k P s kp s ∞ -='= ∑, ()()2 2 1k k k P s k k p s ∞ -=''=-∑()2222 =k k k k k k p s kp s ∞ --=-∑ 令1s →,得()()()2 22112 P 1= 1k k k k p kp EX p EX p EX p ∞ ='''-=--+=-∑ ()()2=P 1+1EX p '''∴ ()()()()2 22P 1+11DX EX EX p p ''''∴=-=-???? 证毕 3. 设X 服从B(n,p),求X 的特征函数g(t)及EX,EX 2 ,DX. 解:X 的分布列为P(X=k)=1k k n n C p q -,q=1-p ,k=0,1,2,...n, ()00 k n n n itk k k n k k it n k it g t e C p q C pe q pe q n n k k ? ??? ? ? ? ? ? ? --===+∑∑== 由性质得 ()() , 0n t d it EX i i np dt p q g e ==-=-=+ ()()()22 " 2 2 2 2 0n t it i npq d i p q g p n e EX dt ===-=+-+ ()2 2DX =EX EX =npq -

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

随机过程习题及答案

第二章 随机过程分析 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程 (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程 (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程 (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程 (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程 (t )在任意给定时刻t 的取值 (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

相关正态随机过程的仿真实验报告

实验名称:相关正态随机过程的仿真 一、实验目的 以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。 二、实验内容 相关正态分布离散随机过程的产生 (1)利用计算机语言的[0,1]区间均匀分布随机数产生函数生成两个相互独立的序列 {U1(n)|n=1,2,…100000},{U2(n)|n=1,2,…100000} 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%----------------在[0,1] 区间用rand函数生成两个相互独立的随机序列 n1=hist(u1,10);%--------------------------hist函数绘制分布直方图 subplot(121);%-----------------------------一行两列中的第一个图 bar(n1); n2=hist(u2,10); subplot(122); bar(n2); 实验结果:

(2)生成均值为m=0,根方差σ=1的白色正态分布序列 {e(n)|n=1,2, (100000) [][]m n u n u n +=)(2cos )(ln 2-)(e 21πσ 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n) n=hist(en,100);%--------------------------hist 函数绘制分布直方图 bar(n); 实验结果: (3)假设离散随机过程x(n)服从均值为x m =0、根方差为2x =σ、相关函数为||2)(r k x x k ασ= )6.0(=α 功率谱函数为

几种常用的随机过程

第十讲 几种常用的随机过程 10.1 马尔可夫过程 10.1.1马尔可夫序列 马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。 一个随机变量序列x n (n=1,2,…),若对于任意的n 有 )|(),...,,|(112 1 x x F x x x x F n n X n n n X ---= (10.1) 或 )|(),...,,|(112 1 x x f x x x x f n n X n n n X ---= (10.2) 则称x n 为马尔可夫序列。x n 的联合概率密度为 ) ()|( ) |()|(),...,,(1 1 2 2 11 2 1 x f x x f x x f x x f x x x f X X n n X n n X n X ??---= (10.3) 马尔可夫序列有如下性质: (1) 一个马尔可夫序列的子序列仍为马尔

可夫序列。 (2) ) |(),...,,|(1 21x x f x x x x f n n X k n n n n X -+++= (10.4) (3) )|(),...,|(111x X x x X n n n n E E --= (10.5) (4) 在一个马尔可夫序列中,若已知现在, 则未来与过去相互独立。即 ) |() |()|,(1 x x f x x f x x x f r s X n n X r s n X -= ,n>r>s (10.6) (5) 若条件概率密度)|(1 x x f n n X -与n 无关, 则称马尔可夫序列是齐次的。 (6) 若一个马尔可夫序列是齐次的,且所 有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。 (7) 马尔可夫序列的转移概率满足切普曼 —柯尔莫哥洛夫方程,即 ) |()| ()|(x x f x x f x x f s r X r n X s n X ? ∞ ∞ -= , n>r>s (10.7) 10.1.2马尔可夫链 马尔可夫链是指时间参数,状态方程皆

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

随机过程课后习题

习题一 1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。求X 的特征函数、EX 及DX 。其中01,1p q p <<=-是已知参数。 2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为 (2)求其期望和方差; (3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。 3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。 (1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。 4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。 5.试证函数 为一特征函数,并求它所对应的随机变量的分布。 6.试证函数 为一特征函数,并求它所对应的随机变量的分布。 7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概 率密度函数。 8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。求X+Y 的分布。 9.已知随机向量(X, Y )的概率密度函数为 试求其特征函数。 10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩 阵为B σ?kl 44=(),求(X ,X ,X ,X E 1234)。 11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和 213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。 12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求: (1)随机向量(X 1, X 2, X 3)的特征函数; 1,0() 0,0()p p bx b x e x p x p x --?>? Γ??≤? =0,0 b p >>1 n k k X =∑ (1)()(1) jt jnt jt e e f t n e -=-21 ()1f t t =+1 1n i i X X n ==∑22 1[1()],1,1 (,)40,xy x y x y p x y ?+--<

随机过程习题答案

随机过程习题解答(一)第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a )分别写出随机变量和的分布密度 (b )试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a )试求和的相关系数; (b )与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。解:(a )利用的独立性,由计算有: (b )当的时候,和线性相关,即 3、 设是一个实的均值为零,二阶矩存在的随机过程,其相关函数 为 ,且是一个周期为T 的函数,即, 试求方差函数 。 解:由定义,有: 4、考察两个谐波随机信号和,其中: 式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a )求的均值、方差和相关函数; (b )若与独立,求与Y的互相关函数。 解:(a ) (b ) 第二讲作业: P33/2.解:

其中为整数, 为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数 ,因此有一维分布: P35/4. 解: (1) 其中 由题意可知, 的联合概率密度为: 利用变换: ,及雅克比行列式: 我们有 的联合分布密度为: 因此有: 且 V 和 相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于 独立、服从正态分布,因此 也服从正态分布,且 所以 。 (4) 由于: 所以 因此 当时, 当 时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有: P37/10. 解:(1) 当i =j 时 ;否则 令 ,则有 (2)

随机过程试题

第一单元 1. 下列常见的分布中属于离散型随机变量的分布有():( 2.0分) A.二项式分布 B.均匀分布 C.泊松分布 D.正态分布 E.(0-1)分布 2. 下列常见的分布中属于连续型随机变量的分布有():(2.0分) A.二项式分布 B.均匀分布 C.泊松分布 D.正态分布 E.(0-2)分布 3. 下列关于随机变量分布函数性质的描述,正确的是():(2.0分) A.分布函数是一个不减函数 B.分布函数能够完整地描述随机变量的统计规律性 C.分布函数的最大值为无穷大 D.分布函数是右连续函数 E.离散型随机变量的分布函数是一系列冲激函数的线性组合 4. 下列关于随机变量概率密度性质的描述,正确的是():(2.0分) A.概率密度是一个不减函数 B.概率密度能够完整地描述随机变量的统计规律性 C.只有连续型随机变量才存在概率密度 D.概率密度是非负的函数

E.随机变量的概率密度一定存在 5. 随机试验有什么特点?(2.0分) 6. 基本事件是随机试验中最简单的随机事件。(2.0分) 7. 两个事件乘积的概率等于其中一个事件的概率乘以另一事件在此事件发生的条件下的条件概率。(2.0分) 8. 全概率公式用于在许多情况(B1,B2,…,Bn)下都可能发生事件A,求发生A 的全概率;贝叶斯公式则用于当A已经发生的情况下,求发生事件A的各种可能原因的条件概率。(2.0分) 9. 随机变量是样本空间上的单值实函数。(2.0分) 10. 两个随机变量如果相互独立,则它们的联合分布函数等于这两个随机变量的一维分布函数的乘积。(2.0分)

11. 如果要使两个随机变量之和的数学期望等于这两个随机变量的数学期望之和,则要求这两个随机变量是相互独立的。(2.0分) 12. 如果要使两个随机变量之和的方差等于这两个随机变量的方差之和,则要求这两个随机变量是相互独立的。(2.0分) 13. 两个随机变量如果是不相关的,则它们必定是相互独立的。(2.0分) 14. 当一个随机变量的数学期望为零时,它的方差和均方值相等。(2.0分) 15. 复随机变量的数学期望和方差都是复数。(2.0分) 16. 协方差是反映两个随机变量相关关系的数字特征。(2.0分) 17. 相互独立的随机变量和的特征函数等于各变量的特征函数的乘积。(2.0分) 18. 数学期望、方差和协方差都是矩的特殊情况,其中数学期望是随机变量的____矩,方差是随机变量的____矩,协方差是两个变量的____矩。(2.0分) 19. 离散型随机变量的统计规律可以用____、____、____和____来描述。(2.0分) 20. 连续型随机变量的统计规律可以用____、____和____来描述。(2.0分) 21. 数学期望表示____运算。(2.0分) 22. 掷3枚硬币, 求出现3个正面的概率。(2.0分) 23. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率。(2.0分) 24. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A)的概率为4/15, 刮风(用B表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P(A|B), P(B|A), P(A+B)。(2.0分) 25. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率。(2.0分) 26. 发报台分别以概率0.6和0.4发出信号“·”和“—”。由于通信系统受到干扰,当发出信号“·”时,收报台分别以概率0.8及0.2收到信息“·”及“—”;又当发出信号“—”时,收报台分别以概率0.9及0.1收到信号“—”及“·”。求当收报台收到“·”时,发报台确系发出信号“·”的概率,以及收到“—”时,确系发出“—”的概率。(2.0分) 27. 用随机变量来描述掷一枚硬币的试验结果。写出它的概率函数和分布函数。 (2.0分) 28. 如果ξ的概率函数为P{ξ=a}=1, 则称ξ服从退化分布。写出它的分布函数F(x), 画出F(x)的图形。(2.0分) 29. 服从柯西分布的随机变量ξ的分布函数是F(x)=A+B arctgx, 求常数 A,B;P{|ξ|<1}以及概率密度υ(x)。(2.0分)

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

几种常用的随机过程复习课程

几种常用的随机过程

第十讲 几种常用的随机过程 10.1 马尔可夫过程 10.1.1马尔可夫序列 马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。 一个随机变量序列x n (n=1,2,…),若对于任意的n 有 )|(),...,,|(112 1 x x F x x x x F n n X n n n X ---= (10.1) 或 ) |(),...,,|(112 1 x x f x x x x f n n X n n n X ---= (10.2) 则称x n 为马尔可夫序列。x n 的联合概率密度为 ) ()|( ) |()|(),...,,(1 1 2 2 11 2 1 x f x x f x x f x x f x x x f X X n n X n n X n X ??---=Λ (10.3)

马尔可夫序列有如下性质: (1) 一个马尔可夫序列的子序列仍为马 尔可夫序列。 (2) ) |(),...,,|(1 2 1 x x f x x x x f n n X k n n n n X -+++= (10.4) (3) ) |(),...,|(1 11 x X x x X n n n n E E --= (10.5) (4) 在一个马尔可夫序列中,若已知现 在,则未来与过去相互独立。即 )|() |()|,(1 x x f x x f x x x f r s X n n X r s n X -= ,n>r>s (10.6) (5) 若条件概率密度)|(1x x f n n X -与n 无 关,则称马尔可夫序列是齐次的。 (6) 若一个马尔可夫序列是齐次的,且 所有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。 (7) 马尔可夫序列的转移概率满足切普 曼—柯尔莫哥洛夫方程,即 )|()| ()|(x x f x x f x x f s r X r n X s n X ? ∞ ∞ -=

(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中 红球,每隔单位时间从 袋中有一个白球,两个任取一球后放回,对每对应随机变量 一个确定的t ?? ? ? ? = 时取得白球 如果对 时取得红球 如果对 t e t t t X t 3 )( . 维分布函数族 试求这个随机过程的一 2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

相关正态随机过程的仿真

应用统计与随机课程 课程实验报告题目:相关正态随机过程的仿真

实验1 相关正态随机过程的仿真 实验目的: 以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。 实验内容: 程序代码: u1=rand(1,100000); u2=rand(1,100000);%--------------------在[0,1]区间用rand函数生成两个相互独立的是随机序列n1=hist(u1,10)%--------------------------用hist函数绘制分布直方图 subplot(121)%-----------------------------将两幅分布图显示在一个窗口 bar(n1) n2=hist(u2,10) subplot(122) bar(n2) 实验结果:

结果分析: 因为两个独立序列是随机产生,且在[0,1]均匀分布,故将[0,1]分为十个等宽区间时,落在每个区间的数目应该大致相等。 实验内容:

程序代码: clc; u1=rand(1,100000); u2=rand(1,100000);%--------------------在[0,1]区间用rand函数生成两个相互独立的是随机序列en=sqrt(-2*log(u1)).*cos(2*pi*u2);--------定义白色正态分布e(n) n=hist(en,100);%-------------------------------用hist函数绘制分布直方图 bar(n) 实验结果: 结果分析: 绘制出的图形符合白色正态分布

第二章随机过程基本概念.

2随机过程的基本概念 §2.1 基本概念 随机过程是指一族随机变量 . 对随机过程的统计分析称为随机过程论 , 它是随机数学中的一个重要分支,产生于本世纪的初期 . 其研究对象是随机现象 ,而它特别研究的是随“ 时间” 变化的“ 动态” 的随机现象 . 一随机过程的定义 1 定义设 E 为随机试验, S 为其样本空间,如果 (1对于每个参数 t ∈ T , X(e,t为建立在 S 上的随机变量, (2对每一个 e ∈ S , X(e,t为 t 的函数,那么称随机变量族 {X(e,t, t∈ T, e∈ S}为一个随机过程,简记为 {X(e,t, t∈ T}或 X(t。 ((((({} {} [](为随机序列。时,通常称 , 取可列集合当可以为无穷。 通常有三种形式: 参数一般表示时间或空间, 或有时也简写为一个轨道。 随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于 :上的二元单值函数。 为即若用映射来表示注意:

t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X R S T t e X t 21321, , , , 3, 2, 1, 0, 1, 2, 3, , 3, 2, 1, 0T , . 4, . 3, , 2, :, . 1=---==??×?′?′L L L 为一个随机过程。则令 掷一均匀硬币, 例 , ( (cos (}, {1 t e X t X R t T e t H e t t X T H S =??íì====p2 随机过程举例 例 2:用 X(t表示电话交换台在 (0, t 时间内接到的呼唤的次数 , 则 (1对于固定的时刻 t, X(t为随机变量 , 其样本空间为{0, 1, 2, …..}, 且对于不同的 t, 是不同的随机变量 . (2对于固定的样本点 n, X(t=n是一个 t 的函数 . (即:在多长时间内来 n 个人 ? 所以 {X(t,t>0}为一个随机过程 . 相位正弦波。为随机过程,称为随机则令例 (

华工应用随机过程试卷及参考答案

华南理工大学2011—2012 学年第一学期 《应用随机过程》考试试卷(A 卷) (闭卷时间 120 分钟) 院/系年级 __专业姓名学号 1、设X 是概率空间(Ω,F ,P )且 EX 存在, C 是 F 的子σ-域,定义E (XC )如下:(1)_______________ ; (2)_____________________________________________ ; 2、设{N (t ),t ≥ 0}是强度为 λ 的 Poisson 过程,则 N (t )具有_____、 _____增量,且?t >0,h >0充分小,有:P ({N (t + h )? N (t ) = 0})= ________,P ({N (t + h )? N (t ) =1})=_____________; 3、设{W (t ),t ≥ 0}为一维标准 Brown 运动,则?t >0,W (t ) ~____,且与 Brown 运动有关的三个随机过程____________、________ ______________、______________都是鞅(过程); 4、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 ______________________________________________________。 二、证明分析题(共 12 分,选做一题) 1、设X 是定义于概率空间(Ω,F ,P )上的非负随机变量,并且具有

指数分布,即:P({X ≤ a}) =1?e?λa ,a >0,其中λ是正常数。设λ是 另一个正常数,定义:Z = λλe?(λ?λ)X ,由下式定义:P(A)=∫A ZdP,?A∈F ;(1)证明:P(Ω) =1;(2)在概率测度P 下计算的分布函 数:P({X ≤ a}),a>0; 2、设X0~U (0,1),X n+1~U (1?X n,1),n≥1,域流{F n,n≥ 0}满足: F n =σ(X k,0 ≤k≤n),n≥ 0 ;又设Y0 = X0 ,Y n = 2n ?∏ k n=1 1 X?k X ?1 k ,n ≥1, 试证:{Y n ,n ≥ 0}关于域流{F n,n ≥ 0}是鞅! 三、计算证明题(共60 分) 1、(12 分)假设X~E(λ),给定c >0,试分别由指数分布的无记

随机过程学习知识重点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞ -=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X Λ= 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤==ΛΛ 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑= k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:2 2 2 )()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2 σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2 σ=DX

相关文档
相关文档 最新文档