文档库 最新最全的文档下载
当前位置:文档库 › 沈阳理工大学-常军-高分子化学教学大纲

沈阳理工大学-常军-高分子化学教学大纲

沈阳理工大学-常军-高分子化学教学大纲
沈阳理工大学-常军-高分子化学教学大纲

《高分子化学》课程教学大纲

课程代码:050331003

课程英文名称:Polymer chemistry

课程总学时:56 讲课:48 实验:8 上机:0

适用专业:高分子材料与工程

大纲编写(修订)时间:2012.08

一、大纲使用说明

(一)课程的地位及教学目标

(1)课程的地位

本课程是高分子材料与工程专业专业课,必修。

(2)教学目标

高分子化学是研究高分子化合物的合成和化学反应的一门学科,通过本课程的学习使学生掌握高分子化学必要的基本理论和知识,培养学生严谨的科学态度,具备初步分析和解决高分子化学问题的能力,具有创新创业能力及较强工程实践能力的、具有卓越工程师潜质的高级应用型人才,为今后从事高分子合成、改性、加工、应用奠定基础。

(二)知识、能力及技能方面的基本要求

(1)知识方面的要求:

掌握线形缩聚反应机理、线形缩聚反应动力学、影响线形缩聚物聚合度的因素和控制方法;分子量分布、逐步聚合的方法;了解线形逐步聚合原理和方法的应用及重要线形逐步聚合物;掌握体形缩聚和凝胶化作用和凝胶点的计算。

掌握自由基聚合的基本理论、自由基聚合速率方程常数、自由基聚合机理;自由基聚合反应的特征;引发剂分解动力学;引发剂效率、自动加速现象;动力学链长;链转移反应;阻聚和缓聚基本理论和概念;了解反应速率常数的测定、分子量分布、聚合热力学。

掌握共聚物的类型和命名、二元共聚物的组成方程、二元共聚物的组成曲线;了解多元共聚和影响因素、单体和自由基的活性以及Q-e概念由基聚合机理。

掌握本体聚合的主要组分;掌握溶液聚合悬浮聚合、乳液聚合和本体聚合的的主要组成和原理;掌握乳液聚合机理;了解乳液聚合动力学。

掌握阳离子和阴离子聚合机理;阳离子聚合反应动力学。了解阳离子和阴离子聚合反应的影响因素;了解离子型共聚、开环聚合;羰基化合物的聚合。

掌握配位聚合的引发剂的类型和作用、聚合物的立构规整性、Ziegler-Natta引发剂;了解α-烯烃的配位阴离子聚合、二烯烃的配位阴离子聚合物。

掌握聚合物的反应活性及其影响因素、聚合物的相似转变、功能高分子、聚合物变大的化学转变、降解、聚合物的老化和防老。

(2)能力方面的基本要求

具备根据高分子化学的基本原理对高分子的实验现象进行分析能力;具有利用本课程基本理论知识进行科学研究的初步能力。

(3)技能方面的基本

具备高分子合成必需的基本理论知识和实验能力;能独立进行高分子合成操作;具有独立进行分析和解决问题的能力。

(三)实施说明

本教学大纲依据专业指导性教学计划制定,指导教学环节。

在课堂着重讲解高分子化学的基本理论和基本知识,采用多媒体和板书相结合的

手段进行课堂教学,也有一定量的习题课讲解典型的习题。使学生能够更加深入的理解理论知识。

(四)对先修课的要求

《高分子化学》先修课是无机化学、有机化学、分析化学和物理化学等专业基础课。

(五)对习题课、实验环节的要求

(1)对习题的要求

每部分教学内容结束后,结合重点和难点内容,安排适当、适量习题;习题类型有论述类型、计算类型。

(2)对实践环节的要求

实验是课程的重要组成部分,尤其对于高分子化学这样的专业课程,实践性是非常重要的,因此,应尽可能加强实验教学环节,主要培养学生的基本操作技能,同时也要使学生具有独立完成一定的综合性,设计性实验能力.每项实验要求学生依据实验指导书预习报告,原始数据记录都经老师检查签字后写出合格报告。

(六)课程考核方式

1.本课程为考试课;

2.将实验成绩占总成绩的20%;将平时成绩,课堂讨论,中期考试,小测验,作业的评定成绩,按10%加入总成绩;将考试成绩的70%计入总分。

(七)主要参考书目:

1. 潘祖仁.高分子化学.化学工业出版社,2007.4

2. 韩哲文.高分子科学教程. 华东理工大学出版社,2004.8.

3.潘才元.高分子化学.中国科学技术出版社,2007.8.

二、中文摘要

《高分子化学》是高分材料与工程专业的必修课,本门课程主要研究各种聚合反应的机理、反应动力学,通过本课程的学习使学生掌握高分子化学必要的基本理论和知识,培养学生严谨的科学态度,具备初步分析和解决高分子化学问题的能力。

三、课程学时总体分配表

四、大纲内容

(1)绪论

内容:高分子的基本概念;高聚物的分类和命名;聚合物的分子量;高聚物的物理状态和主要性质;高聚物材料和机械强度。

本章重点:掌握聚合物的基本概念;理解聚合物的分子量;了解高聚物的物理状态及主要性

质。

难点:聚合物的数均分子量和质均分子量的计算方法。

建议教学方法:聚合物结构式和性能结合讲解。

思考题:常见聚合物结构式的书写方法,聚合物的分子量计算。

(2)缩聚和逐步聚合

内容:线形缩聚反应机理;线形缩聚反应动力学;影响线形缩聚物聚合度的因素和控制方法;分子量分布;逐步聚合的方法;线形逐步聚合原理和方法的应用及重要线形逐步聚合物;体形缩聚;凝胶化作用和凝胶点。

本章重点:掌握线形缩聚反应动力学;了解影响线形缩聚物聚合度的因素和控制方法;了解分子量分布;体形缩聚;凝胶化作用和凝胶点计算。

难点:线形缩聚反应动力学;分子量分布;凝胶化作用和凝胶点。

建议教学方法:动画多媒体结合讲述。

思考题:线形缩聚反应动力学计算式;凝胶化作用和凝胶点计算方法。

(3)自由基聚合

内容:自由基聚合机理;自由基聚合反应的特征;引发剂分解动力学;引发剂效率;自由基聚合微观动力学;自由基聚合基元反应速率常数;自动加速现象;动力学链长;链转移反应;阻聚和缓聚;反应速率常数的测定;分子量分布;聚合热力学。

本章重点:自由基聚合机理;引发剂分解动力学;自由基聚合微观动力学;自动加速现象;链转移反应;动力学链长;阻聚和缓聚;聚合热力学。

难点:引发剂分解动力学;自由基聚合微观动力学;链转移反应。

建议教学方法:动画多媒体结合讲述。

思考题:推导自由基聚合微观动力学方程的4个假设是什么?

(4)自由基共聚合

内容:共聚物的类型和命名;二元共聚物的组成方程;二元共聚物的组成曲线;多元共聚;竞聚率的测定和影响因素;单体和自由基的活性;Q-e概念。

本章重点:共聚物的组成方程;共聚物的组成曲线;单体和自由基的活性;Q-e概念。

难点:共聚物的组成曲线;单体和自由基的活性。

建议教学方法:动画多媒体结合讲述。

思考题:共聚物的组成曲线的涵义是什么?

(5)聚合方法

内容:本体聚合的主要组分;溶液聚合的主要组分;悬浮聚合的液-液分散和成粒过程;悬浮聚合的分散剂和分散作用;乳液聚合的主要组分及其作用;乳液聚合机理;乳液聚合动力学。

本章重点:悬浮聚合的分散剂和分散作用;乳液聚合的主要组分及其作用;乳液聚合机理;乳液聚合动力学。

难点:乳液聚合机理;乳液聚合动力学。

建议教学方法:理论和实际案例结合。

思考题:推导乳液聚合动力学。

(6)离子聚合

内容:阳离子聚合引发体系及引发作用;阳离子聚合机理;阳离子聚合反应动力学;阳离子聚合反应的影响因素;阴离子聚合的引发体系;无终止的阴离子聚合;阴离子聚合物中的立构规整性;自由基聚合和离子聚合的比较;离子型共聚;开环聚合;羰基化合物的聚合。本章重点:阳离子聚合机理;阴离子聚合引发体系;离子型共聚;开环聚合;

难点:无终止的阴离子聚合;开环聚合。

建议教学方法:动画多媒体结合讲述。

思考题:为什么阴离子聚合又被称为活性聚合?

(7)配位聚合

内容:配位聚合的引发剂的类型和作用;聚合物的立构规整性;Ziegler-Natta引发剂;α-烯烃的配位阴离子聚合;二烯烃的配位阴离子聚合物。

本章重点:聚合物的立构规整性;Ziegler-Natta引发剂;α-烯烃的配位阴离子聚合。

难点:Ziegler-Natta引发剂;α-烯烃的配位阴离子聚合。

建议教学方法:动画多媒体结合讲述。

思考题:Ziegler-Natta引发剂的演变历史是怎么样的?

(8)开环聚合

内容:环烷烃开环聚合热力学;杂环开环聚合热力学和动力学特征;环醚的阳离子开环聚合;羰基化合物和三氧六环的阳离子开环聚合;己内酰胺的阴离子开环聚合。

本章重点:阳离子聚合机理;阴离子聚合引发体系;开环聚合。

难点:开环聚合机理及引发体系。

建议教学方法:动画多媒体结合讲述。

思考题:环醚的阳离子开环聚合机理是什么?

(9)聚合物的化学反应

内容:聚合物的反应活性及其影响因素;聚合物的相似转变;功能高分子;聚合物变大的化学转变;降解;聚合物的老化和防老。

本章重点:聚合物的反应活性及其影响因素;聚合物的相似转变;功能高分子;聚合物的老化和防老。

难点:聚合物的反应活性及其影响因素;功能高分子。

建议教学方法:动画多媒体结合讲述。

思考题:为什么聚合物会降解?其机理是什么?

编写人:常军,贺燕,左继成,李刚

审核人:贺燕

批准人:张罡

高分子化学实验---实践大纲

《高分子化学实验》教学大纲 课程名称:高分子化学实验课程编号:050331037 课程类别:专业基础课课程性质:必修 适用专业:高分子材料与工程 适用教学计划版本:2017 实验(上机)计划学时:16 开课单位:材料科学与工程学院 一、大纲编写依据 1. 高分子材料与工程专业培养方案(2017版); 2. 高分子材料科学与工程专业《高分子化学》理论教学大纲对实验环节的要求; 3. 近年来《高分子化学》的教学经验和现有的实验条件; 4.教学计划对学生工程实践能力培养的要求; 5.卓越工程师计划和CDIO工程教育培养模式的要求。 二、实验课程地位及相关课程的联系 1.《高分子化学》是高分子材料与工程专业基础课程; 2.本实验项目是《高分子化学》课程知识的运用; 3.本实验项目是理解和运用高分子化学课程中结构与性能的关系,合成过程对结构及性能的影响材料、分析检测手段以及对检测结果进行分析标定的基础; 4.本实验以《高等数学》、《物理化学》、《无机化学》、《有机化学》为先修课; 5.本实验为后续的创新周和毕业设计奠定实践基础。 三、实验目的、任务和要求 1.实验目的、任务 (1)巩固课堂教学,另一方面更是要增加学生的感性认识,从实验室各项操作入手提高动手能力,使学生将化学与物理的知识综合应用于高分子领域扩大知识面,启发创新思维。 (2)要求学生通过实验,独立地运用所学的基础理论和专业知识,巩固与加深对高分子科学基本理论的理解,并了解高分子性能表征的各分析测试原理、方法和仪器设备,分析影响测量精度和准确性的因素。 (3)通过实验使学生得到基本操作技能与综合应用的训练,培养学生综合评估和分析高分子材料生产、高分子材料改性及加工过程的能力;培养学生科学研究和科技开发能力;培养学生团队合作意识和较强的人际交往能力。 2.实验的要求 本实验要求学生综合掌握高分子化学的基本概念和理论,并运用相关知识自行设计实验方案。通过本实验,要求学生做到: (1)能够自行设计实验方案并撰写实验报告; (2)学会常用高分子材料合成装置和高分子材料性能测试设备的使用,能够运用高分子材

高分子化学复习题——简答题

第一章绪论 1、与低分子化合物相比,高分子化合物有什么特点能否用蒸馏的方法提纯高分子化合物 答:与低分子化合物相比,高分子化合物主要特点有:(1)相对分子质量很大,通常在104~ 106之间;(2)合成高分子化合物的化学组成比较简单,分子结构有规律性;(3)各种合成 聚合物的分子形态是多种多样的;(4)一般高分子化合物实际上是由相对分子质量大小不等 的同系物组成的混合物,其相对分子质量只具有统计平均的意义及多分散性;(5)由于高 分子化合物相对分子质量很大,因而具有与低分子化合物完全不同的物理性质。 不能。由于高分子化合物分子间作用力往往超过高分子主链内的键合力,当温度升高到汽化 温度以前,就发生主链的断裂和分解,从而破坏了高分子化合物的化学结构,因而不能用蒸 馏的方法提纯高分子化合物。 2、何谓相对分子质量的多分散性如何表示聚合物相对分子质量的多分散性 答: 聚合物是相对分子质量不等的同系物的混合物,其相对分子质量或聚合度是一平均值. 这种相对分子质量的不均一性称为相对分子质量的多分散性.相对分子质量多分散性可以用 重均分子量和数均分子量的比值来表示.这一比值称为多分散指数, 其符号为D. 即D =M w/M n. 分子量均一的聚合物其D为越大则聚合物相对分子质量的多分散程度越大. 相对分子质量多分散性更确切的表示方法可用相对分子质量分布曲线表示.以相对分子质量 为横坐标, 以所含各种分子的质量或数量百分数为纵坐标, 即得相对分子质量的质量或数 量分布曲线.相对分子质量分布的宽窄将直接影响聚合物的加工和物理性能. 聚合物相对分子质量多分散性产生的原因注意由聚合物形成过程的统计特性所决定. 3、各举三例说明下列聚合物 (1)天然无机高分子,天然有机高分子,生物高分子。 (2)碳链聚合物,杂链聚合物。 (3)塑料,橡胶,化学纤维,功能高分子。 答:(1)天然无机高分子:石棉、金刚石、云母;天然有机高分子:纤维素、土漆、天然橡胶; 生物高分子:蛋白质、核酸 (2)碳链聚合物:聚乙烯、聚苯乙烯、聚丙烯;杂链聚合物:聚甲醛、聚酰胺、聚酯 (3)塑料:PE、PP、PVC、PS;橡胶:丁苯橡胶、顺丁橡胶、氯丁橡胶、丁基橡胶 化学纤维:尼龙、聚酯、腈纶、丙纶;功能高分子:离子交换树脂、光敏高分子、高分子催化 剂 4、什么叫热塑性塑料什么叫热固性塑料试各举两例说明。 热塑性塑料是指可反复进行加热软化或熔化而再成型加工的塑料,其一般由线型或支链型聚合物作为基材。如以PE、PP、PVC,PS和PMMA等聚合物为基材的塑料。 热固性塑料是指只能进行一次成型加工的塑料,其一般由具有反应活性的低聚物作基材,在成型加工过程中加固化剂经交联而变为体型交联聚合物。一次成型后加热不能再软化或熔化,因而不能再进行成型加工。其基材为环氧树脂、酚醛树脂、不饱和聚酯树脂和脲醛树脂等。 5、高分子链的结构形状有几种它们的物理、化学性质有何不同 答: 高分子链的形状主要有直线形、支链形和网状体形三种,其次有星形、梳形、梯形等(它 们可以视为支链或体形的特例). 直线性和支链形高分子靠范德华力聚集在一起, 分子间力较弱.宏观物理性质表现为密度小、强度低.聚合物具有热塑性, 加热可融化, 在溶剂中可溶解. 其中支链形高分子由于支 链的存在使分子间距离较直线形的大, 故各项指标如结晶度、密度、强度等比直线形的低, 而溶解性能更好, 其中对结晶度的影响最为显著. 网状体形高分子分子链间形成化学键, 其硬度、力学强度大为提高. 其中交联程度低的具有 韧性和弹性, 加热可软化但不熔融, 在溶剂中可溶胀但不溶解. 交联程度高的, 加热不软化, 在溶剂中不溶解. 第二章逐步聚合反应

沈阳理工大学 化工工艺设计

《化工工艺设计》课程教学大纲 课程代码:080131018 课程英文名称:Chemical Engineering Design 课程总学时:48 讲课:48 实验:0 上机:0 适用专业:化学工程与工艺 大纲编写(修订)时间:2010.7 一、大纲使用说明 (一)课程的地位及教学目标 化工工艺设计是一门综合性、实践性较强的课程,是化学工程类课程的最后理论教学环节,是专业主干课,主要讲授化工工艺设计的内容和方法。 通过本课程的学习,可使学生系统地获得化工设计的基本知识和基本方法,能够将各门专业基础课程的知识与实际生产相结合,养成独立工作、独立思考和运用所学知识解决实际工程技术问题的能力,同时强化学生的工程意识,使其能更快地适应今后的化学工程类工作需要。 (二)知识、能力及技能方面的基本要求 学生在学习完本课程后,应能够掌握化工设计的基本知识,熟悉相关的设计规范,具有获取相关数据和参数的基本技能;从事工艺计算的基本能力;初步运用计算机进行工艺计算的技能;化工工艺设计人员应具备的初步工程意识。 (三)实施说明 1.教学方法:本课程讲授中要强调工程观点、定量运算和设计能力的训练,强调理论与实际的结合,提高分析问题、解决问题的能力。 2.教学手段:工艺流程设计、化工设备的选型、化工厂布置、化工管路部分宜采用多媒体教学,并尽量采用工程实例教学。 (四)对先修课的要求 本课程应在高等数学、物理化学、化工原理、化学反应工程、化工制图、化工过程自动控制与仪表、化工设备机械基础等课程结束后开设。 (五)对习题课、实践环节的要求 习题课要根据课程进度适当安排一些化工计算、制图等方面的内容,使学生能将所学内容深入理解。本课程无课内实践教学环节。本课程的课程设计单独设课,单独考核,具体要求参见相应的课程设计教学大纲。 (六)课程考核方式 1.考核方式:考试 2.考核目标:在考核学生对化工设计基础知识掌握的基础上,重点考核学生的化工计算能力、分析问题能力及基本的工程意识。 3.成绩构成:本课程的总成绩主要由两部分组成:平时成绩(包括作业、出勤、小测验、期中考试等)占20%,期末考试成绩占80%。 平时成绩和期末考试成绩均按百分制给出,最后折算为百分制总评成绩。 (七)参考书目 《化工设计》,娄爱娟编,华东理工大学出版社,2002 《化工设计》,陈声宗主编,化学工业出版社,2008 《化工设计》,黄璐,王宝国编,化学工业出版社,2001 《化工计算》,葛婉华编,化学工业出版社,2007

高等高分子教案

高等高分子化学与物理(50h) 主要内容 高分子科学概况及发展进程 高分子合成原理(缩和聚合、自由基聚合、离子型聚合、共聚合四大类合成反应及其实施方法) 高分子链结构(进程结构和远程结构) 高分子聚集态结构(聚集态、晶态、非晶态、取向态、共混结构、超分子聚集态) 高聚物的转变与松弛(分子运动特征、玻璃划转变) 高聚物的高弹性和粘弹性 高聚物流体的流变性(粘性流动和弹性效应及其表征) 高分子材料的力学特征(应力应变、断裂与强度) 高分子溶液(溶解特性、溶液的多分散性、依数性、热力学性质) 高聚物的电、光、透气及粘合性能 主要参考文献 第一部分(基础)1-5 第二部分(基本教材)1-2 第三部分(扩展与提高)1-6 第四部分(相关读物)1-14 第五部分(期刊、杂志)1-8(中文1-6,英文1-2) 第六部分(2000年以后相关的新书) 高分子 1、定义:分子量<105为高分子 分子量在104~106为大分子 2、命名: (1)单体名称前冠以“聚”:聚乙烯、聚氯乙烯…… (2)原料简名后缀以“树脂”:苯酚+甲醛→酚醛树脂尿素+甲醛→脲醛树脂 (3)以聚合物的结构单元的化学结构特征命名:聚酰胺、聚酯、聚氨酯…… (4)商品名称或外文缩写名称: 高聚物的分类 高聚物的分类有四种方法: 1按分子链分为直链、支链 2按性能和用途分类 3按反应类型分为加聚和缩聚 4按电性分(阴、阳、非离子)

由于聚合物主要是作为材料来使用,故按上述第二种分类最具有实际意义,可分为四类:1橡胶(或弹性体):是指常温下形变可恢复的材料,在很小的外力作用下,它可以产生很大的形变(达1000%),外力去掉后能迅速恢复原状。最典型的是硫化的天然橡胶。 2塑料:是指在外力作用下发生形变,外力去掉后不能完全恢复或不恢复的材料。这种材料被破坏时既可表现出韧性,也可表现出脆性。实际中,塑料是以合成树脂为基体,添加各种助剂和填料而制成的材料,按其受热时行为的不同又可分为热塑性塑料和热固性塑料。前者受热后软化或熔化,冷却后定型,且此过程反复进行;后者是首次受热即塑化或软化,一旦加工成型后再受热(有一定限度)也不软化了。 3纤维:分子在牵伸方向上是有序排列,在这一方向上拉伸强度高,受力时形变较小,一般只有百分之几到百分之二十,纤维的力学性能在0~150℃范围内比较稳定。 注:塑料、橡胶、纤维被誉为三大合成材料,其间有时很难严格区分,例如:聚氯乙烯是典型的塑料,但也可抽成纤维,若适量添加增塑剂,又可制成类似橡胶的软制品。又如聚酰胺、聚对苯甲酸乙二酯,既是很好的纤维材料,也可作工程塑料。 4功能高分子:主链或侧链带有反应性官能团,并具有可逆或不可逆的物理性质或化学活性的一类具有特殊功能的高分子。按功能不同大致可分为:(1)化学功能高分子(离子交换树脂,高分子试剂,高分子催化剂,固定化酶等);(2)吸附与分离功能高分子(各种分离树脂和各种分离气体和液体的膜材料):(3)光功能高分子(感光树脂);(4)电功能高分子(高分子电池,静电复印,全息记录材料,压电与热电高分子,驻极体等);(5)生物功能高分子(人工生物体软硬组织,高分子药物及药物载体)。 高分子科学概况 1、高分子化学:主要研究由低分子化合物合成高分子化合物的化学反应原理。 2、高分子物理:主要研究高分子的结构特征及其加工性能和实用性的关系,结构与性能的 表征方法。 3、高分子工程学:主要研究高分子材料及制品进行工业化生产和应用的工程学以及各种生 产过程的模拟优化问题。 4、高分子生物学:高分子与生物化学交叉的新学科(目前正处于交叉形成阶段)。 关系:前两者是后两者的基础,3是形成较晚的学科之一,其研究水平是现阶段某个国家高分子工业发展水平的重要标志之一。4是目前形成最晚的分支之一,其研究水平是现阶段某个国家高分子技术和生物学技术发达程度的重要标志之一。 高分子科学的学科背景 高分子科学自上世纪20~30年代作为一门独立的学科初步形成以来,已经走了近80年的发展历程。(1)在学科领域上,由惟一的高分子化学学科逐步发展为多分支学科的完整的学科体系目前包括:高分子化学,高分子物理,高分子工程学,高分子生物学(98年以后)。(2)在学术内涵上,由仅是高分子化合物的合成研究,拖长出高分子链及其聚集态结构,聚合物成型及其结构控制研究以及不断推出的功能性高分子新材料。(3)在社会影响上,由当初仅是对新奇化合物的学术兴趣,发展到当今成为高分子产业的相关理论基础,并推动着高分子新产业形成及发展,其研究成果直接或间接地渗透到了国民经济及人类日常生活的各个领域,构成了人类社会文明的重要组成部分。 推动高分子科学发展的两个重要因素:(1)人类社会及国民经济对高分子新材料的不断需求。(Langmur等,“单分子吸附理论”与“多元共聚理论”相结合生产超轻、超薄材料)(2)相关学科领域知识的交叉、渗透、融合(如高分子生物學的興趣的興起、交叉,物理學、高分子化學形成高分子物理學;高分子材料的需求→高分子物理學、高分子化學与加工、機械及加工→高分子工程;高分子學、生物學、電子學、醫學→高分子生物學、電子功能聚合物)。

2019考研初试自命题科目考试大纲802高分子化学及物理

天津工业大学硕士研究生入学考试业务课考试大纲 课程编号:802 课程名称:高分子化学及物理 一、考试的总体要求 高分子化学及物理考试科目是为招收材料学类硕士研究生而实施的选拔性考试。旨在选拔具有扎实的高分子化学、高分子物理的理论知识的高素质人才。要求考生能系统掌握高分子化学以及高分子物理的基本理论知识,具有运用所学知识分析问题和解决问题的能力。 二、考试的内容及比例 1.《高分子化学》,分值占50%。 第一章绪论掌握高分子的基本概念,聚合物分类和命名,聚合反应分类。5%。 第二章逐步聚合掌握逐步聚合类型、单体结构与线形缩聚、体形缩聚的关系;线形缩聚反应的机理、副反应;官能团等活性概念及线形缩聚动力学;反应程度、平衡常数、基团数比对线形缩聚物合度的影响与计算;体型缩聚的特点,单体的官能团与平均官能度的计算、采用Carothers与Flory统计法计算凝胶点;缩聚实施方法及典型产品;重要缩聚物和逐步聚合物。 15%。 第三章自由基聚合掌握烯类单体对聚合机理的选择性;自由基聚合机理以及链引发、链增长、链终止、链转移基元反应;自由基聚合机理特征;引发过程及引发剂、半衰期、引发效率、引发剂选用原则;自由基聚合动力学、动力学速率方程的推导及其成立条件;自动加速现象;动力学链长;无、有链转移条件下平均聚合度的计算;反应温度对聚合速率与聚合度的影响自由基寿命定义;阻聚及缓聚。15% 第四章共聚合反应掌握研究共聚反应的意义,共聚物类型及命名;瞬间共聚物组成微分方程的推导及表达式,竞聚率与共聚物组成的关系式,交替共聚、理想共聚、非理想共聚行为组成曲线的绘制;控制共聚物组成的方法;单体活性与自由基活性,取代基对两者的影响;Q-e概念。5% 第五章聚合反应的实施方法掌握自由基本体聚合、溶液聚合、悬浮聚合、乳液聚合的优缺点及其典型聚合物。5% 第六章离子聚合掌握阴离子聚合的单体、引发剂,活性阴离子聚合机理特征、反应动力学、平均聚合度的计算、重要应用。阳离子聚合单体、引发剂、反应机理特征。5%。

高分子化学与物理实验

高分子化学与物理实验一、实验课程: 高分子化学与物理 二、实验项目: 三、实验教材: 《高分子化学与物理实验教程》,卢神州,自编 四、主要仪器设备: 膨胀计20个

稀释型乌氏粘度计20个 GJY-III型光学解偏振仪2台 RL—11B1熔体流动速率测定仪2台五、实验教学课件

实验1 乙酸乙烯酯的乳液聚合 1 实验目的 了解乳液聚合的基本原理并掌握相应的实验技术。 2 试验仪器、工具及试样 (1)试剂和试样: 乙酸乙烯酯(化学纯),过硫酸铵(化学纯),聚乙烯醇(PV A1788)(化学纯),乳化剂OP-10(化学纯),邻苯二甲酸二丁酯(化学纯),碳酸氢钠(化学纯) (2)试验仪器和工具: 水浴锅(1000ml),增力搅拌器,聚四氟乙烯搅拌棒,变压器(1KV),滴液漏斗(磨口,60ml),球形冷凝管(磨口),温度计(0~100℃),量筒(100ml,50ml,10ml),烧杯(250ml,50ml,10ml),移液管(10ml,5ml,1ml),三口磨口烧瓶(250ml(19×3)),玻璃棒,封闭电炉(1000瓦)、氮气瓶(高纯氮),电子天平 3 基本知识 聚乙酸乙烯酯是由乙酸乙烯酯在光或过氧化物引发下聚合而得。根据反应条件,如反应温度、引发剂浓度的不同,可以得到分子量从几千到十几万的聚合物。聚合反应可按本体、溶液或乳液等方式进行。采用何种方法决定于产物的用途。如果作为涂料或粘合剂,则采用乳液聚合方法。聚乙酸乙烯酯胶乳漆具有水基漆的优点,即粘度较小,而分子量较大,不用易燃的有机溶剂。作为粘合剂时(俗称白胶),无论木材、纸张和织物,均可使用。 乙酸乙烯酯乳液聚合的机理与一般乳液聚合相同。采用过硫酸盐为引发剂,为使反应平稳进行,单体和引发剂均需分批加入。聚合中最常用的乳化剂是聚乙烯醇。实践中还常把两种乳化剂合并使用,乳化效果和稳定性比单独用一种要好。本实验采用聚乙烯醇和OP-10两种乳化剂。 单体纯度、引发剂以及聚合温度和转化率等都对产物分子量有很大影响。另外,由于乙酸乙烯酯自由基活性很高,容易对聚合物发生链转移而形成支链或交联产物。 4 实验方法与操作步骤 在装有搅拌器、回流冷凝管与滴液漏斗的三颈瓶中加入乳化剂[注1](6g聚乙烯醇溶于78ml 蒸馏水及1g乳化剂OP-10)及20ml乙酸乙烯酯。称1g过硫酸铵[注2],用5ml水溶解于小烧

高分子化学实验报告-离子交换树脂

离子交换树脂的制备与性能测定 一. 实验目的: 1.熟悉悬浮共聚合的方法及特点。 2.通过对共聚物的磺化反应,了解高分子反应的一般规律。 3.掌握离子交换树脂的净化方法和交换当量的测定。 二、实验背景 2.1 离子交换树脂基础介绍 离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯系阳离子交换树脂。 离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。 离子交换树脂的命名方式:离子交换产品的型号以三位阿拉伯数字组成,第一位数字代表产品的分类,第二位数字代表骨架的差异,第三位数字为顺序号用以区别基因、交联剂等的差异。 2.2 离子交换树脂的种类 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 (2) 弱酸性阳离子树脂 这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。 (3) 强碱性阴离子树脂 这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。 这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。(4) 弱碱性阴离子树脂 这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶

高分子化学复习题——填空题精选

一、填空题 1. 聚合物有两个分散性,是相对分子质量多分散性和聚合度多分散性。 2. 聚合反应按机理来分逐步聚合和连锁聚合两大类,如按单体与聚合物组成差别分为加聚反应、缩聚反应和开环反应。 3.阻聚和缓聚反应的本质:链自由基向阻聚剂和缓聚剂的链转移反应,可能生成没有引发活性的中性分子,也可能是活性低的新自由基。两者的区别是程度上的不同,前者使聚合反应完全终止,后者只是使聚合反应速度降低。 4. 在自由基聚合中,具有能同时获得高聚合和高相对分子质量的实施方法有乳液聚合 5.乳液聚合的特点是可以同时提高相对分子质量和反应速率,原因是:乳化剂浓度对聚合反应速率和聚合度的影响是一致的,对乳化程度的强化而可以同时达到较高的聚合速率和聚合度的目的。 6.合成高聚物的几种聚合方法中,能获得最窄的相对分子质量分布的是阴离子聚合 7. 线形缩聚的核心问题是相对分子质量的影响因素和控制;体形缩聚的关键问题是凝胶点的控制。所有缩聚反应共有的特征是逐步特性 8.在自由基聚合和缩聚反应中,分别用单体的转化率和反应程度来表征聚合反应进行的深度。 9. 线形缩聚相对分子质量的控制手段有加入单官能团的单体,进行端基封锁和控制反应官能团加入的当量比。 10.所谓的配位聚合是指采用的引发剂是金属有机化合物与过渡化合物的络合体系,单体在聚合反应中通过活性中心进行配位而插入活性中心离子与反离子之间,最后完成聚合过程。所谓的定向聚合是指指能够生成立构规整性聚合物为主(>=75%)的聚合反应。 11.自由基聚合的特征慢引发、快增长、速终止。阳离子的聚合特征是快引发、快增长、难终止、易转移。阴离子的聚合特征是快引发、慢增长、易转移、无终止。 12.自由基聚合的实施方法有本体聚合、悬浮聚合、乳液聚合、溶液聚合。逐步聚合的实施方法溶液聚合、界面聚合、熔融聚合。 13.用动力学推导共聚组成方程时做了五个假定,分别是等活性理论、稳态、忽略链转移、双基终止、无解聚反应和无前末端效应。 14.推导微观聚合动力学方程,作了4个基本假定是:链转移反应无影响、等活性理论、聚合度很大、稳态假设。 15.自由基聚合规律是转化率随时间而增高,延长反应时间可以提高转化率。缩聚反应规律是转化率随时间无关,延长反应时间是为了提高聚合度。 16. 在聚合过程中,加入正十二硫醇的目的是调节相对分子质量,原理是发生链转移反应 17. 悬浮聚合的基本配方是水、单体、分散剂、油溶性引发剂,影响颗粒形态的两种重要因素是分散剂和搅拌。乳液聚合的配方是单体、水、水溶性引发剂、水溶性乳化剂 18.Ziegler-Natta引发剂的主引发剂是IVB~VIIIB族过渡金属化合物,共引发剂是IA~IIIA 族金属有机化合物。 19. 三大合成材料是塑料、纤维、橡胶。 20. 非晶高聚物随温度变化而出现的三种力学状态是玻璃态、高弹态、粘流态。 21. 影响聚合物反应活性的化学因素主要有极性效应和共轭效应。 22. 两种单体的Q、e值越接近越易发理想共聚聚合,相差越远易发生交替共聚聚合。 23.熔点是晶态聚合物的热转变温度,而玻璃化温度则主要是非晶态聚合物的热转变温度。 24. 室温下,橡胶处于高弹态,粘流温度为其使用上限温度,玻璃化温度为其使用下限温度。 25.高分子,又称聚合物,一个大分子往往由许多简单的结构单元通过共价键重复键接而成。 26.玻璃化温度和熔点是评价聚合物耐热性的重要指标。

高分子化学授课教案

授课教案 第一次课 第一章绪论 第一节高分子化学的基本概念 高分子化合物结构,分子量,结构单元,重复单元,聚合度 第二节聚合物的分类与命名 按性质和用途,按主链结构,按组成的变化分类,根据原料单体命名,商 品名称和英文缩写 作业: 1 第二次课 第一章绪论 第三节聚合物的分子量及其分布 平均分子量的意义:数均分子量,重均分子量,粘均分子量,分布曲线。 多分散性和分子量分布 第四节高分子链的结构形态 作业:2,3,4 第三次课 第二章自由基聚合反应 第一节概述 单体取代基的电子效应对聚合反应种类的影响。 第二节自由基聚合的聚烯烃 聚乙烯、聚氯乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚丙烯烯腈、聚乙酸乙烯酯和聚四氟乙烯的性能及应用。 第三节自由基聚合反应机理 链引发、链增长、链终止、链转移和阻聚。 作业:2 第四次课 第二章自由基聚合反应 第四节引发剂和引发作用

引发剂;引发剂的分解速率、半衰期和引发效率;诱导效应和 笼蔽效应 作业:4,9 第五次课 第二章自由基聚合反应 第五节自由基聚合反应动力学 自由基聚合速率方程的推导;温度对聚合反应速率的影响;自 动加速作用 作业:6,10 第六次课 第二章自由基聚合反应 第六节平均聚合度和链转移 动力学链长和聚合度;温度对聚合度的影响;链转移和平 均聚合度;向大分子的转移。 第七节聚合反应的单体 单体的聚合能力;单体结构和聚合物结构。 作业:11,12,13,14 第七次课 第二章自由基聚合反应 第八节阻聚剂和阻聚作用 阻聚剂和缓聚剂;烯丙基单体的自动阻聚作用。 第九节聚合反应实施方法 本体聚合;溶液聚合;悬浮聚合;乳液聚合。 作业:17,18,19 第八次课 第三章离子聚合反应 第一节正离子聚合和聚异丁烯 正离子聚合的烯类聚合物;催化剂和共催化剂;溶剂;正

2017年北京最新“高分子化工与材料专业基础与实务(中级)”中级职称考试大纲

《高分子化工与材料专业基础与实务(中级)》考试大纲 1 前言 根据原北京市人事局《北京市人事局关于工程技术等系列中、初级职称试行专业技术资格制度有关问题的通知》(京人发[2005]26号)及《关于北京市中、初级专业技术资格考试、评审工作有关问题的通知》(京人发[2005]34号)文件的要求,从2005年起,我市工程技术系列中级专业技术资格试行考评结合的评价方式。为了做好考试工作,我们编写了本大纲。本大纲既是申报人参加考试的复习备考依据,也是专业技术资格考试命题的依据。 在考试知识体系及知识点的知晓程度上,本大纲从对高分子化工与材料中级专业技术资格人员应具备的学识和技能要求出发,在基本要求中提出了“掌握”、“熟悉”和“了解”共3个层次的要求,这3个层次的具体涵义为:掌握系指在理解准确、透彻的基础上,能熟练自如地运用并分析解决实际问题;熟悉系指能说明其要点,并解决实际问题;了解系指概略知道其原理及应用范畴。 在考试内容的安排上,本大纲从对高分子化工与材料中级专业技术资格人员的工作需要和综合素质要求出发,主要考核申报人的专业基础知识、专业理论知识和相关专业知识,以及解决实际问题的能力。 命题内容在本大纲所规定的范围内。考试将采取笔试、闭卷的方式。 《高分子化工与材料专业基础与实务(中级)》 考试大纲编写组 二○一四年一月

2 基本要求 2.1掌握高分子的基本概念、高分子的化学反应。熟悉自由基聚合、离子及配位聚合。了解缩聚、逐步聚合、共聚合反应。 2.2具备通过高分子结构初步判定高分子材料性能的能力。掌握高分子的结构、高分子的热运动、力学状态及转变。熟悉高分子固体的力学性能、高分子溶液的性质。了解高分子的电、热、光学性能。 2.3具备配方设计的能力。掌握高分子材料(塑料、橡胶)的结构、品种、性能和用途。熟悉塑料、橡胶助剂的主要品种和使用方法,熟悉热塑性弹性体的结构、特征和主要品种。了解纤维、多组份高分子材料、功能高分子材料的特性、类型及用途。 2.4具备产品工艺设计的能力。掌握高分子材料(塑料、橡胶)主要成型工艺及设备。熟悉原材料的初加工工艺及设备。了解高分子材料其他成型方法及回收知识。 2.5具备通用制品的生产设计能力。掌握高分子材料制品的分类及构造、熟悉主要制品的制造方法。 2.6掌握化工安全知识,熟悉环境保护、化工清洁生产与管理知识,了解化工标准化和知识产权保护知识。 3 复习要点 3.1 高分子化学 3.1.1 基本概念 1.高分子的基本概念:单体、单体单元、重复单元、聚合度及各概念之间关系 2.聚合物分子量及多分散性的概念,数均分子量和重均分子量的定义,多分散性指数的意义 3.高分子的分类、命名方法、规则 4.聚合反应分类,加聚反应、缩聚反应特点,连锁聚合反应和逐步聚合反应机理 5.高分子结构性能的一般特征,高分子结构层次及内容 6.高分子的物理状态、力学状态 3.1.2 缩聚和逐步聚合 1.线形缩聚单体的种类及类型,官能团、官能度、官能团活性、等物质的量的概念 2.线形缩聚的机理、特点及副反应,聚合度与平衡常数和残留小分子的关系 3.线形缩聚产物聚合度的影响因素及控制方法,线形缩聚物分子量分布 4.体型缩聚的成型条件,凝胶化现象与凝胶点 5.缩聚反应的实施方法。聚酯、聚酰胺、酚醛树脂、脲醛树脂、三聚氰胺甲醛树脂的制备 3.1.3自由基聚合 1.能够进行自由机聚合的单体,取代基对烯类单体聚合选择性的影响、电子效应和

2011级高分子化学及实验试题及参考答案

陕西师范大学2013—2014学年第一学期期末考试 化学化工学院学院2011级 答卷注意事项: 、学生必须用蓝色(或黑色)钢笔、圆珠笔或签字笔直接在试题卷上答题。 2、答卷前请将密封线内的项目填写清楚。 3、字迹要清楚、工整,不宜过大,以防试卷不够使用。 4、本卷共 5大题,总分为100分。 一、写出下列化合物的结构式及化学名称(每小题2分, 10分) 1. PA-610 聚癸二酰己二胺 H —[NH(CH 2)6 NH-CO(CH 2)8CO]n --OH 2. PVA 聚乙烯醇 3. PMMA 聚甲基丙烯酸甲酯 4. PET 聚对苯二甲酸乙二醇酯 OC n HO COO(CH 2)2O H CH CH 2OH n CH CH 2OH n CH 2C CH 3 COOCH 3 n

下 装 订 线 上 装 订 线 5. POM 聚甲醛 二、填空题(每空1.0分,共25分) 1. 连锁聚合反应中, (聚合与解聚达到平衡时的温度) 称之为平衡温度,它是(单体浓度)的函数,其计算公式为(T e =○一 / S ○一 + Rln[M] ) 2. 共聚物组成微分方程说明共聚物的组成与(单体的竟聚率和单体的浓度) 有 关,而与(引发和终止速率)无关。 3. 影响开环聚合难易程度的因素有:(环的大小),(构成环的元素),(环上的取代基); 4.界面缩聚所用的单体必须是(活性较高的单体);不必严格(要求两种单体高纯 度和等物质的量配比)。 5. 从聚合机理看,HDPE 属于(配位(阴离子))聚合,LDPE 属于(自由基)聚合, LDPE 密度低的原因是在聚合过程中(发生了向大分子的链转移,形成支链); 6. 在Ziegler-Natta 引发体系中,凡能使丙烯聚合的引发剂(一般都能使)乙烯 聚合,能使乙烯聚合的(却不一定能使)丙烯聚合。 7. 阳离子聚合的引发剂主要为 (酸),它包括(质子酸)和 (路易斯酸),用 (质子酸) 一般只能得到低聚物。 8. 本体聚合应选择(油溶性)引发剂,乳液聚合应选择(水溶性)引发剂。 9.使聚合度增大的反应有(接枝、嵌段、扩链、交联) 10. 下列单体进行自由基聚合,比较聚合热的大小(填>或<) A. (a). CH2=CH2 (b) CH2=CHCl (a) (<) (b) B. (c) CH2=CH-ph (d) CH2=C(CH3)ph (c) (>) (d) C. (e) CH=CH-COOH (f) CH2=CH-COOCH3 (e) (<) (f) 三、选择题(每小题1.5分,共15分) 得分 评卷人 得分 评卷人 O H 2C n

高分子化学复习笔记

第一章绪论 1.1 高分子的基本概念、特点 单体:能通过相互反应生成高分子的化合物。 高分子或聚合物:由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。 主链:构成高分子骨架结构,以化学键结合的原子集合。 侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。 聚合反应:由低分子单体合成聚合物的反应称做~. 重复单元:聚合物中组成和结构相同的最小单位称为~,又称为链节。 结构单元:构成高分子链并决定高分子性质的最小结构单位称为~ 单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 聚合反应(Polymerization):由低分子单体合成聚合物的反应。 线型聚合物:指许多重复单元在一个连续长度上连接而成的高分子. 热塑性塑料(Thermoplastics Plastics):是线型可支链型聚合物,受热即软化或熔融,冷却即固化定型,这一过程可反复进行。聚苯乙烯(PS)、聚氯乙烯(PVC)、聚乙烯(PE)等均属于此类。 热固性塑料(Thermosetting Plastics):在加工过程中形成交联结构,再加热也不软化和熔融。酚醛树脂、

高分子化学实验教案

高分子化学实验教案

前言 高分子化学实验是高分子化学课程的重要组成部分,通过实验课程的训练,使学生掌握高分子合成的基本技能和方法,初步培养学生独立操作的能力和创新精神。 该讲义的实验内容包含了两类内容。一类是基础性实验,选取了具有代表性的单体,目的是使学生掌握自由基聚合,缩合聚合,高分子反应等化学反应的实施方法以及聚合反应动力学的研究方法。另一类是综合性实验,以研究某种聚合物的合成、改性和材料制备为目的,并非增加了难度,而是让学生学会综合分析问题和全面了解研究方法。这样,原来单个、孤立的实验通过完成某种目标联系在一起,既提高了学生的综合实验技能,也使其学习了基本的科学研究方法,为他们今后完成毕业论文和开展更高层次的研究工作奠定了基础。同时,将高分子化学实验室基本安全与防护的知识也写入了本讲义,这是学生通过实验教学应该学到并牢记的。 本讲义所有实验的选取和编排都是基于教学大纲对高分子化学实验课程的要求,在此基础上进行一些知识的扩展。 该讲义在编写过程中参考了国内出版的相关院校的实验教材,由于编者水平有限,其中难免存在缺点和不足之处,欢迎各位同仁教师以及学生们的批评指正。此外,本讲义在编写过程中得到了王自为老师,郝俊生老师的指导,他们的宝贵意见和热情鼓励,使这本讲义能够编写完成,在此一并致谢。 编者 2010年12月

目录 第一章高分子化学实验基础 ......................................................................... 错误!未指定书签。 一、化学试剂使用中的安全和防范............................................................... 错误!未指定书签。 二、实验的准备与操作 (1) 第二章基础高分子化学实验 (3) 实验1 乙酸乙烯酯的乳液聚合白乳胶的制备 (3) 实验2 乙酸乙烯酯的溶液聚合 (5) 实验3 聚乙烯醇的制备 (7) 实验4 聚乙烯醇缩甲醛的制备 (8) 实验5 脂肪二胺与二元酰氯的界面缩聚 (9) 实验6 苯乙烯的悬浮聚合 (11) 实验7 甲基丙烯酸甲酯的本体聚合有机玻璃的制备 (13) 实验8 凝胶渗透色谱法测聚合物的相对分子量及相对分子量分布 (15) 实验9 膨胀计法测定苯乙烯本体聚合反应速率 (17) 实验10 熔融缩聚制备尼龙66 (19) 第三章试剂的精制 (21) 一、常用单体的精制 (21) 二、常用引发剂的提纯 (21)

911材料综合 考试大纲

911材料综合考试大纲(2017年) 《材料综合》满分150分,考试内容包括《物理化学》、《材料现代研究方法》《材料科学基础》三门课程,其中《物理化学》占总分的50%,《材料现代研究方法》占总分的30%,《材料科学基础》占总分的20%。特别注意:《材料科学基础》分为三部分,考生可任选其中一部分作答。 物理化学考试大纲(2017年) 适用专业:材料科学与工程专业 《物理化学》是化学、化工、材料及环境等专业的基础课。它既是专业知识结构中重要的一环,又是后续专业课程的基础。要求考生通过本课程的学习,掌握化学热力学及化学动力学的基本知识;培养学生对化学变化和相变化的平衡规律及变化速率规律等物理化学问题,具有明确的基本概念,熟练的计算能力,同时具有一般科学方法的训练和逻辑思维能力,体会并掌握怎样由实验结果出发进行归纳和演绎,或由假设和模型上升为理论,并能结合具体条件应用理论分析解决较为简单的化学热力学及动力学问题。 一、考试内容及要求 以下按化学热力学基础、化学平衡、相平衡、电化学、以及化学动力学五部分列出考试内容及要求。并按深入程度分为了解、理解(或明了)和掌握(或会用)三个层次进行要求。 (一)化学热力学基础 理解平衡状态、状态函数、可逆过程、热力学标准态等基本概念;理解热力学第一、第二、第三定律的表述及数学表达式涵义;明了热、功、内能、焓、熵和Gibss函数,以及标准生成焓、标准燃烧焓、标准摩尔熵和标准摩尔吉布斯函数等概念。 熟练掌握在物质的p、T、V变化,相变化和化学变化过程中求算热、功以及各种热力学状态函数变化值的原理和方法;在将热力学公式应用于特定体系的时候,能应用状态方程(主要是理想气体状态方程)和物性数据(热容、相变热、蒸汽压等)进行计算。 掌握熵增原理和吉布斯函数减小原理判据及其应用;明了热力学公式的适用条件,理解热力学基本方程、对应系数方程。 (二)化学平衡 明了热力学标准平衡常数的定义,会用热力学数据计算标准平衡常数;

高分子化学期末重点名词解释

高分子期末重点名词解释 第四章逐步聚合反应 1)缩聚反应(线型缩聚和体型缩聚): 缩聚反应定义:含有两个(或两个以上)官能团的低分子化合物,在官能团之间发生缩合反应,在缩去小分子的同时能生成高聚物的逐步聚合反应。 线型缩聚:单体都只带两个官能团,聚合过程,分子链在两个方向增长。获得可溶可熔的线形聚合物(热塑性聚合物)。 体型(支化、交联)缩聚反应: 单体至少有一个含有两个以上官能团,反应过程中,分子链从多个方向增长。获得不溶不熔的交联(体形)聚合物(热固性聚合物)。 2)反应程度:参加反应官能团数占起始官能团数的分率。 3)平均官能度:两种或两种以上单体参加的缩聚反应中,在达到凝胶点以前的线型反应阶 段,反应体系中实际能够参加反应的各种官能团(有效官能团)总物质的量与单体总物质的量之比。 4)凝胶点:体型缩聚反应当反应程度达到某一数值时,反应体系的粘度会突然增加,突然 转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程。此时的反应程度被称作凝胶点。 5)热塑性聚合物:非交联型的,加热时会变软或流动。加工过程不发生化学变化,可进行 再加工。 6)热固性聚合物:交联型的,加热时不会流动。聚合反应的完成和交联反应是在加工过程 中进行的,成型后不能再次加工。 7)熔融缩聚:在单体和聚合物的熔融温度以上将它们加热熔融,然后在熔融态进行的缩聚 方法。 8)溶液聚合:单体加适当催化剂在溶剂中进行的缩聚反应。 9)固相缩聚:在单体及聚合物熔点一下的惰性气体或高真空下加热缩聚的方法。 10)界面缩聚:在多相(一般为两相)体系中,在相界面处进行的缩聚反应。 第五章聚合物的化学反应

1)聚合物的相似转变:反应仅发生在聚合物分子的侧基上,即侧基由一种基团转变为另一 种基团,并不会引起聚合度的明显转变。 2)邻近基团效应:分为以下两种 位阻效应:由于新生成的功能基的立体阻碍,导致其邻近功能基难以继续参加反应。 静电效应:邻近基团的静电效应可降低或提高功能基的反应活性。 3)概率效应(功能基孤立化效应):当高分子链上的相邻功能基成对参与反应时,由于成 对基团反应存在概率效应,即反应过程中间或会产生孤立的单个功能基,由于功能基难以继续反应,因而不能100%转化,只能达到有限的反应程度。 4)聚合物的老化:聚合物在使用过程中,受空气、水、光等大气条件,物理—化学因素综 合的影响,引起不希望的化学变化,使性能变坏,这过程叫老化。 5)解聚:聚合反应的逆反应,聚合物首先从末端开始裂解,生成相当于增长链自由基的自 由基,然后按链式机理逐个脱落下单体。 6)降解:聚合物相对分子质量变小的化学反应过程的总称,其中包括解聚、无规断链、侧 基和低分子物的脱除等反应。 第六章聚合物的结构 1)链节:链节指组成聚合物的每一基本重复结构单元。 2)链段:由于高分子链中的单键旋转时互相牵制,即一个键转动,要带动附近一段链一起 运动,这样每个键不能成为一个独立运动的单元,而是由若干键组成的一段链作为一个独立运动单元。 3)构象:高分子链由于单键内旋转而产生的分子在空间的不同形态。 4)构型:分子中由化学键所固定的原子在空间的排列。 5)均方末端距:末端距是指线形高分子链的一端到另一端的直线距离,用h(矢量)表示。 其平方的平均值即是均方末端距(标量)。 6)均方旋转半径:从分子质量中心到分子中各链段m i的距离s i的平方平均值(详见P230 右下角)。 7)高分子链的柔顺性:高分子链能够通过内旋转作用改变其构象的性能。 8)结晶度:试样中结晶部分所占的质量分数或体积分数。

高分子化学教案离子聚合

第五章离子聚合(ionic polymerization) 【课时安排】 5.1 引言20分钟 5.2 阳离子聚合2学时30分钟 5.3 阴离子聚合3学时 5.6 开环聚合2学时 总计8学时 【掌握内容】 1阳离子聚合常见单体与引发剂 2阳离子聚合聚合机理 3阳离子聚合离子对平衡式及其影响因素 4阴离子聚合常见单体与引发剂 5阴离子聚合聚合机理 6活性阴离子聚合聚合原理、特点及应用 7阴离子、阳离子聚合、自由基聚合的比较 【熟悉内容】 1. 假阳离子聚合、异构化聚合。 2. 阴离子聚合的自发终止;溶剂、温度与反离子对反应的影响。 【了解内容】 1. 阳离子聚合动力学。 2. 其它类的活性聚合。 【教学难点】 1. 阳离子聚合聚合机理。 2. 阴阳离子对平衡式影响规律。 3. 活性阴离子聚合条件、特点及其应用。 【教学目标】 1. 掌握阴阳离子聚合相关基本概念。 2. 掌握阴阳离子聚合常见单体与引发剂及聚合反应特点。 3. 能按规范写出正确的阴阳离子聚合引发反应式、聚合机理、应用反应式。 4. 运用计量聚合进行简单计算。 5.1 引言 5.2 阳离子聚合 【教学内容】 5.1 引言 5.2 阳离子聚合 5.2.1 单体 5.2.2 引发剂(亲电试剂) 5.2.3 聚合机理 5.2.4 聚合反应影响因素及特点 5.2.5 工业化品种 【授课时间】3学时30分钟 【教学重点】阳离子聚合常见单体与引发剂;聚合反应特点;离子对平衡式及其影响因素【教学难点】阳离子聚合聚合机理;离子对平衡式影响规律

【教学目标】 1 掌握阳离子聚合常见单体与引发剂及聚合反应特点 2 能正确写出阳离子聚合引发反应式、异丁烯等阳离子聚合机理 3能综合分析影响聚合反应速率的因素 【教学手段】课堂讲授,多媒体 【教学过程】 5.1 引言 一 定义 单体在引发剂作用下按离子历程聚合得到大分子的过程 二 特点 1反应条件苛刻 2聚合速率快 3离子活性高,反应介质影响大 三 意义 1.将难以自由基方式聚合的单体,以离子聚合方式合成新产品 2.同一单体通过自由基和离子聚合得到的产物的结构与性能不同 3.可设计 5.2 阳离子聚合 发展历史 反应通式 R-X →R -X + 5.2.1 单体 一 要求:足够亲核性,足够活性,一定稳定性 二 主要种类 1 带推电子取代基的乙烯基单体—异丁烯 2共轭烯烃—苯乙烯,丁二烯,异戊二烯 3含有带独电子杂原子的单体--烷基乙烯基醚 三 活性比较 烷基乙烯基醚?异丁烯?苯乙烯?异戊二烯?丁二烯 5.2.2 引发剂(亲电试剂) 一 要求:足够亲电性,反离子亲核性弱 二 种类 1质子酸:其引发阳离子为离解产生的质子H + (1)组成: 无机酸:H 2SO 4, H 3PO 4等 有机酸:CF 3CO 2H, CCl 3CO 2H 等 超强酸: HClO 4 , CF 3SO 3H, ClSO 3H 等 (2)活性:反离子亲核性对活性有较大影响 HX →t-BuX H 2SO 4,H 3PO 4 →二,三聚体 R X +H 2C CH Y R CH 2CH Y 单体聚合 抗衡阴离子

相关文档
相关文档 最新文档